1
|
Sánchez Romano J, Simón-Santamaría J, McCourt P, Smedsrød B, Mortensen KE, Sagona AP, Sørensen KK, Larsen AK. Liver sinusoidal cells eliminate blood-borne phage K1F. mSphere 2024; 9:e0070223. [PMID: 38415633 PMCID: PMC10964407 DOI: 10.1128/msphere.00702-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/30/2024] [Indexed: 02/29/2024] Open
Abstract
Phage treatment has regained attention due to an increase in multiresistant bacteria. For phage therapy to be successful, phages must reach their target bacteria in sufficiently high numbers. Blood-borne phages are believed to be captured by macrophages in the liver and spleen. Since liver sinusoids also consist of specialized scavenger liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs), this study investigated the contribution of both cell types in the elimination of Escherichia coli phage K1Fg10b::gfp (K1Fgfp) in mice. Circulatory half-life, organ, and hepatocellular distribution of K1Fgfp were determined following intravenous administration. Internalization of K1Fgfp and effects of phage opsonization on uptake were explored using primary mouse and human LSEC and KC cultures. When inoculated with 107 virions, >95% of the total K1Fgfp load was eliminated from the blood within 20 min, and 94% of the total retrieved K1Fgfp was localized to the liver. Higher doses resulted in slower elimination, possibly reflecting temporary saturation of liver scavenging capacity. Phage DNA was detected in both cell types, with a KC:LSEC ratio of 12:1 per population following cell isolation. Opsonization with plasma proteins increased time-dependent cellular uptake in both LSECs and KCs in vitro. Internalized phages were rapidly transported along the endocytic pathway to lysosomal compartments. Reduced viability of intracellular K1Fgfp corroborated inactivation following endocytosis. This study is the first to identify phage distribution in the liver at the hepatocellular level, confirming clearance of K1Fgfp performed mostly by KCs with a significant uptake also in LSECs.IMPORTANCEFaced with the increasing amounts of bacteria with multidrug antimicrobial resistance, phage therapy has regained attention as a possible treatment option. The phage field has recently experienced an emergence in commercial interest as research has identified new and more efficient ways of identifying and matching phages against resistant superbugs. Currently, phages are unapproved drugs in most parts of the world. For phages to reach broad clinical use, they must be shown to be clinically safe and useful. The results presented herein contribute to increased knowledge about the pharmacokinetics of the T7-like phage K1F in the mammalian system. The cell types of the liver that are responsible for rapid phage blood clearance are identified. Our results highlight the need for more research about appropriate dose regimens when phage therapy is delivered intravenously and advise essential knowledge about cell systems that should be investigated further for detailed phage pharmacodynamics.
Collapse
Affiliation(s)
| | | | - Peter McCourt
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Bård Smedsrød
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Kim Erlend Mortensen
- Gastrointestinal Surgery Unit, University Hospital of North Norway, Tromsø, Norway
| | - Antonia P. Sagona
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | | | - Anett Kristin Larsen
- Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
2
|
Dicks LMT, Vermeulen W. Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages. Viruses 2024; 16:478. [PMID: 38543843 PMCID: PMC10975011 DOI: 10.3390/v16030478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 05/23/2024] Open
Abstract
Healthcare faces a major problem with the increased emergence of antimicrobial resistance due to over-prescribing antibiotics. Bacteriophages may provide a solution to the treatment of bacterial infections given their specificity. Enzymes such as endolysins, exolysins, endopeptidases, endosialidases, and depolymerases produced by phages interact with bacterial surfaces, cell wall components, and exopolysaccharides, and may even destroy biofilms. Enzymatic cleavage of the host cell envelope components exposes specific receptors required for phage adhesion. Gram-positive bacteria are susceptible to phage infiltration through their peptidoglycan, cell wall teichoic acid (WTA), lipoteichoic acids (LTAs), and flagella. In Gram-negative bacteria, lipopolysaccharides (LPSs), pili, and capsules serve as targets. Defense mechanisms used by bacteria differ and include physical barriers (e.g., capsules) or endogenous mechanisms such as clustered regularly interspaced palindromic repeat (CRISPR)-associated protein (Cas) systems. Phage proteins stimulate immune responses against specific pathogens and improve antibiotic susceptibility. This review discusses the attachment of phages to bacterial cells, the penetration of bacterial cells, the use of phages in the treatment of bacterial infections, and the limitations of phage therapy. The therapeutic potential of phage-derived proteins and the impact that genomically engineered phages may have in the treatment of infections are summarized.
Collapse
Affiliation(s)
- Leon M. T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch 7600, South Africa;
| | | |
Collapse
|
3
|
Kan L, Barr JJ. A Mammalian Cell's Guide on How to Process a Bacteriophage. Annu Rev Virol 2023; 10:183-198. [PMID: 37774129 DOI: 10.1146/annurev-virology-111821-111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Bacteriophages are enigmatic entities that defy definition. Classically, they are specialist viruses that exclusively parasitize bacterial hosts. Yet this definition becomes limiting when we consider their ubiquity in the body coupled with their vast capacity to directly interact with the mammalian host. While phages certainly do not infect nor replicate within mammalian cells, they do interact with and gain unfettered access to the eukaryotic cell structure. With the growing appreciation for the human virome, coupled with our increased application of phages to patients within clinical settings, the potential impact of phage-mammalian interactions is progressively recognized. In this review, we provide a detailed mechanistic overview of how phages interact with the mammalian cell surface, the processes through which said phages are internalized by the cell, and the intracellular processing and fate of the phages. We then summarize the current state-of-the-field with respect to phage-mammalian interactions and their associations with health and disease states.
Collapse
Affiliation(s)
- Leo Kan
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia;
| | - Jeremy J Barr
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia;
| |
Collapse
|
4
|
Zou G, He L, Rao J, Song Z, Du H, Li R, Wang W, Zhou Y, Liang L, Chen H, Li J. Improving the safety and efficacy of phage therapy from the perspective of phage-mammal interactions. FEMS Microbiol Rev 2023; 47:fuad042. [PMID: 37442611 DOI: 10.1093/femsre/fuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/15/2023] Open
Abstract
Phage therapy has re-emerged as a promising solution for combating antimicrobial-resistant bacterial infections. Increasingly, studies have revealed that phages possess therapeutic potential beyond their antimicrobial properties, including regulating the gut microbiome and maintain intestinal homeostasis, as a novel nanocarrier for targeted drug delivery. However, the complexity and unpredictability of phage behavior during treatment pose a significant challenge in clinical practice. The intricate interactions established between phages, humans, and bacteria throughout their long coexistence in the natural ecosystem contribute to the complexity of phage behavior in therapy, raising concerns about their efficacy and safety as therapeutic agents. Revealing the mechanisms by which phages interact with the human body will provide a theoretical basis for increased application of promising phage therapy. In this review, we provide a comprehensive summary of phage-mammal interactions, including signaling pathways, adaptive immunity responses, and phage-mediated anti-inflammatory responses. Then, from the perspective of phage-mammalian immune system interactions, we present the first systematic overview of the factors affecting phage therapy, such as the mode of administration, the physiological status of the patient, and the biological properties of the phage, to offer new insights into phage therapy for various human diseases.
Collapse
Affiliation(s)
- Geng Zou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun He
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Rao
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiyong Song
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Du
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Runze Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenjing Wang
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Zhou
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Lu Liang
- School of Bioscience, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinquan Li
- National Key Laboratory of Agricultural Microbiology, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, College of Veterinary Medicine, College of Biomedicine and Health, Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| |
Collapse
|
5
|
Zia S, Alkheraije KA. Recent trends in the use of bacteriophages as replacement of antimicrobials against food-animal pathogens. Front Vet Sci 2023; 10:1162465. [PMID: 37303721 PMCID: PMC10247982 DOI: 10.3389/fvets.2023.1162465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
A major public health impact is associated with foodborne illnesses around the globe. Additionally, bacteria are becoming more resistant to antibiotics, which pose a global threat. Currently, many scientific efforts have been made to develop and implement new technologies to combat bacteria considering the increasing emergence of multidrug-resistant bacteria. In recent years, there has been considerable interest in using phages as biocontrol agents for foodborne pathogens in animals used for food production and in food products themselves. Foodborne outbreaks persist, globally, in many foods, some of which lack adequate methods to control any pathogenic contamination (like fresh produce). This interest may be attributed both to consumers' desire for more natural food and to the fact that foodborne outbreaks continue to occur in many foods. Poultry is the most common animal to be treated with phage therapy to control foodborne pathogens. A large number of foodborne illnesses worldwide are caused by Salmonella spp. and Campylobacter, which are found in poultry and egg products. Conventional bacteriophage-based therapy can prevent and control humans and animals from various infectious diseases. In this context, describing bacteriophage therapy based on bacterial cells may offer a breakthrough for treating bacterial infections. Large-scale production of pheasants may be economically challenging to meet the needs of the poultry market. It is also possible to produce bacteriophage therapy on a large scale at a reduced cost. Recently, they have provided an ideal platform for designing and producing immune-inducing phages. Emerging foodborne pathogens will likely be targeted by new phage products in the future. In this review article, we will mainly focus on the Bacteriophages (phages) that have been proposed as an alternative strategy to antibiotics for food animal pathogens and their use for public health and food safety.
Collapse
Affiliation(s)
- Sana Zia
- Department of Zoology, Government Sadiq College Women University Bahawalpur, Bahawalpur, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
6
|
Chen L, Hou X, Chu H. The Novel Role of Phage Particles in Chronic Liver Diseases. Microorganisms 2023; 11:1181. [PMID: 37317156 DOI: 10.3390/microorganisms11051181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 06/16/2023] Open
Abstract
The gut microbiome is made up of bacteria, fungi, viruses and archaea, all of which are closely related with human health. As the main component of enterovirus, the role of bacteriophages (phages) in chronic liver disease has been gradually recognized. Chronic liver diseases, including alcohol-related liver disease and nonalcoholic fatty liver disease, exhibit alterations of the enteric phages. Phages shape intestinal bacterial colonization and regulate bacterial metabolism. Phages adjoining to intestinal epithelial cells prevent bacteria from invading the intestinal barrier, and mediate intestinal inflammatory response. Phages are also observed increasing intestinal permeability and migrating to peripheral blood and organs, likely contributing to inflammatory injury in chronic liver diseases. By preying on harmful bacteria, phages can improve the gut microbiome of patients with chronic liver disease and thus act as an effective treatment method.
Collapse
Affiliation(s)
- Liuying Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
7
|
Shahriar A, Rob Siddiquee MF, Ahmed H, Mahmud AR, Ahmed T, Mahmud MR, Acharjee M. Catheter-associated urinary tract infections: Etiological analysis, biofilm formation, antibiotic resistance, and a novel therapeutic era of phage. INTERNATIONAL JOURNAL OF ONE HEALTH 2022. [DOI: 10.14202/ijoh.2022.86-100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Urinary tract infection (UTI) caused by uropathogens has put global public health at its utmost risk, especially in developing countries where people are unaware of personal hygiene and proper medication. In general, the infection frequently occurs in the urethra, bladder, and kidney, as reported by the physician. Moreover, many UTI patients whose acquired disorder from the hospital or health-care center has been addressed previously have been referred to as catheter-associated UTI (CAUTI). Meanwhile, the bacterial biofilm triggering UTI is another critical issue, mostly by catheter insertion. In most cases, the biofilm inhibits the action of antibiotics against the UTI-causing bacteria. Therefore, new therapeutic tools should be implemented to eliminate the widespread multidrug resistance (MDR) UTI-causing bacteria. Based on the facts, the present review emphasized the current status of CAUTI, its causative agent, clinical manifestation, and treatment complications. This review also delineated a model of phage therapy as a new therapeutic means against bacterial biofilm-originated UTI. The model illustrated the entire mechanism of destroying the extracellular plyometric substances of UTI-causing bacteria with several enzymatic actions produced by phage particles. This review will provide a complete outline of CAUTI for the general reader and create a positive vibe for the researchers to sort out alternative remedies against the CAUTI-causing MDR microbial agents.
Collapse
Affiliation(s)
- Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | | | - Hossain Ahmed
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1208, Bangladesh
| | - Aar Rafi Mahmud
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail-1902, Bangladesh
| | - Tasnia Ahmed
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Md. Rayhan Mahmud
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
8
|
Bacteriophages as Biocontrol Agents in Livestock Food Production. Microorganisms 2022; 10:microorganisms10112126. [PMID: 36363718 PMCID: PMC9692620 DOI: 10.3390/microorganisms10112126] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/03/2022] Open
Abstract
Bacteriophages have been regarded as biocontrol agents that can be used in the food industry. They can be used in various applications, such as pathogen detection and bio-preservation. Their potential to improve the quality of food and prevent foodborne illness is widespread. These bacterial viruses can also be utilized in the preservation of various other food products. The specificity and high sensitivity of bacteriophages when they lyse bacterial targets have been regarded as important factors that contribute to their great potential utility in the food industry. This review will provide an overview of their current and potential applications.
Collapse
|
9
|
Perspectives on using bacteriophages in biogerontology research and interventions. Chem Biol Interact 2022; 366:110098. [PMID: 35995258 DOI: 10.1016/j.cbi.2022.110098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/23/2022]
Abstract
With the development of materials engineering, gerontology-related research on new tools for diagnostic and therapeutic applications, including precision and personalised medicine, has expanded significantly. Using nanotechnology, drugs can be precisely delivered to organs, tissues, cells, and cell organelles, thereby enhancing their therapeutic effects. Here, we discuss the possible use of bacteriophages as nanocarriers that can improve the safety, efficiency, and sensitivity of conventional medical therapies. Phages are a new class of targeted-delivery vectors, which can carry high concentrations of cargo and protect other nontargeted cells from the senescent cell killing effects of senolytics. Bacteriophages can also be subjected to chemical and/or genetic modifications that would acquire novel properties and improve their ability to detect senescent cells and deliver senolytics. Phage research in experimental biogerontology will also develop strategies to efficiently deliver senolytics, target senescent cells, activate extrinsic apoptosis pathways in senescent cells, trigger immune cells to recognise senescent cells, induce autophagy, promote cell and tissue regeneration, inhibit senescence-associated secretory phenotype (SASP) by senomorphic activity, stimulate the properties of mild stress-inducing hormetic agents and hormetins, and modulate the gut microbiome.
Collapse
|
10
|
Pinto AM, Silva MD, Pastrana LM, Bañobre-López M, Sillankorva S. The clinical path to deliver encapsulated phages and lysins. FEMS Microbiol Rev 2021; 45:6204673. [PMID: 33784387 DOI: 10.1093/femsre/fuab019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
The global emergence of multidrug-resistant pathogens is shaping the current dogma regarding the use of antibiotherapy. Many bacteria have evolved to become resistant to conventional antibiotherapy, representing a health and economic burden for those afflicted. The search for alternative and complementary therapeutic approaches has intensified and revived phage therapy. In recent decades, the exogenous use of lysins, encoded in phage genomes, has shown encouraging effectiveness. These two antimicrobial agents reduce bacterial populations; however, many barriers challenge their prompt delivery at the infection site. Encapsulation in delivery vehicles provides targeted therapy with a controlled compound delivery, surpassing chemical, physical and immunological barriers that can inactivate and eliminate them. This review explores phages and lysins' current use to resolve bacterial infections in the respiratory, digestive, and integumentary systems. We also highlight the different challenges they face in each of the three systems and discuss the advances towards a more expansive use of delivery vehicles.
Collapse
Affiliation(s)
- Ana Mafalda Pinto
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Maria Daniela Silva
- Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal.,INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Lorenzo M Pastrana
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Manuel Bañobre-López
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| | - Sanna Sillankorva
- INL - International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga, Braga 4715-330, Portugal
| |
Collapse
|
11
|
Isolation and Characterization of Two Virulent Phages to Combat Staphylococcus aureus and Enterococcus faecalis causing Dental Caries. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
This study aimed to isolate and characterize bacteriophages, as a biocontrol agent, against certain antibiotic-resistant bacteria causing dental caries. Here, two dental caries-causing bacteria S. aureus and E. faecalis were isolated and characterized biochemically using the automated VITEK® 2 system. Antibiotic sensitivity pattern of the isolated dental caries bacteria was assessed against selection of antibiotics. The two isolates showed resistance against most of the tested antibiotics. To overcome this problem, two lytic phages vB_SauM-EG-AE3 and vB_EfaP-EF01 were isolated, identified, and applied to control the growth of S. aureus and E. faecalis, respectively. Phages were identified morphologically using TEM and showed that vB_SauM-EG-AE3 phage is related to Myoviridae and vB_EfaP-EF01 phage belongs to Podoviridae. The two phages exhibited high lytic activity, high stability, and a narrow host range. The one-step growth curve of phages showed burst sizes of 78.87 and 113.55 PFU/cell with latent periods of 25 and 30 minutes for S. aureus phage and E. faecalis phage respectively. In addition, the two phages showed different structural protein profiles and exhibited different patterns using different restriction enzymes. The genome sizes were estimated to be 13.30 Kb and 15.60 Kb for phages vB_SauM-EGAE3, vB_EfaP-EGAE1, respectively. Complete inhibition of bacterial growth was achieved using phages with MOIs of 103, 102 and 10 after 1, 3, 5, and 24 h of incubation at 37°C. Hence, this study indicates that the isolated bacteriophages are promising biocontrol agents that could challenge antibiotic-resistant dental caries bacteria to announce new successful alternatives to antibiotics.
Collapse
|
12
|
Kaźmierczak Z, Majewska J, Milczarek M, Owczarek B, Dąbrowska K. Circulation of Fluorescently Labelled Phage in a Murine Model. Viruses 2021; 13:297. [PMID: 33672895 PMCID: PMC7917791 DOI: 10.3390/v13020297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Interactions between bacteriophages and mammals strongly affect possible applications of bacteriophages. This has created a need for tools that facilitate studies of phage circulation and deposition in tissues. Here, we propose red fluorescent protein (RFP)-labelled E. coli lytic phages as a new tool for the investigation of phage interactions with cells and tissues. The interaction of RFP-labelled phages with living eukaryotic cells (macrophages) was visualized after 20 min of co-incubation. RFP-labeled phages were applied in a murine model of phage circulation in vivo. Phages administered by three different routes (intravenously, orally, rectally) were detected through the course of time. The intravenous route of administration was the most efficient for phage delivery to multiple body compartments: 20 min after administration, virions were detected in lymph nodes, lungs, and liver; 30 min after administration, they were detectable in muscles; and 1 h after administration, phages were detected in spleen and lymph nodes. Oral and rectal administration of RFP-labelled phages allowed for their detection in the gastrointestinal (GI) tract only.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Research and Development Center, Regional Specialist Hospital, Kamieńskiego 73a, 51-154 Wroclaw, Poland
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Joanna Majewska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Magdalena Milczarek
- Laboratory of Experimental Anticancer Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland;
| | - Barbara Owczarek
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland; (J.M.); (B.O.); (K.D.)
| |
Collapse
|
13
|
Sheam MM, Syed SB, Nain Z, Tang SS, Paul DK, Ahmed KR, Biswas SK. Community-acquired pneumonia: aetiology, antibiotic resistance and prospects of phage therapy. J Chemother 2020; 32:395-410. [PMID: 32820711 DOI: 10.1080/1120009x.2020.1807231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacteria are the most common aetiological agents of community-acquired pneumonia (CAP) and use a variety of mechanisms to evade the host immune system. With the emerging antibiotic resistance, CAP-causing bacteria have now become resistant to most antibiotics. Consequently, significant morbimortality is attributed to CAP despite their varying rates depending on the clinical setting in which the patients being treated. Therefore, there is a pressing need for a safe and effective alternative or supplement to conventional antibiotics. Bacteriophages could be a ray of hope as they are specific in killing their host bacteria. Several bacteriophages had been identified that can efficiently parasitize bacteria related to CAP infection and have shown a promising protective effect. Thus, bacteriophages have shown immense possibilities against CAP inflicted by multidrug-resistant bacteria. This review provides an overview of common antibiotic-resistant CAP bacteria with a comprehensive summarization of the promising bacteriophage candidates for prospective phage therapy.
Collapse
Affiliation(s)
- Md Moinuddin Sheam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Shifath Bin Syed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Zulkar Nain
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Department of Genetic Engineering and Biotechnology, Faculty of Sciences and Engineering, East West University, Dhaka, Bangladesh
| | - Swee-Seong Tang
- Division of Microbiology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Dipak Kumar Paul
- Department of Applied Nutrition and Food Technology, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Central Laboratory, Islamic University, Kushtia, Bangladesh
| | - Kazi Rejvee Ahmed
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Sudhangshu Kumar Biswas
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh.,Central Laboratory, Islamic University, Kushtia, Bangladesh
| |
Collapse
|
14
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
15
|
Bacteriophage and the Innate Immune System: Access and Signaling. Microorganisms 2019; 7:microorganisms7120625. [PMID: 31795262 PMCID: PMC6956183 DOI: 10.3390/microorganisms7120625] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022] Open
Abstract
Bacteriophage and the bacteria they infect are the dominant members of the gastrointestinal microbiome. While bacteria are known to be central to maintenance of the structure, function, and health of the microbiome, it has only recently been recognized that phage too might serve a critical function. Along these lines, bacteria are not the only cells that are influenced by bacteriophage, and there is growing evidence of bacteriophage effects on epithelial, endothelial, and immune cells. The innate immune system is essential to protecting the Eukaryotic host from invading microorganisms, and bacteriophage have been demonstrated to interact with innate immune cells regularly. Here, we conduct a systematic review of the varying mechanisms allowing bacteriophage to access and interact with cells of the innate immune system and propose the potential importance of these interactions.
Collapse
|
16
|
Azimi T, Mosadegh M, Nasiri MJ, Sabour S, Karimaei S, Nasser A. Phage therapy as a renewed therapeutic approach to mycobacterial infections: a comprehensive review. Infect Drug Resist 2019; 12:2943-2959. [PMID: 31571947 PMCID: PMC6756577 DOI: 10.2147/idr.s218638] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterial infections are considered to a serious challenge of medicine, and the emergence of MDR and XDR tuberculosis is a serious public health problem. Tuberculosis can cause high morbidity and mortality around the world, particularly in developing countries. The emergence of drug-resistant Mycobacterium infection following limited therapeutic technologies coupled with the serious worldwide tuberculosis epidemic has adversely affected control programs, thus necessitating the study of the role bacteriophages in the treatment of mycobacterial infection. Bacteriophages are viruses that are isolated from several ecological specimens and do not exert adverse effects on patients. Phage therapy can be considered as a significant alternative to antibiotics for treating MDR and XDR mycobacterial infections. The useful ability of bacteriophages to kill Mycobacterium spp has been explored by numerous research studies that have attempted to investigate the phage therapy as a novel therapeutic/diagnosis approach to mycobacterial infections. However, there are restricted data about phage therapy for treating mycobacterial infections. This review presents comprehensive data about phage therapy in the treatment of mycobacterial infection, specifically tuberculosis disease.
Collapse
Affiliation(s)
- Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardabil University of Medical Science, Ardabil, Iran
| | - Samira Karimaei
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
17
|
Jariah ROA, Hakim MS. Interaction of phages, bacteria, and the human immune system: Evolutionary changes in phage therapy. Rev Med Virol 2019; 29:e2055. [PMID: 31145517 DOI: 10.1002/rmv.2055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/26/2022]
Abstract
Phages and bacteria are known to undergo dynamic and co-evolutionary arms race interactions in order to survive. Recent advances from in vitro and in vivo studies have improved our understanding of the complex interactions between phages, bacteria, and the human immune system. This insight is essential for the development of phage therapy to battle the growing problems of antibiotic resistance. It is also pivotal to prevent the development of phage-resistance during the implementation of phage therapy in the clinic. In this review, we discuss recent progress of the interactions between phages, bacteria, and the human immune system and its clinical application for phage therapy. Proper phage therapy design will ideally produce large burst sizes, short latent periods, broad host ranges, and a low tendency to select resistance.
Collapse
Affiliation(s)
- Rizka O A Jariah
- Department of Health Science, Faculty of Vocational Studies, Universitas Airlangga, Surabaya, Indonesia
| | - Mohamad S Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
18
|
Principi N, Silvestri E, Esposito S. Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Front Pharmacol 2019; 10:513. [PMID: 31139086 PMCID: PMC6517696 DOI: 10.3389/fphar.2019.00513] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/24/2019] [Indexed: 12/17/2022] Open
Abstract
Bacteriophages (BPs) are viruses that can infect and kill bacteria without any negative effect on human or animal cells. For this reason, it is supposed that they can be used, alone or in combination with antibiotics, to treat bacterial infections. In this narrative review, the advantages and limitations of BPs for use in humans will be discussed. PubMed was used to search for all of the studies published from January 2008 to December 2018 using the key words: “BPs” or “phages” and “bacterial infection” or “antibiotic” or “infectious diseases.” More than 100 articles were found, but only those published in English or providing evidence-based data were included in the evaluation. Literature review showed that the rapid rise of multi-drug-resistant bacteria worldwide coupled with a decline in the development and production of novel antibacterial agents have led scientists to consider BPs for treatment of bacterial infection. Use of BPs to overcome the problem of increasing bacterial resistance to antibiotics is attractive, and some research data seem to indicate that it might be a rational measure. However, present knowledge seems insufficient to allow the use of BPs for this purpose. To date, the problem of how to prepare the formulations for clinical use and how to avoid or limit the risk of emergence of bacterial resistance through the transmission of genetic material are not completely solved problems. Further studies specifically devoted to solve these problems are needed before BPs can be used in humans.
Collapse
Affiliation(s)
- Nicola Principi
- Professor Emeritus of Pediatrics, Università degli Studi di Milano, Milan, Italy
| | - Ettore Silvestri
- Department of Surgical and Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| | - Susanna Esposito
- Department of Surgical and Biomedical Sciences, Pediatric Clinic, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
19
|
Otero J, García-Rodríguez A, Cano-Sarabia M, Maspoch D, Marcos R, Cortés P, Llagostera M. Biodistribution of Liposome-Encapsulated Bacteriophages and Their Transcytosis During Oral Phage Therapy. Front Microbiol 2019; 10:689. [PMID: 31019499 PMCID: PMC6458305 DOI: 10.3389/fmicb.2019.00689] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
This study sheds light on the biodistribution of orally administered, liposome-encapsulated bacteriophages, and their transcytosis through intestinal cell layers. Fluorochrome-labeled bacteriophages were used together with a non-invasive imaging methodology in the in vivo visualization of bacteriophages in the stomach and intestinal tract of mice. In those studies, phage encapsulation resulted in a significant increase of the labeled phages in the mouse stomach, even 6 h after their oral administration, and without a decrease in their concentration. By contrast, the visualization of encapsulated and non-encapsulated phages in the intestine were similar. Our in vivo observations were corroborated by culture methods and ex vivo experiments, which also showed that the percentage of encapsulated phages in the stomach remained constant (50%) compared to the amount of initially administered product. However, the use of conventional microbiological methods, which employ bile salts to break down liposomes, prevented the detection of encapsulated phages in the intestine. The ex vivo data showed a higher concentration of non-encapsulated than encapsulated phages in liver, kidney, and even muscle up to 6 h post-administration. Encapsulated bacteriophages were able to reach the liver, spleen, and muscle, with values of 38% ± 6.3%, 68% ± 8.6%, and 47% ± 7.4%, respectively, which persisted over the course of the experiment. Confocal laser scanning microscopy of an in vitro co-culture of human Caco-2/HT29/Raji-B cells revealed that Vybrant-Dil-stained liposomes containing labeled bacteriophages were preferably embedded in cell membranes. No transcytosis of encapsulated phages was detected in this in vitro model, whereas SYBR-gold-labeled non-encapsulated bacteriophages were able to cross the membrane. Our work demonstrates the prolonged persistence of liposome-encapsulated phages in the stomach and their adherence to the intestinal membrane. These observations could explain the greater long-term efficacy of phage therapy using liposome-encapsulated phages.
Collapse
Affiliation(s)
- Jennifer Otero
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba García-Rodríguez
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and the Barcelona Institute of Science and Technology, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ricard Marcos
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.,Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, Madrid, Spain
| | - Pilar Cortés
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Montserrat Llagostera
- Departament de Genèticai de Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Sweere JM, Van Belleghem JD, Ishak H, Bach MS, Popescu M, Sunkari V, Kaber G, Manasherob R, Suh GA, Cao X, de Vries CR, Lam DN, Marshall PL, Birukova M, Katznelson E, Lazzareschi DV, Balaji S, Keswani SG, Hawn TR, Secor PR, Bollyky PL. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019; 363:eaat9691. [PMID: 30923196 PMCID: PMC6656896 DOI: 10.1126/science.aat9691] [Citation(s) in RCA: 268] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/21/2018] [Accepted: 02/15/2019] [Indexed: 12/16/2022]
Abstract
Bacteriophage are abundant at sites of bacterial infection, but their effects on mammalian hosts are unclear. We have identified pathogenic roles for filamentous Pf bacteriophage produced by Pseudomonas aeruginosa (Pa) in suppression of immunity against bacterial infection. Pf promote Pa wound infection in mice and are associated with chronic human Pa wound infections. Murine and human leukocytes endocytose Pf, and internalization of this single-stranded DNA virus results in phage RNA production. This triggers Toll-like receptor 3 (TLR3)- and TIR domain-containing adapter-inducing interferon-β (TRIF)-dependent type I interferon production, inhibition of tumor necrosis factor (TNF), and the suppression of phagocytosis. Conversely, immunization of mice against Pf prevents Pa wound infection. Thus, Pf triggers maladaptive innate viral pattern-recognition responses, which impair bacterial clearance. Vaccination against phage virions represents a potential strategy to prevent bacterial infection.
Collapse
Affiliation(s)
- Johanna M Sweere
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Immunology, Stanford University, Stanford, CA, USA
| | - Jonas D Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Heather Ishak
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Palo Alto Veterans Institute of Research, Palo Alto, CA, USA
| | - Michelle S Bach
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Immunology, Stanford University, Stanford, CA, USA
| | - Vivekananda Sunkari
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Robert Manasherob
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Gina A Suh
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Xiou Cao
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Christiaan R de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Dung N Lam
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Payton L Marshall
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Immunology, Stanford University, Stanford, CA, USA
| | - Maria Birukova
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Immunology, Stanford University, Stanford, CA, USA
| | - Ethan Katznelson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Daniel V Lazzareschi
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Swathi Balaji
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Sundeep G Keswani
- Division of Pediatric Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Thomas R Hawn
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
Møller-Olsen C, Ho SFS, Shukla RD, Feher T, Sagona AP. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells. Sci Rep 2018; 8:17559. [PMID: 30510202 PMCID: PMC6277420 DOI: 10.1038/s41598-018-35859-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023] Open
Abstract
Bacterial infections can be treated with bacteriophages that show great specificity towards their bacterial host and can be genetically modified for different applications. However, whether and how bacteriophages can kill intracellular bacteria in human cells remains elusive. Here, using CRISPR/Cas selection, we have engineered a fluorescent bacteriophage specific for E. coli K1, a nosocomial pathogen responsible for urinary tract infections, neonatal meningitis and sepsis. By confocal and live microscopy, we show that engineered bacteriophages K1F-GFP and E. coli EV36-RFP bacteria displaying the K1 capsule, enter human cells via phagocytosis. Importantly, we show that bacteriophage K1F-GFP efficiently kills intracellular E. coli EV36-RFP in T24 human urinary bladder epithelial cells. Finally, we provide evidence that bacteria and bacteriophages are degraded by LC3-associated phagocytosis and xenophagy.
Collapse
Affiliation(s)
| | - Siu Fung Stanley Ho
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK
| | - Ranti Dev Shukla
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Tamas Feher
- Synthetic and Systems Biology Unit, Biological Research Centre of the Hungarian Academy of Sciences, Szeged, Hungary
| | - Antonia P Sagona
- School of Life Sciences, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, UK.
| |
Collapse
|
22
|
Effects of Staphylococcus aureus Bacteriophage K on Expression of Cytokines and Activation Markers by Human Dendritic Cells In Vitro. Viruses 2018; 10:v10110617. [PMID: 30413044 PMCID: PMC6266804 DOI: 10.3390/v10110617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 01/21/2023] Open
Abstract
A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.
Collapse
|
23
|
Abstract
The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts.
Collapse
Affiliation(s)
- Jeremy J Barr
- School of Biological Sciences, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
24
|
Porayath C, Salim A, Palillam Veedu A, Babu P, Nair B, Madhavan A, Pal S. Characterization of the bacteriophages binding to human matrix molecules. Int J Biol Macromol 2018; 110:608-615. [PMID: 29246876 PMCID: PMC5864510 DOI: 10.1016/j.ijbiomac.2017.12.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Abstract
Recent literature has suggested a novel symbiotic relationship between bacteriophage and metazoan host that provides antimicrobial defense protecting mucosal surface by binding to host matrix mucin glycoproteins. Here, we isolated and studied different bacteriophages that specifically interact with human extracellular matrix molecules such as fibronectin, gelatin, heparin and demonstrated their potency for protection to host against microbial infections. We showed that subpopulations of bacteriophages that work against clinical isolates of Escherichia coli can bind to pure gelatin, fibronectin and heparin and reduced bacterial load in human colon cell line HT29. The bacteriophages were characterized with respect to their genome sizes, melting curve patterns and host tropism (cross-reactivity with different hosts). Since, the bacteriophages are non-toxic to the host and can effectively reduce bacterial load in HT29 cell line their therapeutic potency against bacterial infection could be explored.
Collapse
Affiliation(s)
- Chandni Porayath
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Amrita Salim
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | | | - Pradeesh Babu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Bipin Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Ajith Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India
| | - Sanjay Pal
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala, 690525, India.
| |
Collapse
|
25
|
Interaction of Bacteriophages with Mammalian Cells. Methods Mol Biol 2017. [PMID: 29119436 DOI: 10.1007/978-1-4939-7395-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Natural bacteriophages (present in the microbiome) and those applied as therapeutic agents may interact with mammalian cells and tissues. Adhesion interactions may define bacteriophage pharmacokinetics and resulting efficiency of bacteriophage agents in therapeutic applications by shaping bacteriophage homing to tissues and organs. Here we propose protocols for testing direct adhesion of bacteriophages or bacteriophage proteins to mammalian cells (in vitro). We further propose an animal model for investigation of accumulation/homing of bacteriophages in tissues (in vivo).
Collapse
|
26
|
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics. Viruses 2017; 9:v9060150. [PMID: 28613272 PMCID: PMC5489797 DOI: 10.3390/v9060150] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.
Collapse
|
27
|
Intracellular Staphylococcus aureus Control by Virulent Bacteriophages within MAC-T Bovine Mammary Epithelial Cells. Antimicrob Agents Chemother 2017; 61:AAC.01990-16. [PMID: 27919889 DOI: 10.1128/aac.01990-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/20/2016] [Indexed: 11/20/2022] Open
Abstract
Bacteriophages (phages) are known to effectively kill extracellular multiplying bacteria. The present study demonstrated that phages penetrated bovine mammary epithelial cells and cleared intracellular Staphylococcus aureus in a time-dependent manner. In particular, phage vB_SauM_JS25 reached the nucleus within 3 h postincubation. The phages had an endocytotic efficiency of 12%. This ability to kill intracellular host bacteria suggests the utility of phage-based therapies and may protect patients from recurrent infection and treatment failure.
Collapse
|
28
|
The Effect of Bacteriophage Preparations on Intracellular Killing of Bacteria by Phagocytes. J Immunol Res 2015; 2015:482863. [PMID: 26783541 PMCID: PMC4689956 DOI: 10.1155/2015/482863] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 01/21/2023] Open
Abstract
Intracellular killing of bacteria is one of the fundamental mechanisms against invading pathogens. Impaired intracellular killing of bacteria by phagocytes may be the reason of chronic infections and may be caused by antibiotics or substances that can be produced by some bacteria. Therefore, it was of great practical importance to examine whether phage preparations may influence the process of phagocyte intracellular killing of bacteria. It may be important especially in the case of patients qualified for experimental phage therapy (approximately half of the patients with chronic bacterial infections have their immunity impaired). Our analysis included 51 patients with chronic Gram-negative and Gram-positive bacterial infections treated with phage preparations at the Phage Therapy Unit in Wroclaw. The aim of the study was to investigate the effect of experimental phage therapy on intracellular killing of bacteria by patients' peripheral blood monocytes and polymorphonuclear neutrophils. We observed that phage therapy does not reduce patients' phagocytes' ability to kill bacteria, and it does not affect the activity of phagocytes in patients with initially reduced ability to kill bacteria intracellularly. Our results suggest that experimental phage therapy has no significant adverse effects on the bactericidal properties of phagocytes, which confirms the safety of the therapy.
Collapse
|
29
|
Hodyra-Stefaniak K, Miernikiewicz P, Drapała J, Drab M, Jończyk-Matysiak E, Lecion D, Kaźmierczak Z, Beta W, Majewska J, Harhala M, Bubak B, Kłopot A, Górski A, Dąbrowska K. Mammalian Host-Versus-Phage immune response determines phage fate in vivo. Sci Rep 2015; 5:14802. [PMID: 26440922 PMCID: PMC4594097 DOI: 10.1038/srep14802] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/09/2015] [Indexed: 02/06/2023] Open
Abstract
Emerging bacterial antibiotic resistance draws attention to bacteriophages as a therapeutic alternative to treat bacterial infection. Examples of phage that combat bacteria abound. However, despite careful testing of antibacterial activity in vitro, failures nevertheless commonly occur. We investigated immunological response of phage antibacterial potency in vivo. Anti-phage activity of phagocytes, antibodies, and serum complement were identified by direct testing and by high-resolution fluorescent microscopy. We accommodated the experimental data into a mathematical model. We propose a universal schema of innate and adaptive immunity impact on phage pharmacokinetics, based on the results of our numerical simulations. We found that the mammalian-host response to infecting bacteria causes the concomitant removal of phage from the system. We propose the notion that this effect as an indirect pathway of phage inhibition by bacteria with significant relevance for the clinical outcome of phage therapy.
Collapse
Affiliation(s)
- Katarzyna Hodyra-Stefaniak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Paulina Miernikiewicz
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Jarosław Drapała
- Institute of Computer Science, Wrocław University of Technology, Wyb. Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Marek Drab
- USI, Unit of Nanostructural Bio-Interactions, Department of Immunology of Infectious Diseases, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Dorota Lecion
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Weronika Beta
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Joanna Majewska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Marek Harhala
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Barbara Bubak
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Anna Kłopot
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Andrzej Górski
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Krystyna Dąbrowska
- Bacteriophage Laboratory, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
30
|
Górski A, Dąbrowska K, Hodyra-Stefaniak K, Borysowski J, Międzybrodzki R, Weber-Dąbrowska B. Phages targeting infected tissues: novel approach to phage therapy. Future Microbiol 2015; 10:199-204. [PMID: 25689532 DOI: 10.2217/fmb.14.126] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
While the true efficacy of phage therapy still requires formal confirmation in clinical trials, it continues to offer realistic potential treatment in patients in whom antibiotics have failed. Novel developments and approaches are therefore needed to ascertain that future clinical trials would evaluate the therapy in its optimal form thus allowing for reliable conclusions regarding the true value of phage therapy. In this article, we present our vision to develop and establish a bank of phages specific to most threatening pathogens and armed with homing peptides enabling their localization in infected tissues in densities assuring efficient and stable eradication of infection.
Collapse
Affiliation(s)
- Andrzej Górski
- L Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Science, Wroclaw, Poland
| | | | | | | | | | | |
Collapse
|
31
|
Hodyra K, Dąbrowska K. Molecular and chemical engineering of bacteriophages for potential medical applications. Arch Immunol Ther Exp (Warsz) 2014; 63:117-27. [PMID: 25048831 PMCID: PMC4359349 DOI: 10.1007/s00005-014-0305-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/20/2014] [Indexed: 12/19/2022]
Abstract
Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.
Collapse
Affiliation(s)
- Katarzyna Hodyra
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114, Wrocław, Poland
| | | |
Collapse
|