1
|
Balayan A, DeBoutray M, Molley TG, Ruoss S, Maceda M, Sevier A, Robertson CM, Ward SR, Engler AJ. Dispase/collagenase cocktail allows for coisolation of satellite cells and fibroadipogenic progenitors from human skeletal muscle. Am J Physiol Cell Physiol 2024; 326:C1193-C1202. [PMID: 38581669 PMCID: PMC11193520 DOI: 10.1152/ajpcell.00023.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 04/08/2024]
Abstract
Satellite cells (SCs) and fibroadipogenic progenitors (FAPs) are progenitor populations found in muscle that form new myofibers postinjury. Muscle development, regeneration, and tissue-engineering experiments require robust progenitor populations, yet their isolation and expansion are difficult given their scarcity in muscle, limited muscle biopsy sizes in humans, and lack of methodological detail in the literature. Here, we investigated whether a dispase and collagenase type 1 and 2 cocktail could allow dual isolation of SCs and FAPs, enabling significantly increased yield from human skeletal muscle. Postdissociation, we found that single cells could be sorted into CD56 + CD31-CD45- (SC) and CD56-CD31-CD45- (FAP) cell populations, expanded in culture, and characterized for lineage-specific marker expression and differentiation capacity; we obtained ∼10% SCs and ∼40% FAPs, with yields twofold better than what is reported in current literature. SCs were PAX7+ and retained CD56 expression and myogenic fusion potential after multiple passages, expanding up to 1012 cells. Conversely, FAPs expressed CD140a and differentiated into either fibroblasts or adipocytes upon induction. This study demonstrates robust isolation of both SCs and FAPs from the same muscle sample with SC recovery more than two times higher than previously reported, which could enable translational studies for muscle injuries.NEW & NOTEWORTHY We demonstrated that a dispase/collagenase cocktail allows for simultaneous isolation of SCs and FAPs with 2× higher SC yield compared with other studies. We provide a thorough characterization of SC and FAP in vitro expansion that other studies have not reported. Following our dissociation, SCs and FAPs were able to expand by up to 1012 cells before reaching senescence and maintained differentiation capacity in vitro demonstrating their efficacy for clinical translation for muscle injury.
Collapse
Affiliation(s)
- Alis Balayan
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
| | - Marie DeBoutray
- Department of ENT and Maxillofacial Surgery, Montpellier University, Montpellier, France
| | - Thomas G Molley
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Matthew Maceda
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Ashley Sevier
- California State University, Bakersfield, Bakersfield, California, United States
| | - Catherine M Robertson
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
| | - Samuel R Ward
- Department of Orthopaedic Surgery, UC San Diego, La Jolla, California, United States
- Department of Radiology, UC San Diego, La Jolla, California, United States
| | - Adam J Engler
- Biomedical Sciences Program, UC San Diego, La Jolla, California, United States
- Chien-Lay Department of Bioengineering, UC San Diego, La Jolla, California, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, California, United States
| |
Collapse
|
2
|
Pizza FX, Buckley KH. Regenerating Myofibers after an Acute Muscle Injury: What Do We Really Know about Them? Int J Mol Sci 2023; 24:12545. [PMID: 37628725 PMCID: PMC10454182 DOI: 10.3390/ijms241612545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Injury to skeletal muscle through trauma, physical activity, or disease initiates a process called muscle regeneration. When injured myofibers undergo necrosis, muscle regeneration gives rise to myofibers that have myonuclei in a central position, which contrasts the normal, peripheral position of myonuclei. Myofibers with central myonuclei are called regenerating myofibers and are the hallmark feature of muscle regeneration. An important and underappreciated aspect of muscle regeneration is the maturation of regenerating myofibers into a normal sized myofiber with peripheral myonuclei. Strikingly, very little is known about processes that govern regenerating myofiber maturation after muscle injury. As knowledge of myofiber formation and maturation during embryonic, fetal, and postnatal development has served as a foundation for understanding muscle regeneration, this narrative review discusses similarities and differences in myofiber maturation during muscle development and regeneration. Specifically, we compare and contrast myonuclear positioning, myonuclear accretion, myofiber hypertrophy, and myofiber morphology during muscle development and regeneration. We also discuss regenerating myofibers in the context of different types of myofiber necrosis (complete and segmental) after muscle trauma and injurious contractions. The overall goal of the review is to provide a framework for identifying cellular and molecular processes of myofiber maturation that are unique to muscle regeneration.
Collapse
Affiliation(s)
- Francis X. Pizza
- Department of Exercise and Rehabilitation Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kole H. Buckley
- Division of Gastroenterology and Hepatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA;
| |
Collapse
|
3
|
Paul TA, Macpherson PC, Janetzke TL, Davis CS, Jackson MJ, McArdle A, Brooks SV. Older mice show decreased regeneration of neuromuscular junctions following lengthening contraction-induced injury. GeroScience 2023; 45:1899-1912. [PMID: 36952126 PMCID: PMC10400502 DOI: 10.1007/s11357-023-00774-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Progressive muscle atrophy and loss of muscle strength associated with old age have been well documented. Although age-associated impairments in skeletal muscle regeneration following injury have been demonstrated, less is known about whether aging impacts the regenerative response of neuromuscular junctions (NMJ) following contraction-induced injury. Reduced ability of NMJs to regenerate could lead to increased numbers of denervated muscle fibers and therefore play a contributing role to age-related sarcopenia. To investigate the relationship between age and NMJ regeneration following injury, extensor digitorum longus (EDL) muscles of middle-aged (18-19 months) and old mice (27-28 months) were subjected to a protocol of lengthening contractions (LC) that resulted in an acute force deficit of ~55% as well as functional and histological evidence of a similar magnitude of injury 3 days post LCs that was not different between age groups. After 28 days, the architecture and innervation of the NMJs were evaluated. The numbers of fragmented endplates increased and of fully innervated NMJs decreased post-injury for the muscle of both middle-aged and old mice and for contralateral uninjured muscles of old compared with uninjured muscles of middle-aged controls. Thus, the diminished ability of the skeletal muscle of old mice to recover following injury may be due in part to an age-related decrease in the ability to regenerate NMJs in injured muscles. The impaired ability to regenerate NMJs may be a triggering factor for degenerative changes at the NMJ contributing to muscle fiber weakness and loss in old age.
Collapse
Affiliation(s)
- Thomas A. Paul
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, 2029 Biomedical Sciences Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| | - Peter C. Macpherson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Tara L. Janetzke
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Carol S. Davis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
| | - Malcolm J. Jackson
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Ageing Science, University of Liverpool, Liverpool, UK
| | - Anne McArdle
- MRC-Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing (CIMA), Institute of Life Course and Ageing Science, University of Liverpool, Liverpool, UK
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI USA
- Department of Biomedical Engineering, University of Michigan, 2029 Biomedical Sciences Building, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200 USA
| |
Collapse
|
4
|
Kanazawa Y, Ikeda-Matsuo Y, Sato H, Nagano M, Koinuma S, Takahashi T, Suzuki H, Miyachi R, Shigeyoshi Y. Effects of Obesity in Old Age on the Basement Membrane of Skeletal Muscle in Mice. Int J Mol Sci 2023; 24:ijms24119209. [PMID: 37298161 DOI: 10.3390/ijms24119209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Obesity and aging are known to affect the skeletal muscles. Obesity in old age may result in a poor basement membrane (BM) construction response, which serves to protect the skeletal muscle, thus making the skeletal muscle more vulnerable. In this study, older and young male C57BL/6J mice were divided into two groups, each fed a high-fat or regular diet for eight weeks. A high-fat diet decreased the relative gastrocnemius muscle weight in both age groups, and obesity and aging individually result in a decline in muscle function. Immunoreactivity of collagen IV, the main component of BM, BM width, and BM-synthetic factor expression in young mice on a high-fat diet were higher than that in young mice on a regular diet, whereas such changes were minimal in obese older mice. Furthermore, the number of central nuclei fibers in obese older mice was higher than in old mice fed a regular diet and young mice fed a high-fat diet. These results suggest that obesity at a young age promotes skeletal muscle BM formation in response to weight gain. In contrast, this response is less pronounced in old age, suggesting that obesity in old age may lead to muscle fragility.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Ishikawa, Kanazawa 920-1180, Japan
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Yuri Ikeda-Matsuo
- Department of Clinical Pharmacology, Hokuriku University, Ishikawa, Kanazawa 920-1181, Japan
| | - Hiaki Sato
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Ishikawa, Kanazawa 920-1180, Japan
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| | - Tatsuo Takahashi
- Department of Clinical Pharmacology, Hokuriku University, Ishikawa, Kanazawa 920-1181, Japan
| | - Hirokazu Suzuki
- Department of Synthetic Chemistry, Hokuriku University, Ishikawa, Kanazawa 920-1181, Japan
| | - Ryo Miyachi
- Department of Physical Therapy, Hokuriku University, Ishikawa, Kanazawa 920-1180, Japan
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Ohnohigashi, Osakasayama 589-8511, Japan
| |
Collapse
|
5
|
Sanchez MM, Bagdasarian IA, Darch W, Morgan JT. Organotypic cultures as aging associated disease models. Aging (Albany NY) 2022; 14:9338-9383. [PMID: 36435511 PMCID: PMC9740367 DOI: 10.18632/aging.204361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/21/2022] [Indexed: 11/24/2022]
Abstract
Aging remains a primary risk factor for a host of diseases, including leading causes of death. Aging and associated diseases are inherently multifactorial, with numerous contributing factors and phenotypes at the molecular, cellular, tissue, and organismal scales. Despite the complexity of aging phenomena, models currently used in aging research possess limitations. Frequently used in vivo models often have important physiological differences, age at different rates, or are genetically engineered to match late disease phenotypes rather than early causes. Conversely, routinely used in vitro models lack the complex tissue-scale and systemic cues that are disrupted in aging. To fill in gaps between in vivo and traditional in vitro models, researchers have increasingly been turning to organotypic models, which provide increased physiological relevance with the accessibility and control of in vitro context. While powerful tools, the development of these models is a field of its own, and many aging researchers may be unaware of recent progress in organotypic models, or hesitant to include these models in their own work. In this review, we describe recent progress in tissue engineering applied to organotypic models, highlighting examples explicitly linked to aging and associated disease, as well as examples of models that are relevant to aging. We specifically highlight progress made in skin, gut, and skeletal muscle, and describe how recently demonstrated models have been used for aging studies or similar phenotypes. Throughout, this review emphasizes the accessibility of these models and aims to provide a resource for researchers seeking to leverage these powerful tools.
Collapse
Affiliation(s)
- Martina M. Sanchez
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - William Darch
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Joshua T. Morgan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Kimoloi S, Sen A, Guenther S, Braun T, Brügmann T, Sasse P, Wiesner RJ, Pla-Martín D, Baris OR. Combined fibre atrophy and decreased muscle regeneration capacity driven by mitochondrial DNA alterations underlie the development of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2132-2145. [PMID: 35765148 PMCID: PMC9397496 DOI: 10.1002/jcsm.13026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/23/2022] [Accepted: 05/09/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction caused by mitochondrial (mtDNA) deletions have been associated with skeletal muscle atrophy and myofibre loss. However, whether such defects occurring in myofibres cause sarcopenia is unclear. Also, the contribution of mtDNA alterations in muscle stem cells (MuSCs) to sarcopenia remains to be investigated. METHODS We expressed a dominant-negative variant of the mitochondrial helicase, which induces mtDNA alterations, specifically in differentiated myofibres (K320Eskm mice) and MuSCs (K320Emsc mice), respectively, and investigated their impact on muscle structure and function by immunohistochemistry, analysis of mtDNA and respiratory chain content, muscle transcriptome and functional tests. RESULTS K320Eskm mice at 24 months of age had higher levels of mtDNA deletions compared with controls in soleus (SOL, 0.07673% vs. 0.00015%, P = 0.0167), extensor digitorum longus (EDL, 0.0649 vs. 0.000925, P = 0.0015) and gastrocnemius (GAS, 0.09353 vs. 0.000425, P = 0.0004). K320Eskm mice revealed a progressive increase in the proportion of cytochrome c oxidase deficient (COX- ) fibres in skeletal muscle cross sections, reaching a maximum of 3.03%, 4.36%, 13.58%, and 17.08% in EDL, SOL, tibialis anterior (TA) and GAS, respectively. However, mice did not show accelerated loss of muscle mass, muscle strength or physical performance. Histological analyses revealed ragged red fibres but also stimulated regeneration, indicating activation of MuSCs. RNAseq demonstrated enhanced expression of genes associated with protein synthesis, but also degradation, as well as muscle fibre differentiation and cell proliferation. In contrast, 7 days after destruction by cardiotoxin, regenerating TA of K320Emsc mice showed 30% of COX- fibres. Notably, regenerated muscle showed dystrophic changes, increased fibrosis (2.5% vs. 1.6%, P = 0.0003), increased abundance of fat cells (2.76% vs. 0.23%, P = 0.0144) and reduced muscle mass (regenerated TA: 40.0 mg vs. 60.2 mg, P = 0.0171). In contrast to muscles from K320Eskm mice, freshly isolated MuSCs from aged K320Emsc mice were completely devoid of mtDNA alterations. However, after passaging, mtDNA copy number as well as respiratory chain subunits and p62 levels gradually decreased. CONCLUSIONS Taken together, accumulation of large-scale mtDNA alterations in myofibres alone is not sufficient to cause sarcopenia. Expression of K320E-Twinkle is tolerated in quiescent MuSCs, but progressively leads to mtDNA and respiratory chain depletion upon activation, in vivo and in vitro, possibly caused by an increased mitochondrial removal. Altogether, our results suggest that the accumulation of mtDNA alterations in myofibres activates regeneration during aging, which leads to sarcopenia if such alterations have expanded in MuSCs as well.
Collapse
Affiliation(s)
- Sammy Kimoloi
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya
| | - Ayesha Sen
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany
| | - Stefan Guenther
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Tobias Brügmann
- Institute for Cardiovascular Physiology, University Medical Center, Göttingen, Germany.,Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Philipp Sasse
- Institute of Physiology I, Medical Faculty, University of Bonn, Bonn, Germany
| | - Rudolf J Wiesner
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Köln, Germany
| | - David Pla-Martín
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany
| | - Olivier R Baris
- Institute of Vegetative Physiology, University of Cologne, Faculty of Medicine and University Clinics, Köln, Germany.,Equipe MitoLab, UMR CNRS 6015, INSERM U1083, Institut MitoVasc, Université d'Angers, Angers, France
| |
Collapse
|
7
|
Anderson JE. Key concepts in muscle regeneration: muscle "cellular ecology" integrates a gestalt of cellular cross-talk, motility, and activity to remodel structure and restore function. Eur J Appl Physiol 2022; 122:273-300. [PMID: 34928395 PMCID: PMC8685813 DOI: 10.1007/s00421-021-04865-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/10/2021] [Indexed: 12/21/2022]
Abstract
This review identifies some key concepts of muscle regeneration, viewed from perspectives of classical and modern research. Early insights noted the pattern and sequence of regeneration across species was similar, regardless of the type of injury, and differed from epimorphic limb regeneration. While potential benefits of exercise for tissue repair was debated, regeneration was not presumed to deliver functional restoration, especially after ischemia-reperfusion injury; muscle could develop fibrosis and ectopic bone and fat. Standard protocols and tools were identified as necessary for tracking injury and outcomes. Current concepts vastly extend early insights. Myogenic regeneration occurs within the environment of muscle tissue. Intercellular cross-talk generates an interactive system of cellular networks that with the extracellular matrix and local, regional, and systemic influences, forms the larger gestalt of the satellite cell niche. Regenerative potential and adaptive plasticity are overlain by epigenetically regionalized responsiveness and contributions by myogenic, endothelial, and fibroadipogenic progenitors and inflammatory and metabolic processes. Muscle architecture is a living portrait of functional regulatory hierarchies, while cellular dynamics, physical activity, and muscle-tendon-bone biomechanics arbitrate regeneration. The scope of ongoing research-from molecules and exosomes to morphology and physiology-reveals compelling new concepts in muscle regeneration that will guide future discoveries for use in application to fitness, rehabilitation, and disease prevention and treatment.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, 50 Sifton Road, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
8
|
Yamada AK, Ferretti R, Matsumura CY, Antunes L, Silva CAD, Pertille A. Beta-hydroxy-beta-methylbutyrate associated with low-intensity exercise training improves skeletal muscle regeneration through the IGF-Akt pathway. Braz J Med Biol Res 2022; 55:e11597. [PMID: 35019034 PMCID: PMC8851911 DOI: 10.1590/1414-431x2021e11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/09/2021] [Indexed: 11/30/2022] Open
Abstract
The effect of beta-hydroxy-beta-methylbutyrate (HMB) supplementation associated with exercise training at different intensities and frequencies on skeletal muscle regeneration of muscle-injured rats was investigated. Male Wistar rats were divided into sedentary and trained groups. The sedentary groups were subdivided into non-injured (SED-Ct), non-injured supplemented with HMB (SED-Ct-HMB), injured (SED), and injured with HMB (SED-HMB), and the trained groups were injured, supplemented with HMB, and then divided into training three times a week without load (HT3) or with load (HT3L) and training five times a week without load (HT5) and with load (HT5L). The rats received a daily dose of HMB associated with 60 min of swimming with or without 5% body mass load for 14 days. On the 15th day, cryoinjury was performed in the right tibialis anterior muscle (TA), and 48 h later, supplementation and training continued for 15 days. After the last session, the TA was dissected and a cross-sectional area (CSA) of muscle fibers was used to determine the percentage of CSA fibers and connective tissue (%CT), as well as the total and phosphorylated protein contents. SED-HMB showed increased CSA and decreased %CT and TGF-β when compared to SED. HT3 showed increased CSA and reduced %CT accompanied by increased IGF-1/Akt, myogenin, and MuRF1, and decreased TGF-β. The CSA of HT5L also increased, but at the cost of a higher %CT compared to the other groups. Our results demonstrated that HMB associated with training without load and with lower frequency per week may be a valuable strategy for skeletal muscle regeneration.
Collapse
Affiliation(s)
- A K Yamada
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - R Ferretti
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - C Y Matsumura
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Botucatu, SP, Brasil
| | - L Antunes
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| | - C A da Silva
- Instituto de Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade Paulista - Swift, Campinas, SP, Brasil
| | - A Pertille
- Programa de Pós-Graduação em Ciências do Movimento Humano, Laboratório de Plasticidade Neuromuscular, Universidade Metodista de Piracicaba, Piracicaba, SP, Brasil
| |
Collapse
|
9
|
Dungan CM, Murach KA, Zdunek CJ, Tang ZJ, Nolt GL, Brightwell CR, Hettinger Z, Englund D, Liu Z, Fry CS, Filareto A, Franti M, Peterson CA. Deletion of SA β-Gal+ cells using senolytics improves muscle regeneration in old mice. Aging Cell 2022; 21:e13528. [PMID: 34904366 PMCID: PMC8761017 DOI: 10.1111/acel.13528] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/05/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022] Open
Abstract
Systemic deletion of senescent cells leads to robust improvements in cognitive, cardiovascular, and whole-body metabolism, but their role in tissue reparative processes is incompletely understood. We hypothesized that senolytic drugs would enhance regeneration in aged skeletal muscle. Young (3 months) and old (20 months) male C57Bl/6J mice were administered the senolytics dasatinib (5 mg/kg) and quercetin (50 mg/kg) or vehicle bi-weekly for 4 months. Tibialis anterior (TA) was then injected with 1.2% BaCl2 or PBS 7- or 28 days prior to euthanization. Senescence-associated β-Galactosidase positive (SA β-Gal+) cell abundance was low in muscle from both young and old mice and increased similarly 7 days following injury in both age groups, with no effect of D+Q. Most SA β-Gal+ cells were also CD11b+ in young and old mice 7- and 14 days following injury, suggesting they are infiltrating immune cells. By 14 days, SA β-Gal+/CD11b+ cells from old mice expressed senescence genes, whereas those from young mice expressed higher levels of genes characteristic of anti-inflammatory macrophages. SA β-Gal+ cells remained elevated in old compared to young mice 28 days following injury, which were reduced by D+Q only in the old mice. In D+Q-treated old mice, muscle regenerated following injury to a greater extent compared to vehicle-treated old mice, having larger fiber cross-sectional area after 28 days. Conversely, D+Q blunted regeneration in young mice. In vitro experiments suggested D+Q directly improve myogenic progenitor cell proliferation. Enhanced physical function and improved muscle regeneration demonstrate that senolytics have beneficial effects only in old mice.
Collapse
Affiliation(s)
- Cory M. Dungan
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Sanders‐Brown Center on AgingUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Kevin A. Murach
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Department of Health, Human Performance, and Recreation, and Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleArkansasUSA
| | | | - Zuo Jian Tang
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Georgia L. Nolt
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Camille R. Brightwell
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Zachary Hettinger
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Davis A. Englund
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Zheng Liu
- Computational BiologyGCBDSBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Christopher S. Fry
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Department of Athletic Training and Clinical NutritionCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
| | - Antonio Filareto
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Michael Franti
- Regenerative MedicineBoehringer Ingelheim Pharmaceuticals Inc.RidgefieldConnecticutUSA
| | - Charlotte A. Peterson
- Department of Physical TherapyCollege of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- The Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
10
|
Ronaldson SM, Stephenson DG, Head SI. Calcium and strontium contractile activation properties of single skinned skeletal muscle fibres from elderly women 66-90 years of age. J Muscle Res Cell Motil 2022; 43:173-183. [PMID: 35987933 PMCID: PMC9708809 DOI: 10.1007/s10974-022-09628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/31/2022]
Abstract
The single freshly skinned muscle fibre technique was used to investigate Ca2+- and Sr2+-activation properties of skeletal muscle fibres from elderly women (66-90 years). Muscle biopsies were obtained from the vastus lateralis muscle. Three populations of muscle fibres were identified according to their specific Sr2+-activation properties: slow-twitch (type I), fast-twitch (type II) and hybrid (type I/II) fibres. All three fibre types were sampled from the biopsies of 66 to 72 years old women, but the muscle biopsies of women older than 80 years yielded only slow-twitch (type I) fibres. The proportion of hybrid fibres in the vastus lateralis muscle of women of circa 70 years of age (24%) was several-fold greater than in the same muscle of adults (< 10%), suggesting that muscle remodelling occurs around this age. There were no differences between the Ca2+- and Sr2+-activation properties of slow-twitch fibres from the two groups of elderly women, but there were differences compared with muscle fibres from young adults with respect to sensitivity to Ca2+, steepness of the activation curves, and characteristics of the fibre-type dependent phenomenon of spontaneous oscillatory contractions (SPOC) (or force oscillations) occurring at submaximal levels of activation. The maximal Ca2+ activated specific force from all the fibres collected from the seven old women use in the present study was significantly lower by 20% than in the same muscle of adults. Taken together these results show there are qualitative and quantitative changes in the activation properties of the contractile apparatus of muscle fibres from the vastus lateralis muscle of women with advancing age, and that these changes need to be considered when explaining observed changes in women's mobility with aging.
Collapse
Affiliation(s)
| | - D. George Stephenson
- School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, 3086 Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, 2751 Australia ,Chair of Physiology, School of Medicine, Western Sydney University, Sydney, NSW 2751 Australia
| |
Collapse
|
11
|
Rieger M, Duran P, Cook M, Schenk S, Shah M, Jacobs M, Christman K, Kado DM, Alperin M. Quantifying the Effects of Aging on Morphological and Cellular Properties of Human Female Pelvic Floor Muscles. Ann Biomed Eng 2021; 49:1836-1847. [PMID: 33683527 PMCID: PMC8376748 DOI: 10.1007/s10439-021-02748-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022]
Abstract
Age-related pelvic floor muscle (PFM) dysfunction is a critical defect in the progression to pelvic floor disorders (PFDs). Despite dramatic prevalence of PFDs in older women, the underlying pathophysiology of age-related PFM dysfunction remains poorly understood. Using cadaveric specimens, we quantified aging effects on functionally relevant PFM properties and compared PFMs with the appendicular muscles from the same donors. PFMs, obturator internus, and vastus lateralis were procured from younger (N = 4) and older (N = 11) donors with known obstetrical and medical history. Our findings demonstrate that PFMs undergo degenerative, rather than atrophic, alterations. Importantly, age-related fibrotic degeneration disproportionally impacts PFMs compared to the appendicular muscles. We identified intramuscular lipid accumulation as another contributing factor to the pathological alterations of PFMs with aging. We observed a fourfold decrease in muscle stem cell (MuSC) pool of aged relative to younger PFMs, but the MuSC pool of appendicular muscles from the same older donors was only twofold lower than in younger group, although these differences were not statistically significant. Age-related degeneration appears to disproportionally impact PFMs relative to the appendicular muscles from the same donors. Knowledge of tissue- and cell-level changes in aged PFMs is essential to promote our understanding of the mechanisms governing PFM dysfunction in older women.
Collapse
Affiliation(s)
- Mary Rieger
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0863, USA
| | - Pamela Duran
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, USA
| | - Mark Cook
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, USA
| | - Simon Schenk
- Department of Orthopedic Surgery, University of California San Diego, La Jolla, USA
| | - Manali Shah
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Marni Jacobs
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, USA
| | - Karen Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, USA
| | - Deborah M Kado
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, USA
- Department of Medicine, University of California San Diego, La Jolla, USA
| | - Marianna Alperin
- Division of Female Pelvic Medicine and Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0863, USA.
| |
Collapse
|
12
|
Blum J, Epstein R, Watts S, Thalacker-Mercer A. Importance of Nutrient Availability and Metabolism for Skeletal Muscle Regeneration. Front Physiol 2021; 12:696018. [PMID: 34335302 PMCID: PMC8322985 DOI: 10.3389/fphys.2021.696018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022] Open
Abstract
Skeletal muscle is fundamentally important for quality of life. Deterioration of skeletal muscle, such as that observed with advancing age, chronic disease, and dystrophies, is associated with metabolic and functional decline. Muscle stem/progenitor cells promote the maintenance of skeletal muscle composition (balance of muscle mass, fat, and fibrotic tissues) and are essential for the regenerative response to skeletal muscle damage. It is increasing recognized that nutrient and metabolic determinants of stem/progenitor cell function exist and are potential therapeutic targets to improve regenerative outcomes and muscle health. This review will focus on current understanding as well as key gaps in knowledge and challenges around identifying and understanding nutrient and metabolic determinants of skeletal muscle regeneration.
Collapse
Affiliation(s)
- Jamie Blum
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Rebekah Epstein
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| | - Stephen Watts
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anna Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
13
|
Takeshita H, Yamamoto K, Mogi M, Wang Y, Nozato Y, Fujimoto T, Yokoyama S, Hongyo K, Nakagami F, Akasaka H, Takami Y, Takeya Y, Sugimoto K, Horiuchi M, Rakugi H. Double Deletion of Angiotensin II Type 2 and Mas Receptors Accelerates Aging-Related Muscle Weakness in Male Mice. J Am Heart Assoc 2021; 10:e021030. [PMID: 34212761 PMCID: PMC8403326 DOI: 10.1161/jaha.120.021030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/16/2021] [Indexed: 12/28/2022]
Abstract
Background The activation of AT2 (angiotensin II type 2 receptor ) and Mas receptor by angiotensin II and angiotensin-(1-7), respectively, is the primary process that counteracts activation of the canonical renin-angiotensin system (RAS). Although inhibition of canonical RAS could delay the progression of physiological aging, we recently reported that deletion of Mas had no impact on the aging process in mice. Here, we used male mice with a deletion of only AT2 or a double deletion of AT2 and Mas to clarify whether these receptors contribute to the aging process in a complementary manner, primarily by focusing on aging-related muscle weakness. Methods and Results Serial changes in grip strength of these mice up to 24 months of age showed that AT2/Mas knockout mice, but not AT2 knockout mice, had significantly weaker grip strength than wild-type mice from the age of 18 months. AT2/Mas knockout mice exhibited larger sizes, but smaller numbers and increased frequency of central nucleation (a marker of aged muscle) of single skeletal muscle fibers than AT2 knockout mice. Canonical RAS-associated genes, inflammation-associated genes, and senescence-associated genes were highly expressed in skeletal muscles of AT2/Mas knockout mice. Muscle angiotensin II content increased in AT2/Mas knockout mice. Conclusions Double deletion of AT2 and Mas in mice exaggerated aging-associated muscle weakness, accompanied by signatures of activated RAS, inflammation, and aging in skeletal muscles. Because aging-associated phenotypes were absent in single deletions of the receptors, AT2 and Mas could complement each other in preventing local activation of RAS during aging.
Collapse
MESH Headings
- Age Factors
- Animals
- Fibrosis
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Hand Strength
- Inflammation Mediators/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle Strength/genetics
- Muscle Weakness/genetics
- Muscle Weakness/metabolism
- Muscle Weakness/pathology
- Muscle Weakness/physiopathology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Phenotype
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Receptor, Angiotensin, Type 2/deficiency
- Receptor, Angiotensin, Type 2/genetics
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/genetics
- Renin-Angiotensin System/genetics
- Mice
Collapse
Affiliation(s)
- Hikari Takeshita
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Koichi Yamamoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masaki Mogi
- Department of PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Yu Wang
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Nozato
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Taku Fujimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Serina Yokoyama
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Kazuhiro Hongyo
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Futoshi Nakagami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Hiroshi Akasaka
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yoichi Takami
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Yasushi Takeya
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Ken Sugimoto
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and PharmacologyEhime University Graduate School of MedicineEhimeJapan
| | - Hiromi Rakugi
- Department of Geriatric and General MedicineOsaka University Graduate School of MedicineSuitaJapan
| |
Collapse
|
14
|
Blum JE, Gheller BJ, Hwang S, Bender E, Gheller M, Thalacker-Mercer AE. Consumption of a Blueberry-Enriched Diet by Women for 6 Weeks Alters Determinants of Human Muscle Progenitor Cell Function. J Nutr 2020; 150:2412-2418. [PMID: 32678436 DOI: 10.1093/jn/nxaa190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human muscle progenitor cell (hMPC) function facilitates skeletal muscle regeneration and is influenced by circulating factors. Yet it is unknown whether dietary interventions impact hMPC function. Blueberry consumption was examined due to the pro-proliferative and antioxidant effects of blueberries and blueberry-derived compounds. OBJECTIVES This study measured indicators of hMPC function in young and old cultures treated with serum collected from a blueberry-enriched diet (BED) intervention. METHODS Younger (21-40 y, n = 12) and older (60-79 y, n = 10) women consumed a 6-wk BED (38 g of freeze-dried blueberries daily). Fasting serum was collected at 0, 4, and 6 wk, and a fed serum sample at 1.5 h (acute) after starting the BED intervention. Young and old hMPCs, derived from 3-5 distinct donors (biological replicates), were individually cultured in media containing pooled, age-group-matched serum from each time point. Determinants of hMPC function (e.g., hMPC number, oxidative stress resistance, and upregulation of metabolic pathways) were measured and compared within age groups. RESULTS Culturing young hMPCs in acute (compared with 0 wk) BED serum did not alter hMPC number or oxidative stress-induced cell death, but increased cellular oxygen consumption (29%, P = 0.026). Culturing young hMPCs in 6-wk (compared with 0-wk) BED serum increased hMPC number (40%, P = 0.0024), conferred minor resistance to oxidative stress-induced cell death (12.6 percentage point decrease, P = 0.10), and modestly increased oxygen consumption (36%, P = 0.09). No beneficial effect of the acute or long-term BED serum was observed in old hMPCs. CONCLUSIONS In younger women, dietary interventions could be a feasible strategy to improve hMPC function and thus muscle regeneration, through altering the serum environment.This study was registered at clinicaltrials.gov (NCT04262258).
Collapse
Affiliation(s)
- Jamie E Blum
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | - Brandon J Gheller
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | - Sinwoo Hwang
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | - Erica Bender
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | - Mary Gheller
- Division of Nutritional Science, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
15
|
Daneshvar N, Tatsumi R, Peeler J, Anderson JE. Premature satellite cell activation before injury accelerates myogenesis and disrupts neuromuscular junction maturation in regenerating muscle. Am J Physiol Cell Physiol 2020; 319:C116-C128. [PMID: 32374678 DOI: 10.1152/ajpcell.00121.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Satellite cell (SC) activation, mediated by nitric oxide (NO), is essential to myogenic repair, whereas myotube function requires innervation. Semaphorin (Sema) 3A, a neuro-chemorepellent, is thought to regulate axon guidance to neuromuscular junctions (NMJs) during myotube differentiation. We tested whether "premature" SC activation (SC activation before injury) by a NO donor (isosorbide dinitrate) would disrupt early myogenesis and/or NMJs. Adult muscle was examined during regeneration in two models of injury: myotoxic cardiotoxin (CTX) and traumatic crush (CR) (n = 4-5/group). Premature SC activation was confirmed by increased DNA synthesis by SCs immediately in pretreated mice after CTX injury. Myotubes grew faster after CTX than after CR; growth was accelerated by pretreatment. NMJ maturation, classified by silver histochemistry (neurites) and acetylcholinesterase (AchE), and α-bungarotoxin staining (Ach receptors, AchRs) were delayed by pretreatment, consistent with a day 6 rise in the denervation marker γ-AchR. With pretreatment, S100B from terminal Schwann cells (TSCs) increased 10- to 20-fold at days 0 and 10 after CTX and doubled 6 days after CR. Premature SC activation disrupted motoneuritogenesis 8-10 days post-CTX, as pretreatment reduced colocalization of pre- and postsynaptic NMJ features and increased Sema3A-65. Premature SC activation before injury both accelerated myogenic repair and disrupted NMJ remodeling and maturation, possibly by reducing Sema3A neuro-repulsion and altering S100B. This interpretation extends the model of Sema3A-mediated motoneuritogenesis during muscle regeneration. Manipulating the timing and type of Sema3A by brief NO effects on SCs suggests an important role for TSCs and Sema3A-65 processing in axon guidance and NMJ restoration during muscle repair.
Collapse
Affiliation(s)
- Nasibeh Daneshvar
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Graduate School of Animal Sciences, Kyushu University, Fukoka, Japan
| | - Jason Peeler
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Treatment of Dystrophic mdx Mice with an ADAMTS-5 Specific Monoclonal Antibody Increases the Ex Vivo Strength of Isolated Fast Twitch Hindlimb Muscles. Biomolecules 2020; 10:biom10030416. [PMID: 32156081 PMCID: PMC7175239 DOI: 10.3390/biom10030416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant extracellular matrix synthesis and remodeling contributes to muscle degeneration and weakness in Duchenne muscular dystrophy (DMD). ADAMTS-5, a secreted metalloproteinase with catalytic activity against versican, is implicated in myogenesis and inflammation. Here, using the mdx mouse model of DMD, we report increased ADAMTS-5 expression in dystrophic hindlimb muscles, localized to regions of regeneration and inflammation. To investigate the pathophysiological significance of this, 4-week-old mdx mice were treated with an ADAMTS-5 monoclonal antibody (mAb) or IgG2c (IgG) isotype control for 3 weeks. ADAMTS-5 mAb treatment did not reduce versican processing, as protein levels of the cleaved versikine fragment did not differ between hindlimb muscles from ADAMTS-5 mAb or IgG treated mdx mice. Nonetheless, ADAMTS-5 blockade improved ex vivo strength of isolated fast extensor digitorum longus, but not slow soleus, muscles. The underpinning mechanism may include modulation of regenerative myogenesis, as ADAMTS-5 blockade reduced the number of recently repaired desmin positive myofibers without affecting the number of desmin positive muscle progenitor cells. Treatment with the ADAMTS-5 mAb did not significantly affect makers of muscle damage, inflammation, nor fiber size. Altogether, the positive effects of ADAMTS-5 blockade in dystrophic muscles are fiber-type-specific and independent of versican processing.
Collapse
|
17
|
Bellantuono I, de Cabo R, Ehninger D, Di Germanio C, Lawrie A, Miller J, Mitchell SJ, Navas-Enamorado I, Potter PK, Tchkonia T, Trejo JL, Lamming DW. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat Protoc 2020; 15:540-574. [PMID: 31915391 PMCID: PMC7002283 DOI: 10.1038/s41596-019-0256-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/10/2019] [Indexed: 12/11/2022]
Abstract
The number of people aged over 65 is expected to double in the next 30 years. For many, living longer will mean spending more years with the burdens of chronic diseases such as Alzheimer's disease, cardiovascular disease, and diabetes. Although researchers have made rapid progress in developing geroprotective interventions that target mechanisms of aging and delay or prevent the onset of multiple concurrent age-related diseases, a lack of standardized techniques to assess healthspan in preclinical murine studies has resulted in reduced reproducibility and slow progress. To overcome this, major centers in Europe and the United States skilled in healthspan analysis came together to agree on a toolbox of techniques that can be used to consistently assess the healthspan of mice. Here, we describe the agreed toolbox, which contains protocols for echocardiography, novel object recognition, grip strength, rotarod, glucose tolerance test (GTT) and insulin tolerance test (ITT), body composition, and energy expenditure. The protocols can be performed longitudinally in the same mouse over a period of 4-6 weeks to test how candidate geroprotectors affect cardiac, cognitive, neuromuscular, and metabolic health.
Collapse
Affiliation(s)
- I Bellantuono
- Department of Oncology and Metabolism, Healthy Lifespan Institute and MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing, University of Sheffield, Sheffield, UK.
| | - R de Cabo
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - D Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1, Bonn, Germany
| | - C Di Germanio
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - A Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - J Miller
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - S J Mitchell
- Department of Molecular Medicine, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - I Navas-Enamorado
- Translational Gerontology Branch, National Institutes of Health, Baltimore, MD, USA
| | - P K Potter
- Department of Biological and Life Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxfordshire, UK
| | - T Tchkonia
- Robert and Arlene KogodCenter on Aging, Mayo Clinic, Rochester, MN, USA
| | - J L Trejo
- Department of Translational Neuroscience, Cajal Institute (CSIC), Madrid, Spain
| | - D W Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
18
|
Different effects of the deletion of angiotensin converting enzyme 2 and chronic activation of the renin-angiotensin system on muscle weakness in middle-aged mice. Hypertens Res 2019; 43:296-304. [PMID: 31853045 DOI: 10.1038/s41440-019-0375-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Inhibition of the renin-angiotensin system (RAS) has been shown to alleviate muscle atrophy both under pathological conditions and during physiological aging. We recently reported that the deletion of angiotensin converting enzyme 2 (ACE2), which converts Angiotensin II to Angiotensin-(1-7) in mice, leads to the early manifestation of aging-associated muscle weakness along with the increased expression of p16INK4a, a senescence-associated gene, and increased central nuclei in the tibialis anterior (TA) muscle in middle age. As ACE2 is multifunctional and functions beyond its role in the RAS, we investigated whether activation of the RAS primarily contributes to muscle weakness in ACE2 knockout (KO) mice by comparing these mice to Tsukuba hypertensive (TH) mice that overproduce human angiotensin II. The grip strength of young (6 months) and middle-aged (15 months) TH mice was consistently lower than that of wild-type mice at the same ages. Middle-aged TH mice were continuously lean with extremely reduced adiposity. Central nuclei in the gastrocnemius (GM) muscle were increased in ACE2KO mice, while no apparent morphological change was observed in the GM muscles of TH mice. Increased expression of p16INK4a along with alterations in the expression of several sarcopenia-associated genes were observed in the GM muscles of ACE2KO mice but not TH mice. These findings suggest that chronic overactivation of the RAS does not primarily contribute to the early aging phenotypes of skeletal muscle in ACE2KO mice.
Collapse
|
19
|
Angiotensin 1-7 alleviates aging-associated muscle weakness and bone loss, but is not associated with accelerated aging in ACE2-knockout mice. Clin Sci (Lond) 2019; 133:2005-2018. [PMID: 31519791 DOI: 10.1042/cs20190573] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/30/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023]
Abstract
The angiotensin-converting enzyme 2 (ACE2)-angiotensin 1-7 (A1-7)-A1-7 receptor (Mas) axis plays a protective role in the renin-angiotensin system (RAS). We recently found that ACE2 knockout (ACE2KO) mice exhibit earlier aging-associated muscle weakness, and that A1-7 alleviates muscle weakness in aging mice. In the present study, we investigated the role of the A1-7-Mas pathway in the effect of ACE2 on physiological aging. Male wild-type, ACE2KO, and Mas knockout (MasKO) mice were subjected to periodical grip strength measurement, followed by administration of A1-7 or vehicle for 4 weeks at 24 months of age. ACE2KO mice exhibited decreased grip strength after 6 months of age, while grip strength of MasKO mice was similar to that of wild-type mice. A1-7 improved grip strength in ACE2KO and wild-type mice, but not in MasKO mice. Muscle fibre size was smaller in ACE2KO mice than that in wild-type and MasKO mice, and increased with A1-7 in ACE2KO and WT mice, but not in MasKO mice. Centrally nucleated fibres (CNFs) and expression of the senescence-associated gene p16INK4a in skeletal muscles were enhanced only in ACE2KO mice and were not altered by A1-7. ACE2KO mice, but not MasKO mice, exhibited thinning of peripheral fat along with increased adipose expression of p16INK4a A1-7 significantly increased bone volume in wild-type and ACE2KO mice, but not in MasKO mice. Our findings suggest that the impact of ACE2 on physiological aging does not depend on the endogenous production of A1-7 by ACE2, while overactivation of the A1-7-Mas pathway could alleviate sarcopenia and osteoporosis in aged mice.
Collapse
|
20
|
Biotoxins in muscle regeneration research. J Muscle Res Cell Motil 2019; 40:291-297. [PMID: 31359301 DOI: 10.1007/s10974-019-09548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
Skeletal muscles are characterized by their unique regenerative capacity following injury due to the presence of muscle precursor cells, satellite cells. This characteristic allows researchers to study muscle regeneration using experimental injury models. These injury models should be stable and reproducible. Variety of injury models have been used, among which the intramuscular injection of myotoxic biotoxins is considered the most common and widespread method in muscle regeneration research. By using isolated biotoxins, researchers could induce acute muscle damage and regeneration in a controlled and reproducible manner. Therefore, it is considered an easy method for inducing muscle injury in order to understand the different mechanisms involved in muscle injuries and tissue response following injury. However, different toxins and venoms have different compositions and subsequently the possible effects of these toxins on skeletal muscle vary according to their composition. Moreover, regeneration of injured muscle by venoms and toxins varies according to the target of toxin or venom. Therefore, it is essential for researcher to be aware of the mechanism and possible target of toxin-induced injury. The current paper provides an overview of the biotoxins used in skeletal muscle research.
Collapse
|
21
|
Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, Kirkland JL, Sandri M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019; 99:427-511. [PMID: 30427277 PMCID: PMC6442923 DOI: 10.1152/physrev.00061.2017] [Citation(s) in RCA: 888] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is a loss of muscle mass and function in the elderly that reduces mobility, diminishes quality of life, and can lead to fall-related injuries, which require costly hospitalization and extended rehabilitation. This review focuses on the aging-related structural changes and mechanisms at cellular and subcellular levels underlying changes in the individual motor unit: specifically, the perikaryon of the α-motoneuron, its neuromuscular junction(s), and the muscle fibers that it innervates. Loss of muscle mass with aging, which is largely due to the progressive loss of motoneurons, is associated with reduced muscle fiber number and size. Muscle function progressively declines because motoneuron loss is not adequately compensated by reinnervation of muscle fibers by the remaining motoneurons. At the intracellular level, key factors are qualitative changes in posttranslational modifications of muscle proteins and the loss of coordinated control between contractile, mitochondrial, and sarcoplasmic reticulum protein expression. Quantitative and qualitative changes in skeletal muscle during the process of aging also have been implicated in the pathogenesis of acquired and hereditary neuromuscular disorders. In experimental models, specific intervention strategies have shown encouraging results on limiting deterioration of motor unit structure and function under conditions of impaired innervation. Translated to the clinic, if these or similar interventions, by saving muscle and improving mobility, could help alleviate sarcopenia in the elderly, there would be both great humanitarian benefits and large cost savings for health care systems.
Collapse
Affiliation(s)
- Lars Larsson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Hans Degens
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Meishan Li
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Leonardo Salviati
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Young Il Lee
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Wesley Thompson
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - James L Kirkland
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| | - Marco Sandri
- Department of Physiology and Pharmacology, Basic and Clinical Muscle Biology Group, Karolinska Institutet , Stockholm , Sweden ; Section of Clinical Neurophysiology, Department of Clinical Neuroscience, Karolinska Institutet , Stockholm , Sweden ; Department of Biobehavioral Health, The Pennsylvania State University , University Park, Pennsylvania ; School of Healthcare Science, Metropolitan University , Manchester , United Kingdom ; Institute of Sport Science and Innovations, Lithuanian Sports University , Kaunas , Lithuania ; Clinical Genetics Unit, Department of Woman and Child Health, University of Padova , Padova , Italy ; IRP Città della Speranza, Padova , Italy ; Department of Biology, Texas A&M University , College Station, Texas ; Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota ; Department of Biomedical Science, Venetian Institute of Molecular Medicine, University of Padova , Padova , Italy
| |
Collapse
|
22
|
Patsalos A, Simandi Z, Hays TT, Peloquin M, Hajian M, Restrepo I, Coen PM, Russell AJ, Nagy L. In vivo GDF3 administration abrogates aging related muscle regeneration delay following acute sterile injury. Aging Cell 2018; 17:e12815. [PMID: 30003692 PMCID: PMC6156497 DOI: 10.1111/acel.12815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/17/2018] [Accepted: 06/15/2018] [Indexed: 12/22/2022] Open
Abstract
Tissue regeneration is a highly coordinated process with sequential events including immune cell infiltration, clearance of damaged tissues, and immune‐supported regrowth of the tissue. Aging has a well‐documented negative impact on this process globally; however, whether changes in immune cells per se are contributing to the decline in the body’s ability to regenerate tissues with aging is not clearly understood. Here, we set out to characterize the dynamics of macrophage infiltration and their functional contribution to muscle regeneration by comparing young and aged animals upon acute sterile injury. Injured muscle of old mice showed markedly elevated number of macrophages, with a predominance for Ly6Chigh pro‐inflammatory macrophages and a lower ratio of the Ly6Clow repair macrophages. Of interest, a recently identified repair macrophage‐derived cytokine, growth differentiation factor 3 (GDF3), was markedly downregulated in injured muscle of old relative to young mice. Supplementation of recombinant GDF3 in aged mice ameliorated the inefficient regenerative response. Together, these results uncover a deficiency in the quantity and quality of infiltrating macrophages during aging and suggest that in vivo administration of GDF3 could be an effective therapeutic approach.
Collapse
Affiliation(s)
- Andreas Patsalos
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
- Department of Biochemistry and Molecular Biology, Faculty of Medicine; University of Debrecen; Debrecen Hungary
| | - Zoltan Simandi
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
| | - Tristan T. Hays
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
| | - Matthew Peloquin
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
| | - Matine Hajian
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
| | - Isabella Restrepo
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
| | - Paul M. Coen
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
- Florida Hospital; Translational Research Institute for Metabolism and Diabetes; Orlando Florida
| | - Alan J. Russell
- Muscle Metabolism Discovery Performance Unit; GlaxoSmithKline; King of Prussia Pennsylvania
| | - Laszlo Nagy
- Sanford-Burnham-Prebys Medical Discovery Institute at Lake Nona; Orlando Florida
- Department of Biochemistry and Molecular Biology, Faculty of Medicine; University of Debrecen; Debrecen Hungary
| |
Collapse
|
23
|
McCormick R, Vasilaki A. Age-related changes in skeletal muscle: changes to life-style as a therapy. Biogerontology 2018; 19:519-536. [PMID: 30259289 PMCID: PMC6223729 DOI: 10.1007/s10522-018-9775-3] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/19/2018] [Indexed: 12/13/2022]
Abstract
As we age, there is an age-related loss in skeletal muscle mass and strength, known as sarcopenia. Sarcopenia results in a decrease in mobility and independence, as well as an increase in the risk of other morbidities and mortality. Sarcopenia is therefore a major socio-economical problem. The mechanisms behind sarcopenia are unclear and it is likely that it is a multifactorial condition with changes in numerous important mechanisms all contributing to the structural and functional deterioration. Here, we review the major proposed changes which occur in skeletal muscle during ageing and highlight evidence for changes in physical activity and nutrition as therapeutic approaches to combat age-related skeletal muscle wasting.
Collapse
Affiliation(s)
- Rachel McCormick
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Aphrodite Vasilaki
- Musculoskeletal Biology II, Institute of Ageing and Chronic Disease, Centre for Integrated Research into Musculoskeletal Ageing, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
24
|
Joanisse S, Snijders T, Nederveen JP, Parise G. The Impact of Aerobic Exercise on the Muscle Stem Cell Response. Exerc Sport Sci Rev 2018; 46:180-187. [DOI: 10.1249/jes.0000000000000153] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
25
|
The effect of calorie restriction on mouse skeletal muscle is sex, strain and time-dependent. Sci Rep 2017; 7:5160. [PMID: 28698572 PMCID: PMC5505993 DOI: 10.1038/s41598-017-04896-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/22/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of skeletal muscle mass and function occurs with increasing age. Calorie restriction (CR) increases the lifespan of C57Bl/6 mice, but not in the shorter-lived DBA/2 strain. There is some evidence that calorie restriction reduces or delays many of the age-related defects that occur in rodent skeletal muscle. We therefore investigated the effect of short (2.5 month) and longer term (8.5 and 18.5 months) CR on skeletal muscle in male and female C57Bl/6 and DBA/2 mice. We found that short-term CR increased the satellite cell number and collagen VI content of muscle, but resulted in a delayed regenerative response to injury.Consistent with this, the in vitro proliferation of satellite cells derived from these muscles was reduced by CR. The percentage of stromal cells, macrophages, hematopoietic stem cells and fibroadipogenic cells in the mononucleated cell population derived from skeletal muscle was reduced by CR at various stages. But overall, these changes are neither consistent over time, nor between strain and sex. The fact that changes induced by CR do not persist with time and the dissimilarities between the two mouse strains, combined with sex differences, urge caution in applying CR to improve skeletal muscle function across the lifespan in humans.
Collapse
|
26
|
Tatsumi R, Suzuki T, Do MKQ, Ohya Y, Anderson JE, Shibata A, Kawaguchi M, Ohya S, Ohtsubo H, Mizunoya W, Sawano S, Komiya Y, Ichitsubo R, Ojima K, Nishimatsu SI, Nohno T, Ohsawa Y, Sunada Y, Nakamura M, Furuse M, Ikeuchi Y, Nishimura T, Yagi T, Allen RE. Slow-Myofiber Commitment by Semaphorin 3A Secreted from Myogenic Stem Cells. Stem Cells 2017; 35:1815-1834. [PMID: 28480592 DOI: 10.1002/stem.2639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023]
Abstract
Recently, we found that resident myogenic stem satellite cells upregulate a multi-functional secreted protein, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle injury; however, its physiological significance is still unknown. Here we show that Sema3A impacts slow-twitch fiber generation through a signaling pathway, cell-membrane receptor (neuropilin2-plexinA3) → myogenin-myocyte enhancer factor 2D → slow myosin heavy chain. This novel axis was found by small interfering RNA-transfection experiments in myoblast cultures, which also revealed an additional element that Sema3A-neuropilin1/plexinA1, A2 may enhance slow-fiber formation by activating signals that inhibit fast-myosin expression. Importantly, satellite cell-specific Sema3A conditional-knockout adult mice (Pax7CreERT2 -Sema3Afl °x activated by tamoxifen-i.p. injection) provided direct in vivo evidence for the Sema3A-driven program, by showing that slow-fiber generation and muscle endurance were diminished after repair from cardiotoxin-injury of gastrocnemius muscle. Overall, the findings highlight an active role for satellite cell-secreted Sema3A ligand as a key "commitment factor" for the slow-fiber population during muscle regeneration. Results extend our understanding of the myogenic stem-cell strategy that regulates fiber-type differentiation and is responsible for skeletal muscle contractility, energy metabolism, fatigue resistance, and its susceptibility to aging and disease. Stem Cells 2017;35:1815-1834.
Collapse
Affiliation(s)
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences.,Department of Molecular and Developmental Biology.,Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences
| | - Yuki Ohya
- Department of Animal and Marine Bioresource Sciences
| | - Judy E Anderson
- Faculty of Science, Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ayumi Shibata
- Department of Animal and Marine Bioresource Sciences
| | - Mai Kawaguchi
- Department of Animal and Marine Bioresource Sciences
| | - Shunpei Ohya
- Department of Animal and Marine Bioresource Sciences
| | | | | | - Shoko Sawano
- Department of Animal and Marine Bioresource Sciences
| | - Yusuke Komiya
- Department of Animal and Marine Bioresource Sciences
| | | | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, NARO Institute of Livestock and Grassland Science, Tsukuba, Ibaraki, Japan
| | | | | | - Yutaka Ohsawa
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Yoshihide Sunada
- Department of Neurology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mako Nakamura
- Graduate School of Agriculture, Kyushu University, Fukuoka, Japan
| | | | | | - Takanori Nishimura
- Cell and Tissue Biology Laboratory, Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takeshi Yagi
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ronald E Allen
- The School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
27
|
Bengal E, Perdiguero E, Serrano AL, Muñoz-Cánoves P. Rejuvenating stem cells to restore muscle regeneration in aging. F1000Res 2017; 6:76. [PMID: 28163911 PMCID: PMC5271918 DOI: 10.12688/f1000research.9846.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 12/15/2022] Open
Abstract
Adult muscle stem cells, originally called satellite cells, are essential for
muscle repair and regeneration throughout life. Besides a gradual loss of mass
and function, muscle aging is characterized by a decline in the repair capacity,
which blunts muscle recovery after injury in elderly individuals. A major effort
has been dedicated in recent years to deciphering the causes of satellite cell
dysfunction in aging animals, with the ultimate goal of rejuvenating old
satellite cells and improving muscle function in elderly people. This review
focuses on the recently identified network of cell-intrinsic and -extrinsic
factors and processes contributing to the decline of satellite cells in old
animals. Some studies suggest that aging-related satellite-cell decay is mostly
caused by age-associated extrinsic environmental changes that could be reversed
by a “youthful environment”. Others propose a central role for
cell-intrinsic mechanisms, some of which are not reversed by environmental
changes. We believe that these proposals, far from being antagonistic, are
complementary and that both extrinsic and intrinsic factors contribute to muscle
stem cell dysfunction during aging-related regenerative decline. The low
regenerative potential of old satellite cells may reflect the accumulation of
deleterious changes during the life of the cell; some of these changes may be
inherent (intrinsic) while others result from the systemic and local environment
(extrinsic). The present challenge is to rejuvenate aged satellite cells that
have undergone reversible changes to provide a possible approach to improving
muscle repair in the elderly.
Collapse
Affiliation(s)
- Eyal Bengal
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Eusebio Perdiguero
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Antonio L Serrano
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Pura Muñoz-Cánoves
- Cell Biology Group, Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
28
|
Joanisse S, Nederveen JP, Snijders T, McKay BR, Parise G. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization. Gerontology 2016; 63:91-100. [PMID: 27760421 DOI: 10.1159/000450922] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults.
Collapse
Affiliation(s)
- Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, Ont., Canada
| | | | | | | | | |
Collapse
|
29
|
Altered Satellite Cell Responsiveness and Denervation Implicated in Progression of Rotator-Cuff Injury. PLoS One 2016; 11:e0162494. [PMID: 27668864 PMCID: PMC5036792 DOI: 10.1371/journal.pone.0162494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022] Open
Abstract
Background Rotator-cuff injury (RCI) is common and painful; even after surgery, joint stability and function may not recover. Relative contributions to atrophy from disuse, fibrosis, denervation, and satellite-cell responsiveness to activating stimuli are not known. Methods and Findings Potential contributions of denervation and disrupted satellite cell responses to growth signals were examined in supraspinatus (SS) and control (ipsilateral deltoid) muscles biopsied from participants with RCI (N = 27). Biopsies were prepared for explant culture (to study satellite cell activity), immunostained to localize Pax7, BrdU, and Semaphorin 3A in satellite cells, sectioning to study blood vessel density, and western blotting to measure the fetal (γ) subunit of acetylcholine receptor (γ-AchR). Principal component analysis (PCA) for 35 parameters extracted components identified variables that contributed most to variability in the dataset. γ-AchR was higher in SS than control, indicating denervation. Satellite cells in SS had a low baseline level of activity (Pax7+ cells labelled in S-phase) versus control; only satellite cells in SS showed increased proliferative activity after nitric oxide-donor treatment. Interestingly, satellite cell localization of Semaphorin 3A, a neuro-chemorepellent, was greater in SS (consistent with fiber denervation) than control muscle at baseline. PCAs extracted components including fiber atrophy, satellite cell activity, fibrosis, atrogin-1, smoking status, vascular density, γAchR, and the time between symptoms and surgery. Use of deltoid as a control for SS was supported by PCA findings since “muscle” was not extracted as a variable in the first two principal components. SS muscle in RCI is therefore atrophic, denervated, and fibrotic, and has satellite cells that respond to activating stimuli. Conclusions Since SS satellite cells can be activated in culture, a NO-donor drug combined with stretching could promote muscle growth and improve functional outcome after RCI. PCAs suggest indices including satellite cell responsiveness, atrogin-1, atrophy, and innervation may predict surgical outcome.
Collapse
|
30
|
Melton DW, Roberts AC, Wang H, Sarwar Z, Wetzel MD, Wells JT, Porter L, Berton MT, McManus LM, Shireman PK. Absence of CCR2 results in an inflammaging environment in young mice with age-independent impairments in muscle regeneration. J Leukoc Biol 2016; 100:1011-1025. [PMID: 27531927 DOI: 10.1189/jlb.3ma0316-104r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/26/2016] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle regeneration requires coordination between dynamic cellular populations and tissue microenvironments. Macrophages, recruited via CCR2, are essential for regeneration; however, the contribution of macrophages and the role of CCR2 on nonhematopoietic cells has not been defined. In addition, aging and sex interactions in regeneration and sarcopenia are unclear. Muscle regeneration was measured in young (3-6 mo), middle (11-15 mo), old (24-32 mo) male and female CCR2-/- mice. Whereas age-related muscle atrophy/sarcopenia was present, regenerated myofiber cross-sectional area (CSA) in CCR2-/- mice was comparably impaired across all ages and sexes, with increased adipocyte area compared with wild-type (WT) mice. CCR2-/- mice myofibers achieved approximately one third of baseline CSA even 84 d after injury. Regenerated CSA and clearance of necrotic tissue were dependent on bone marrow-derived cellular expression of CCR2. Myogenic progenitor cells isolated from WT and CCR2-/- mice exhibited comparable proliferation and differentiation capacity. The most striking cellular anomaly in injured muscle of CCR2-/- mice was markedly decreased macrophages, with a predominance of Ly6C- anti-inflammatory monocytes/macrophages. Ablation of proinflammatory TLR signaling did not affect muscle regeneration or resolution of necrosis. Of interest, many proinflammatory, proangiogenic, and chemotactic cytokines were markedly elevated in injured muscle of CCR2-/- relative to WT mice despite impairments in macrophage recruitment. Collectively, these results suggest that CCR2 on bone marrow-derived cells, likely macrophages, were essential to muscle regeneration independent of TLR signaling, aging, and sex. Decreased proinflammatory monocytes/macrophages actually promoted a proinflammatory microenvironment, which suggests that inflammaging was present in young CCR2-/- mice.
Collapse
Affiliation(s)
- David W Melton
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Alexander C Roberts
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Hanzhou Wang
- The South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Comprehensive Dentistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Zaheer Sarwar
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Michael D Wetzel
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Jason T Wells
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Laurel Porter
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA
| | - Michael T Berton
- Department of Microbiology & Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Linda M McManus
- Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Paula K Shireman
- Department of Surgery, University of Texas Health Science Center, San Antonio, Texas, USA; .,Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,The South Texas Veterans Health Care System, San Antonio, Texas, USA.,Department of Microbiology & Immunology, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
31
|
Vasilaki A, Pollock N, Giakoumaki I, Goljanek-Whysall K, Sakellariou GK, Pearson T, Kayani A, Jackson MJ, McArdle A. The effect of lengthening contractions on neuromuscular junction structure in adult and old mice. AGE (DORDRECHT, NETHERLANDS) 2016; 38:259-272. [PMID: 27470432 PMCID: PMC5061675 DOI: 10.1007/s11357-016-9937-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Skeletal muscles of old mice demonstrate a profound inability to regenerate fully following damage. Such a failure could be catastrophic to older individuals where muscle loss is already evident. Degeneration and regeneration of muscle fibres following contraction-induced injury in adult and old mice are well characterised, but little is known about the accompanying changes in motor neurons and neuromuscular junctions (NMJs) following this form of injury although defective re-innervation of muscle following contraction-induced damage has been proposed to play a role in sarcopenia. This study visualised and quantified structural changes to motor neurons and NMJs in Extensor digitorum longus (EDL) muscles of adult and old Thy1-YFP transgenic mice during regeneration following contraction-induced muscle damage. Data demonstrated that the damaging contraction protocol resulted in substantial initial disruption to NMJs in muscles of adult mice, which was reversed entirely within 28 days following damage. In contrast, in quiescent muscles of old mice, ∼15 % of muscle fibres were denervated and ∼80 % of NMJs showed disruption. This proportion of denervated and partially denervated fibres remained unchanged following recovery from contraction-induced damage in muscles of old mice although ∼25 % of muscle fibres were completely lost by 28 days post-contractions. Thus, in old mice, the failure to restore full muscle force generation that occurs following damage does not appear to be due to any further deficit in the percentage of disrupted NMJs, but appears to be due, at least in part, to the complete loss of muscle fibres following damage.
Collapse
Affiliation(s)
- Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Natalie Pollock
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Ifigeneia Giakoumaki
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Giorgos K Sakellariou
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Timothy Pearson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Anna Kayani
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Malcolm J Jackson
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Anne McArdle
- MRC-Arthritis Research UK Centre for Integrated Research into Musculoskeletal Ageing, Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
32
|
Joanisse S, Nederveen JP, Baker JM, Snijders T, Iacono C, Parise G. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J 2016; 30:3256-68. [PMID: 27306336 DOI: 10.1096/fj.201600143rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty-two-month-old male C57Bl/6J mice (n = 20) underwent an 8-wk progressive exercise training protocol [old exercised (O-Ex) group]. An old sedentary (O-Sed) and a sedentary young control (Y-Ctl) group were included. Animals were subjected to injections of cardiotoxin into the tibialis anterior muscle. The tibialis anterior were harvested before [O-Ex/O-Sed/Y-Ctl control (CTL); n = 6], 10 d (O-Ex/O-Sed/Y-Ctl d 10; n = 8), and 28 d (O-Ex/O-Sed/Y-Ctl d 28; n = 6) postinjection. Average fiber cross-sectional area was reduced in all groups at d 10 (CTL: O-Ex: 2499 ± 140; O-Sed: 2320 ± 165; Y-Ctl: 2474 ± 269; d 10: O-Ex: 1191 ± 100; O-Sed: 1125 ± 99; Y-Ctl: 1481 ± 167 µm(2); P < 0.05), but was restored to control values in O-Ex and Y-Ctl groups at d 28 (O-Ex: 2257 ± 181; Y-Ctl: 2398 ± 171 µm(2); P > 0.05). Satellite cell content was greater at CTL in O-Ex (2.6 ± 0.4 satellite cells/100 fibers) compared with O-Sed (1.0 ± 0.1% satellite cells/100 fibers; P < 0.05). Exercise conditioning appears to improve ability of skeletal muscle to regenerate after injury in aged mice.-Joanisse, S., Nederveen, J. P., Baker, J. M., Snijders, T., Iacono, C., Parise, G. Exercise conditioning in old mice improves skeletal muscle regeneration.
Collapse
Affiliation(s)
- Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Joshua P Nederveen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Jeff M Baker
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tim Snijders
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Carlo Iacono
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
34
|
Cardoso ESB, Santana TA, Diniz PBF, Montalvão MM, Bani CC, Thomazzi SM. Thymol accelerates the recovery of the skeletal muscle of mice injured with cardiotoxin. ACTA ACUST UNITED AC 2016; 68:352-60. [PMID: 26817998 DOI: 10.1111/jphp.12520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/13/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the preventive effect of thymol in in vivo muscle inflammation and regeneration on cardiotoxin-induced injury. METHODS Mice were pretreated (p.o.) with thymol (10-100 mg/kg), and after 1 h, cardiotoxin (25 μM, 40 μl) was administrated into the gastrocnemius muscle. The quantification of the areas of inflammation and regeneration of muscle tissue (3, 7 and 10 days) in HE-stained slides as well as the count of total mast cells and different phenotypes of mast cells were made. Sirius red staining was used to analyse total collagen expression. KEY FINDINGS The pretreatment with thymol significantly reduced the area of inflammation (30 and 100 mg/kg) and increased the area of regeneration (100 mg/kg) 3 days after the cardiotoxin injection. Thymol at 30 and 100 mg/kg increased the area of collagen in 3 days and also decreased this area in 7 and 10 days, compared to the injured group. The pretreatment with thymol did not affect the number of total mast cells; however, it was able to change the number of mucosal mast cells within 10 days. CONCLUSIONS This study suggests that thymol ameliorates inflammatory response and accelerates regeneration in cardiotoxin-induced muscle injury.
Collapse
Affiliation(s)
- Eroneide S B Cardoso
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Tayse A Santana
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Monalisa M Montalvão
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Cristiane C Bani
- Department of Morphology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Sara M Thomazzi
- Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
35
|
Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging. Skelet Muscle 2016; 6:1. [PMID: 26783424 PMCID: PMC4716636 DOI: 10.1186/s13395-016-0072-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/05/2016] [Indexed: 12/15/2022] Open
Abstract
Skeletal muscle has a remarkable capacity to regenerate by virtue of its resident stem cells (satellite cells). This capacity declines with aging, although whether this is due to extrinsic changes in the environment and/or to cell-intrinsic mechanisms associated to aging has been a matter of intense debate. Furthermore, while some groups support that satellite cell aging is reversible by a youthful environment, others support cell-autonomous irreversible changes, even in the presence of youthful factors. Indeed, whereas the parabiosis paradigm has unveiled the environment as responsible for the satellite cell functional decline, satellite cell transplantation studies support cell-intrinsic deficits with aging. In this review, we try to shed light on the potential causes underlying these discrepancies. We propose that the experimental paradigm used to interrogate intrinsic and extrinsic regulation of stem cell function may be a part of the problem. The assays deployed are not equivalent and may overburden specific cellular regulatory processes and thus probe different aspects of satellite cell properties. Finally, distinct subsets of satellite cells may be under different modes of molecular control and mobilized preferentially in one paradigm than in the other. A better understanding of how satellite cells molecularly adapt during aging and their context-dependent deployment during injury and transplantation will lead to the development of efficacious compensating strategies that maintain stem cell fitness and tissue homeostasis throughout life.
Collapse
Affiliation(s)
- Andrew S Brack
- Department of Orthopaedic Surgery, Eli and Edythe Broad Center of Stem Cell Research and Regeneration Medicine, University of California San Francisco, 35 Medical Way, San Francisco, CA 94143 USA
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University, ICREA and Ciberned, Dr. Aiguader, 88, E-08003, Barcelona, Spain
| |
Collapse
|
36
|
Hepatocyte Growth Factor and Satellite Cell Activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:1-25. [PMID: 27003394 DOI: 10.1007/978-3-319-27511-6_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Satellite cells are the "currency" for the muscle growth that is critical to meat production in many species, as well as to phenotypic distinctions in development at the level of species or taxa, and for human muscle growth, function and regeneration. Careful research on the activation and behaviour of satellite cells, the stem cells in skeletal muscle, including cross-species comparisons, has potential to reveal the mechanisms underlying pathological conditions in animals and humans, and to anticipate implications of development, evolution and environmental change on muscle function and animal performance.
Collapse
|
37
|
Comparative study of muscle regeneration following cardiotoxin and glycerol injury. Ann Anat 2015; 202:18-27. [DOI: 10.1016/j.aanat.2015.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/02/2023]
|
38
|
Fearing CM, Melton DW, Lei X, Hancock H, Wang H, Sarwar ZU, Porter L, McHale M, McManus LM, Shireman PK. Increased Adipocyte Area in Injured Muscle With Aging and Impaired Remodeling in Female Mice. J Gerontol A Biol Sci Med Sci 2015; 71:992-1004. [PMID: 26273023 DOI: 10.1093/gerona/glv104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/15/2015] [Indexed: 12/30/2022] Open
Abstract
We demonstrated that young male and female mice similarly regenerated injured skeletal muscle; however, female mice transiently increased adipocyte area within regenerated muscle in a sex hormone-dependent manner. We extended these observations to investigate the effect of aging and sex on sarcopenia and muscle regeneration. Cardiotoxin injury to the tibialis anterior muscle of young, middle, and old-aged C57Bl/6J male and female mice was used to measure regenerated myofiber cross-sectional area (CSA), adipocyte area, residual necrosis, and inflammatory cell recruitment. Baseline (uninjured) myofiber CSA was decreased in old mice of both sexes compared to young and middle-aged mice. Regenerated CSA was similar in male mice in all age groups until baseline CSA was attained but decreased in middle and old age female mice compared to young females. Furthermore, adipocyte area within regenerated muscle was transiently increased in young females compared to young males and these sex-dependent increases persisted in middle and old age female mice and were associated with increased Pparg Young female mice had more pro-inflammatory monocytes/macrophages in regenerating muscle than young male mice and increased Sca-1(+)CD45(-)cells. In conclusion, sex and age influence pro-inflammatory cell recruitment, muscle regeneration, and adipocyte area following skeletal muscle injury.
Collapse
Affiliation(s)
| | - David W Melton
- Department of Surgery, Department of Cellular and Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies
| | | | | | | | | | | | | | - Linda M McManus
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pathology, and Department of Periodontics, University of Texas Health Science Center, San Antonio
| | - Paula K Shireman
- Department of Surgery, Sam and Ann Barshop Institute for Longevity and Aging Studies, The South Texas Veterans Health Care System, San Antonio.
| |
Collapse
|
39
|
Gigliotti D, Leiter JRS, Macek B, Davidson MJ, MacDonald PB, Anderson JE. Atrophy, inducible satellite cell activation, and possible denervation of supraspinatus muscle in injured human rotator-cuff muscle. Am J Physiol Cell Physiol 2015; 309:C383-91. [PMID: 26135801 DOI: 10.1152/ajpcell.00143.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/17/2022]
Abstract
The high frequency of poor outcome and chronic pain after surgical repair of shoulder rotator-cuff injury (RCI) prompted this study to explore the potential to amplify muscle regeneration using nitric oxide (NO)-based treatment. After preoperative magnetic resonance imaging (MRI), biopsies of supraspinatus and ipsilateral deltoid (as a control) were collected during reparative surgery for RCI. Muscle fiber diameter, the pattern of neuromuscular junctions observed with alpha-bungarotoxin staining, and the γ:ε subunit ratio of acetylcholine receptors in Western blots were examined in tandem with experiments to determine the in vitro responsiveness of muscle satellite cells to activation (indicated by uptake of bromodeoxyuridine, BrdU) by the NO-donor drug, isosorbide dinitrate (ISDN). Consistent with MRI findings of supraspinatus atrophy (reduced occupation ratio and tangent sign), fiber diameter was lower in supraspinatus than in deltoid. ISDN induced a significant increase over baseline (up to 1.8-fold), in the proportion of BrdU+ (activated) Pax7+ satellite cells in supraspinatus, but not in deltoid, after 40 h in culture. The novel application of denervation indices revealed a trend for supraspinatus muscle to have a higher γ:ε subunit ratio than deltoid (P = 0.13); this ratio inversely with both occupancy ratio (P < 0.05) and the proportion of clusters at neuromuscular junctions (P = 0.05). Results implicate possible supraspinatus denervation in RCI and suggest NO-donor treatment has potential to promote growth in atrophic supraspinatus muscle after RCI and improve functional outcome.
Collapse
Affiliation(s)
- Deanna Gigliotti
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Bryce Macek
- College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael J Davidson
- Department of Radiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Peter B MacDonald
- Section of Orthopedics, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Judy E Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada;
| |
Collapse
|
40
|
Ikemoto-Uezumi M, Uezumi A, Tsuchida K, Fukada SI, Yamamoto H, Yamamoto N, Shiomi K, Hashimoto N. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration. Stem Cells 2015; 33:2456-68. [PMID: 25917344 DOI: 10.1002/stem.2045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/03/2015] [Accepted: 03/28/2015] [Indexed: 12/14/2022]
Abstract
Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.
Collapse
Affiliation(s)
- Madoka Ikemoto-Uezumi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Akiyoshi Uezumi
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - Kunihiro Tsuchida
- Division for Therapies against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, Aichi, Japan
| | - So-ichiro Fukada
- Laboratory of Molecular and Cellular Physiology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroshi Yamamoto
- Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | - Naoki Yamamoto
- Laboratory of Molecular Biology and Histochemistry, Fujita Health University Joint Research Laboratory, Aichi, Japan
| | - Kosuke Shiomi
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Naohiro Hashimoto
- Department of Regenerative Medicine, Research Institute, National Center for Geriatrics and Gerontology, Aichi, Japan
| |
Collapse
|
41
|
Effects of low-level laser therapy on skeletal muscle repair: a systematic review. Am J Phys Med Rehabil 2015; 93:1073-85. [PMID: 25122099 DOI: 10.1097/phm.0000000000000158] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A review of the literature was performed to demonstrate the most current applicability of low-level laser therapy (LLLT) for the treatment of skeletal muscle injuries, addressing different lasers, irradiation parameters, and treatment results in animal models. Searches were performed in the PubMed/MEDLINE, SCOPUS, and SPIE Digital Library databases for studies published from January 2006 to August 2013 on the use of LLLT for the repair of skeletal muscle in any animal model. All selected articles were critically appraised by two independent raters. Seventeen of the 36 original articles on LLLT and muscle injuries met the inclusion criteria and were critically evaluated. The main effects of LLLT were a reduction in the inflammatory process, the modulation of growth factors and myogenic regulatory factors, and increased angiogenesis. The studies analyzed demonstrate the positive effects of LLLT on the muscle repair process, which are dependent on irradiation and treatment parameters. The findings suggest that LLLT is an excellent therapeutic resource for the treatment of skeletal muscle injuries in the short-term.
Collapse
|
42
|
The need to more precisely define aspects of skeletal muscle regeneration. Int J Biochem Cell Biol 2014; 56:56-65. [PMID: 25242742 DOI: 10.1016/j.biocel.2014.09.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/11/2022]
Abstract
A more precise definition of the term 'skeletal muscle regeneration' is required to reduce confusion and misconceptions. In this paper the term is used only for events that follow myofibre necrosis, to result in myogenesis and new muscle formation: other key events include early inflammation and revascularisation, and later fibrosis and re-innervation. The term 'muscle regeneration' is sometimes used casually for situations that do not involve myonecrosis; such as restoration of muscle mass by hypertrophy after atrophy, and other forms of damage to muscle tissue components. These situations are excluded from the definition in this paper which is focussed on mammalian muscles with the long-term aim of clinical translation to enhance new muscle formation after acute or chronic injury or during surgery to replace whole muscles. The paper briefly outlines the cellular events involved in myogenesis during development and post-natal muscle growth, discusses the role of satellite cells in mature normal muscles, and the likely incidence of myofibre necrosis/regeneration in healthy ageing mammals (even when subjected to exercise). The importance of the various components of regeneration is outlined to emphasise that problems in each of these aspects can influence overall new muscle formation; thus care is needed for correct interpretation of altered kinetics. Various markers used to identify regenerating myofibres are critically discussed and, since these can all occur in other conditions, caution is required for accurate interpretation of these cellular events. Finally, clinical situations are outlined where there is a need to enhance skeletal muscle regeneration: these include acute and chronic injuries or transplantation with bioengineering to form new muscles, therapeutic approaches to muscular dystrophies, and comment on proposed stem cell therapies to reduce age-related loss of muscle mass and function. This article is part of a directed issue entitled: Regenerative Medicine: the challenge of translation.
Collapse
|
43
|
Grounds MD. Therapies for sarcopenia and regeneration of old skeletal muscles: more a case of old tissue architecture than old stem cells. BIOARCHITECTURE 2014; 4:81-7. [PMID: 25101758 DOI: 10.4161/bioa.29668] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Age related loss of skeletal muscle mass and function (sarcopenia) reduces independence and the quality of life for individuals, and leads to falls and fractures with escalating health costs for the rapidly aging human population. Thus there is much interest in developing interventions to reduce sarcopenia. One area that has attracted recent attention is the proposed use of myogenic stem cells to improve regeneration of old muscles. This mini-review challenges the fundamental need for myogenic stem cell therapy for sarcopenia. It presents evidence that demonstrates the excellent capacity of myogenic stem cells from very old rodent and human muscles to form new muscles after experimental myofiber necrosis. The many factors required for successful muscle regeneration are considered with a strong focus on integration of components of old muscle bioarchitecture. The fundamental role of satellite cells in homeostasis of normal aging muscles and the incidence of endogenous regeneration in old muscles is questioned. These issues, combined with problems for clinical myogenic stem cell therapies for severe muscle diseases, raise fundamental concerns about the justification for myogenic stem cell therapy for sarcopenia.
Collapse
Affiliation(s)
- Miranda D Grounds
- School of Anatomy, Physiology and Human Biology; University of Western Australia; Crawley, Australia
| |
Collapse
|
44
|
Age-dependent changes cooperatively impact skeletal muscle regeneration after compartment syndrome injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2225-36. [PMID: 24909508 DOI: 10.1016/j.ajpath.2014.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 03/21/2014] [Accepted: 03/27/2014] [Indexed: 11/23/2022]
Abstract
Declining skeletal muscle function, due to injury and aging (sarcopenia), results in a significantly decreased quality of life and is a major cause of disability in the United States. Studies examining recovery from muscle injury in models of older animals principally used insults that primarily affect only the myofibers without affecting the muscle tissue microenvironment. This type of injury does not adequately represent the full extent of tissue damage observed in older humans, which encompasses injury not only to the muscle fibers, but also to the surrounding tissue components, such as the vasculature and nerves. Previously, we described a novel rat model of compression-induced muscle injury that results in multicomponent injury to the muscle and adequately mimics compartment syndrome injuries seen in patients. Herein, we characterized tissue regeneration in young, adult, and aged rats after compartment syndrome injury. We observed significant differences between the regeneration process in the different aged rats that involved muscle function, tissue anatomical features, neovascularization, and innervation. Compared to young rats, adult rats had delayed functional recovery, whereas the aged rats were deficient in their regenerative capacity. Age-dependent changes in both the ability to restore the contractile apparatus and myogenesis are important, and must be taken into consideration when designing therapies for the treatment of muscle injury.
Collapse
|
45
|
Pichavant C, Pavlath GK. Incidence and severity of myofiber branching with regeneration and aging. Skelet Muscle 2014; 4:9. [PMID: 24855558 PMCID: PMC4030050 DOI: 10.1186/2044-5040-4-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/01/2014] [Indexed: 11/30/2022] Open
Abstract
Background Myofibers with an abnormal branching cytoarchitecture are commonly found in muscular dystrophy and in regenerated or aged nondystrophic muscles. Such branched myofibers from dystrophic mice are more susceptible to damage than unbranched myofibers in vitro, suggesting that muscles containing a high percentage of these myofibers are more prone to injury. Little is known about the regulation of myofiber branching. Methods To gain insights into the formation and fate of branched myofibers, we performed in-depth analyses of single myofibers isolated from dystrophic and nondystrophic (myotoxin-injured or aged) mouse muscles. The proportion of branched myofibers, the number of branches per myofiber and the morphology of the branches were assessed. Results Aged dystrophic mice exhibited the most severe myofiber branching as defined by the incidence of branched myofibers and the number of branches per myofiber, followed by myotoxin-injured, wild-type muscles and then aged wild-type muscles. In addition, the morphology of the branched myofibers differed among the various models. In response to either induced or ongoing muscle degeneration, branching was restricted to regenerated myofibers containing central nuclei. In myotoxin-injured muscles, the amount of branched myofibers remained stable over time. Conclusion We suggest that myofiber branching is a consequence of myofiber remodeling during muscle regeneration. Our present study lays valuable groundwork for identifying the molecular pathways leading to myofiber branching in dystrophy, trauma and aging. Decreasing myofiber branching in dystrophic patients may improve muscle resistance to mechanical stress.
Collapse
Affiliation(s)
- Christophe Pichavant
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| | - Grace K Pavlath
- Department of Pharmacology, Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA
| |
Collapse
|
46
|
Rhoads RP, Flann KL, Cardinal TR, Rathbone CR, Liu X, Allen RE. Satellite cells isolated from aged or dystrophic muscle exhibit a reduced capacity to promote angiogenesis in vitro. Biochem Biophys Res Commun 2013; 440:399-404. [PMID: 24070607 DOI: 10.1016/j.bbrc.2013.09.085] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/16/2013] [Indexed: 11/25/2022]
Abstract
Deficits in skeletal muscle function exist during aging and muscular dystrophy, and suboptimal function has been related to factors such as atrophy, excessive inflammation and fibrosis. Ineffective muscle regeneration underlies each condition and has been attributed to a deficit in myogenic potential of resident stem cells or satellite cells. In addition to reduced myogenic activity, satellite cells may also lose the ability to communicate with vascular cells for coordination of myogenesis and angiogenesis and restoration of proper muscle function. Objectives of the current study were to determine the angiogenic-promoting capacity of satellite cells from two states characterized by dysfunctional skeletal muscle repair, aging and Duchenne muscular dystrophy. An in vitro culture model composed of satellite cells or their conditioned media and rat adipose tissue microvascular fragments (MVF) was used to examine this relationship. Microvascular fragments cultured in the presence of rat satellite cells from adult muscle donors (9-12 month of age) exhibited greater indices of angiogenesis (endothelial cell sprouting, tubule formation and extensive branching) than MVF co-cultured with satellite cells from aged muscle donors (24 month of age). We sought to determine if the differential degree of angiogenesis we observed in the co-culture setting was due to soluble factors produced by each satellite cell age group. Similar to the co-culture experiment, conditioned media produced by adult satellite cells promoted greater angiogenesis than that of aged satellite cells. Next, we examined differences in angiogenesis-stimulating ability of satellite cells from 12 mo old MDX mice or age-matched wild-type mice. A reduction in angiogenesis activity of media conditioned by satellite cells from dystrophic muscle was observed as compared to healthy muscle. Finally, we found reduced gene expression of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) in both aged and dystrophic satellite cells compared to their adult and normal counterparts, respectively. These results indicate that functional deficits in satellite cell activities during aging and diseased muscle may extend to their ability to communicate with other cells in their environment, in this case cells involved in angiogenesis.
Collapse
Affiliation(s)
- R P Rhoads
- Muscle Biology Group, Department of Animal Sciences, University of Arizona, Tucson, AZ 85724, USA; Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | | | | | | | |
Collapse
|