1
|
Li S, Shen W, Xia Y, Chen X, Yang H. Efficient heterologous expression of cellobiose 2-epimerase gene in Escherichia coli under the control of T7 lac promoter without addition of IPTG and lactose. Protein Expr Purif 2024; 223:106558. [PMID: 39074650 DOI: 10.1016/j.pep.2024.106558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
In this study, the cellobiose 2-epimerase gene csce from Caldicellulosiruptor saccharolyticus was expressed in Escherichia coli using TB medium containing yeast extract Oxoid and tryptone Oxoid. Interesting, it was found that when the concentration of isopropyl-beta-d-thiogalactopyranoside (IPTG) and lactose was 0 (no addition), the activity of cellobiose 2-epimerase reached 5.88 U/mL. It was 3.70-fold higher than the activity observed when 1.0 mM IPTG was added. When using M9 medium without yeast extract Oxoid and tryptone Oxoid, cellobiose 2-epimerase gene could not be expressed without IPTG and lactose. However, cellobiose 2-epimerase gene could be expressed when yeast extract Oxoid or tryptone Oxoid was added, indicating that these supplements contained inducers for gene expression. In the absence of IPTG and lactose, the addition of soy peptone Angel-1 or yeast extract Angel-1 to M9 medium significantly upregulated the expression of cellobiose 2-epimerase gene in E. coli BL21 pET28a-csce, and these inductions led to higher expression levels compared to tryptone Oxoid or yeast extract Oxoid. The relative transcription level of csce was consistent with its expression level in E. coli BL21 pET28a-csce. In the medium TB without IPTG and lactose and containing yeast extract Angel-1 and soy peptone Angel-1, the activity of cellobiose 2-epimerase reached 6.88 U/mL, representing a 2.2-fold increase compared to previously reported maximum activity in E. coli. The significance of this study lies in its implications for efficient heterologous expression of recombinant enzyme proteins in E. coli without the need for IPTG and lactose addition.
Collapse
Affiliation(s)
- Shuzhen Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Vitor AB, Farias KS, Ribeiro GCA, Pirovani CP, Benevides RG, Pereira GAG, de Assis SA. Cloning, heterologous expression and characterization of β-glucosidase deriving from Moniliophthora perniciosa (Stahel) Aime and Phillips Mora. 3 Biotech 2024; 14:287. [PMID: 39493291 PMCID: PMC11530418 DOI: 10.1007/s13205-024-04128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Β-glucosidase (BGLs) act synergistically with endoglucanases and exoglucanases and then are of great interest for biomass conversion into bioethanol. Thus, the aim of the current study is to produce a recombinant β-glycosidase from Moniliophtora perniciosa expressed in Escherichia coli cells. Enzyme coding sequence expression was confirmed through Sanger sequencing after using wheat bran (WB) and carboxymethylcellulose (CMC) as fungal growth media. Synthetic gene betaglyc-GH1 with optimized codons for E. coli expression was cloned in pET-28a. β-glucosidase recombinant (GH1chimera) was purified using a nickel column and its identity was confirmed through mass spectrometry. The recombinant enzyme presented an apparent molecular mass of 53.23 kDa on SDS-PAGE. Recombinant β-glucosidase has shown hydrolytic activity using p-nitrophenyl-β-D-glycopyranoside (pNPG) as substrate and maximum activity at pH 4.6 and 65 °C. Thus, the results indicate that the application of the GH1chimera in the hydrolysis of lignocellulosic materials to obtain glucose monomers can be efficient. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04128-x.
Collapse
Affiliation(s)
- Alison Borges Vitor
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | - Keilane Silva Farias
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Geise Camila Araújo Ribeiro
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| | - Carlos Priminho Pirovani
- Biological Sciences Department, State University of Santa Cruz, Rodovia Jorge Amado, km 16, Ilhéus City, BA 45662-900 Brazil
| | - Raquel Guimarães Benevides
- LAPEM, Biology Department, State University of Feira de Santana, Feira de Santana City, Bahia State Brazil
| | | | - Sandra Aparecida de Assis
- Laboratory of Enzymology and Fermentation Technology, Health Department, State University of Feira de Santana, Feira de Santana, Bahia State Brazil
| |
Collapse
|
3
|
Ni X, Liu Y, Sun M, Jiang Y, Wang Y, Ke D, Guo G, Liu K. Oral Live-Carrier Vaccine of Recombinant Lactococcus lactis Inducing Prophylactic Protective Immunity Against Helicobacter pylori Infection. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10360-x. [PMID: 39251521 DOI: 10.1007/s12602-024-10360-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Helicobacter pylori infects the gastric mucosa and induces chronic gastritis, peptic ulcers, and gastric cancer. Research has demonstrated that vaccination can induce a protective immune response and prevent H. pylori infection. Oral administration of the Lactococcus lactis live-carrier vaccine is safe and easily complied with by the public. In this study, two recombinant L. lactis strains were constructed that expressed antigens of H. pylori urease subunit alpha (UreA) and UreA fused with Escherichia coli heat-labile toxin B subunit (LTB-UreA), named LL-UreA and LL-LTB-UreA, respectively. The expression of antigen proteins was confirmed by Western blotting analysis. Survival assessment indicated that the engineered L. lactis could colonize in the digestive tract of BALB/c mice up to 10 days after the last oral administration with our immunization protocol. The ability to induce immune response and immune protective efficacy of the L. lactis were confirmed. These results indicated that oral administration with LL-UreA or LL-LTB-UreA could induce UreA-specific mucosal secretory IgA (sIgA) and cellular immune response, significantly increasing the cytokines levels of interferon-gamma (IFN-γ), interleukin (IL)-17A, and IL-10, together with the proportion of CD4+IFN-γ+ T cells and CD4+IL17A+ T cells. More importantly, oral administration of LL-UreA and LL-LTB-UreA brought about effective protection in mice to prevent H. pylori infection, especially LL-UreA, resulting in 70% of mice showing no H. pylori colonization and the remaining 30% showing only low levels of colonization. These findings underscore the potential of using orally administered engineered L. lactis vaccines to prevent H. pylori infection.
Collapse
Affiliation(s)
- Xiumei Ni
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yu Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Min Sun
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yajun Jiang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Yi Wang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Dingxin Ke
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China
| | - Gang Guo
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| | - Kaiyun Liu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, China.
| |
Collapse
|
4
|
Vivekanandan KE, Kasimani R, Kumar PV, Meenatchisundaram S, Sundar WA. Overview of cloning in lactic acid bacteria: Expression and its application of probiotic potential in inflammatory bowel diseases. Biotechnol Appl Biochem 2024; 71:881-895. [PMID: 38576028 DOI: 10.1002/bab.2584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
Inflammatory bowel disease (IBD) imposes a significant impact on the quality of life for affected individuals. However, there was a current lack of a systematic summary regarding the latest epidemic trends and the underlying pathogenesis of IBD. This highlights the need for a thorough examination of both the epidemiological aspects of IBD and the specific mechanisms by which lactic acid bacteria (LAB) contribute to mitigating this condition. In developed countries, higher incidences and death rates of IBD have been observed, influenced by a combination of environmental and genetic factors. LAB offer significant advantages and substantial potential for enhancing IBD treatment. LAB's capabilities include the production of bioactive metabolites, regulation of gut immunity, protection of intestinal mechanical barriers, inhibition of oxidative damage, and restoration of imbalanced gut microbiota. The review suggests that screening effective LAB using cell models and metabolites, optimizing LAB intake through dose-effect studies, enhancing utilization through nanoencapsulation and microencapsulation, investigating mechanisms to deepen the understanding of LAB, and refining clinical study designs. These efforts aim to contribute to comprehending the epidemic trend, pathogenesis, and treatment of IBD, ultimately fostering the development of targeted therapeutic products, such as LAB-based interventions.
Collapse
Affiliation(s)
- K E Vivekanandan
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - R Kasimani
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - P Vinoth Kumar
- Department of Microbiology, Nehru Arts and Science College, Coimbatore, Tamil Nadu, India
| | - S Meenatchisundaram
- Department of Microbiology, Shree Nehru Maha Vidyalaya College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - William Arputha Sundar
- Department of Pharmaceuticals, Swamy Vivekananda College of Pharmacy, Namakkal, Tamil Nadu, India
| |
Collapse
|
5
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
6
|
Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N. Molecular Cloning, Characterization, and Application of Organic Solvent-Stable and Detergent-Compatible Thermostable Alkaline Protease from Geobacillus thermoglucosidasius SKF4. J Microbiol Biotechnol 2024; 34:436-456. [PMID: 38044750 PMCID: PMC10940756 DOI: 10.4014/jmb.2306.06050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/12/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
Collapse
Affiliation(s)
- Suleiman D Allison
- Department of Food Science and Technology, Faculty of Agriculture and Agricultural Technology, Moddibo Adama University, Yola 640230, Nigeria
| | - Nur AdeelaYasid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra, Malaysia, 43400 Serdang Selangor, Malaysia
| |
Collapse
|
7
|
Zhang S, Wang J, Chen Y, Zheng Z, Xu Z. Efficient secretion of an enzyme cocktail in Escherichia coli for hemicellulose degradation. Int J Biol Macromol 2024; 259:129205. [PMID: 38185299 DOI: 10.1016/j.ijbiomac.2024.129205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/18/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024]
Abstract
The use of host to secrete several hemicellulase is a cost-effective way for hemicellulose degradation. In this study, the xylose utilization gene xylAB of Escherichia coli BL21 was knocked out, and the xylanase (N20Xyl), β-xylosidase (Xys), and feruloyl esterase (FaeLam) were co-expressed in this strain. By measuring the content of reducing sugars generated by enzymatic hydrolysis of wheat bran in the fermentation supernatant, the order of the three enzymes was screened to obtain the optimal recombinant strain of E. coli BL21/∆xylAB/pDIII-2. Subsequently, fermentation conditions including culture medium, inducer concentration, induction timing, metal ions, and glycine concentration were optimized. Then, different concentrations of wheat bran and xylan were added to the fermentation medium for degradation. The results showed that the extracellular reducing sugars content reached the highest value of 33.70 ± 0.46 g/L when 50 g/L xylan was added. Besides, the scavenging rates of hydroxyl radical by the fermentation supernatant was 81.0 ± 1.41 %, and the total antioxidant capacity reached 2.289 ± 0.55. Furthermore, it showed the growth promotion effect on different lactic acid bacteria. These results provided a basis for constructing E. coli strain to efficiently degrade hemicellulose, and the strain obtained has great potential application to transform hemicellulose into fermentable carbon source.
Collapse
Affiliation(s)
- Susu Zhang
- College of Life Science, Shandong Normal University, Jinan 250358, PR China; Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, Dongying 257000, PR China
| | - Jiapeng Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Yunxia Chen
- College of Life Science, Shandong Normal University, Jinan 250358, PR China
| | - Ziyi Zheng
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China
| | - Zhenshang Xu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China; Department of Bioengineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, PR China.
| |
Collapse
|
8
|
Flores-Fernández CN, Lin D, Robins K, O'Callaghan CA. DNA methylases for site-selective inhibition of type IIS restriction enzyme activity. Appl Microbiol Biotechnol 2024; 108:174. [PMID: 38270650 PMCID: PMC10810934 DOI: 10.1007/s00253-024-13015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
DNA methylases of the restriction-modifications (R-M) systems are promising enzymes for the development of novel molecular and synthetic biology tools. Their use in vitro enables the deployment of independent and controlled catalytic reactions. This work aimed to produce recombinant DNA methylases belonging to the R-M systems, capable of in vitro inhibition of the type IIS restriction enzymes BsaI, BpiI, or LguI. Non-switchable methylases are those whose recognition sequences fully overlap the recognition sequences of their associated endonuclease. In switch methylases, the methylase and endonuclease recognition sequences only partially overlap, allowing sequence engineering to alter methylation without altering restriction. In this work, ten methylases from type I and II R-M systems were selected for cloning and expression in E. coli strains tolerant to methylation. Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentrations and post-induction temperatures were tested to optimize the soluble methylases expression, which was achieved with 0.5 mM IPTG at 20 °C. The C-terminal His6-Tag versions showed better expression than the N-terminal tagged versions. DNA methylation was analyzed using purified methylases and custom test plasmids which, after the methylation reactions, were digested using the corresponding associated type IIS endonuclease. The non-switchable methylases M2.Eco31I, M2.BsaI, M2.HpyAII, and M1.MboII along with the switch methylases M.Osp807II and M2.NmeMC58II showed the best activity for site-selective inhibition of type IIS restriction enzyme activity. This work demonstrates that our recombinant methylases were able to block the activity of type IIS endonucleases in vitro, allowing them to be developed as valuable tools in synthetic biology and DNA assembly techniques. KEY POINTS: • Non-switchable methylases always inhibit the relevant type IIS endonuclease activity • Switch methylases inhibit the relevant type IIS endonuclease activity depending on the sequence engineering of their recognition site • Recombinant non-switchable and switch methylases were active in vitro and can be deployed as tools in synthetic biology and DNA assembly.
Collapse
Affiliation(s)
- Carol N Flores-Fernández
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Da Lin
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Current address: Triple Helix Biotechnology Ltd, Moneta Building (B280), Babraham Research Campus, Babraham, Cambridge, CB22 3AT, UK
| | - Katherine Robins
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Current address: Complete Regulatory, 19-20 King Edward Street, Macclesfield, SK10 1AQ, UK
| | - Chris A O'Callaghan
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
9
|
Yang W, Lu F, Liu Y. Recent Advances of Enzymes in the Food Industry. Foods 2023; 12:4506. [PMID: 38137309 PMCID: PMC10742793 DOI: 10.3390/foods12244506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Enzymes used in the food industry are obtained from plants, animals, or microorganisms [...].
Collapse
Affiliation(s)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| |
Collapse
|
10
|
Mitic BM, Troyer C, Lutz L, Baumschabl M, Hann S, Mattanovich D. The oxygen-tolerant reductive glycine pathway assimilates methanol, formate and CO 2 in the yeast Komagataella phaffii. Nat Commun 2023; 14:7754. [PMID: 38012236 PMCID: PMC10682033 DOI: 10.1038/s41467-023-43610-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
The current climatic change is predominantly driven by excessive anthropogenic CO2 emissions. As industrial bioprocesses primarily depend on food-competing organic feedstocks or fossil raw materials, CO2 co-assimilation or the use of CO2-derived methanol or formate as carbon sources are considered pathbreaking contributions to solving this global problem. The number of industrially-relevant microorganisms that can use these two carbon sources is limited, and even fewer can concurrently co-assimilate CO2. Here, we search for alternative native methanol and formate assimilation pathways that co-assimilate CO2 in the industrially-relevant methylotrophic yeast Komagataella phaffii (Pichia pastoris). Using 13C-tracer-based metabolomic techniques and metabolic engineering approaches, we discover and confirm a growth supporting pathway based on native enzymes that can perform all three assimilations: namely, the oxygen-tolerant reductive glycine pathway. This finding paves the way towards metabolic engineering of formate and CO2 utilisation to produce proteins, biomass, or chemicals in yeast.
Collapse
Affiliation(s)
- Bernd M Mitic
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Christina Troyer
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Lisa Lutz
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Michael Baumschabl
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Stephan Hann
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Analytical Chemistry, Muthgasse 18, 1190, Vienna, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria
| | - Diethard Mattanovich
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190, Vienna, Austria.
- Austrian Centre of Industrial Biotechnology (ACIB), Muthgasse 11, 1190, Vienna, Austria.
| |
Collapse
|
11
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
12
|
Fahmy NM, El-Deeb B. Optimization, partial purification, and characterization of a novel high molecular weight alkaline protease produced by Halobacillus sp. HAL1 using fish wastes as a substrate. J Genet Eng Biotechnol 2023; 21:48. [PMID: 37121925 PMCID: PMC10149429 DOI: 10.1186/s43141-023-00509-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Hydrolytic enzymes from halophilic microorganisms have a wide range of industrial applications. Herein, we report the isolation of Halobacillus sp. HAL1, a moderately halophilic bacterium that produces a novel high molecular weight extracellular alkaline protease when grown in fish processing wastes as a substrate. RESULTS Results showed that the isolated strain belonged to the genus Halobacillus, and it was designated as Halobacillus sp. HAL1 with the GenBank accession number OK001470. The strain secreted an extracellular alkaline protease, and the highest yield was obtained when it was grown in a medium with fish wastes substrate as the sole nutritional source (10 g/L) and incubated at 25 °C under shaking conditions. The enzyme was partially purified by Sephadex G-100 column chromatography. Zymographic analysis showed two casein degrading bands of about 190 and 250 KDa. The optimum enzyme activity was at a temperature of 50 °C at pH 8. The proteolytic activity was enhanced in the presence of metal ions (Ca2+, Mg2+, and Mn2+), surfactants (Tween 80, SDS, and Triton-X100), H2O2, and EDTA. CONCLUSION Our study indicates that Haobacillus sp. HAL1 is a moderately halophilic strain and secrets a novel high molecular wight alkaline protease that is suitable for detergent formulation.
Collapse
Affiliation(s)
- Nayer M Fahmy
- Marine Microbiology Laboratory, National Institute of Oceanography & Fisheries, Cairo, Egypt.
| | - Bahig El-Deeb
- Faculty of Science, Botany and Microbiology Department, Sohag University, Sohag, Egypt
| |
Collapse
|
13
|
Fages-Lartaud M, Mueller Y, Elie F, Courtade G, Hohmann-Marriott MF. Standard Intein Gene Expression Ramps (SIGER) for Protein-Independent Expression Control. ACS Synth Biol 2023; 12:1058-1071. [PMID: 36920366 PMCID: PMC10127266 DOI: 10.1021/acssynbio.2c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Coordination of multigene expression is one of the key challenges of metabolic engineering for the development of cell factories. Constraints on translation initiation and early ribosome kinetics of mRNA are imposed by features of the 5'UTR in combination with the start of the gene, referred to as the "gene ramp", such as rare codons and mRNA secondary structures. These features strongly influence the translation yield and protein quality by regulating the ribosome distribution on mRNA strands. The utilization of genetic expression sequences, such as promoters and 5'UTRs in combination with different target genes, leads to a wide variety of gene ramp compositions with irregular translation rates, leading to unpredictable levels of protein yield and quality. Here, we present the Standard Intein Gene Expression Ramp (SIGER) system for controlling protein expression. The SIGER system makes use of inteins to decouple the translation initiation features from the gene of a target protein. We generated sequence-specific gene expression sequences for two inteins (DnaB and DnaX) that display defined levels of protein expression. Additionally, we used inteins that possess the ability to release the C-terminal fusion protein in vivo to avoid the impairment of protein functionality by the fused intein. Overall, our results show that SIGER systems are unique tools to mitigate the undesirable effects of gene ramp variation and to control the relative ratios of enzymes involved in molecular pathways. As a proof of concept of the potential of the system, we also used a SIGER system to express two difficult-to-produce proteins, GumM and CBM73.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Yasmin Mueller
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Florence Elie
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Gaston Courtade
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim N-7491, Norway.,United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
14
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
15
|
Sarma RK, Gohain A, Ahmed TH, Yadav A, Saikia R. An environment-benign approach of bamboo pulp bleaching using extracellular xylanase of strain Bacillus stratosphericus EB-11 isolated from elephant dung. Folia Microbiol (Praha) 2023; 68:135-149. [PMID: 36048323 DOI: 10.1007/s12223-022-01003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022]
Abstract
The use of microbial enzymes is highly encouraged in paper and pulp industries to reduce the excessive use of hazardous chemicals. During the study, xylanase of Bacillus stratosphericus EB-11 was characterized for pulp bleaching applications. The extracellular xylanase was produced under submerged fermentation using bamboo waste as a natural carbon source. There was fast cell division and enzyme production under optimized fermentation conditions in the bioreactor. The highest activity was 91,200U after 30 h of growth with Km and Vmax of 3.52 mg/mL and 391.5 μmol/min per mg respectively. The purified enzyme with molecular mass ~ 60 kDa had conferred positive activity on native PAGE. The strong inhibition by ethylenediaminetetraacetate and SDS showed the metallo-xylanase nature of the purified enzyme. The bacterial xylanase reduces the use of hydrogen peroxide by 0.4%. Similarly, biological oxygen demand and chemical oxygen demand were reduced by 42.6 and 35.2%. The xylanase-hydrogen peroxide combined treatment and conventional chlorine dioxide-alkaline (CDE1D1D2) bleaching showed almost similar improvement in physicochemical properties of bamboo pulp. Xylanase-peroxide bleaching reduces the lignin content to 4.95% from 13.32% unbleached pulp. This content after CDE1D1D2 treatment was 4.21%. The kappa number decreased from 15.2 to 9.46 with increasing the burst factor (15.51), crystallinity index (60.25%), viscosity (20.1 cp), and brightness (65.4%). The overall finding will encourage the development of new cleaner methods of bleaching in the paper and pulp industry.
Collapse
Affiliation(s)
| | - Anwesha Gohain
- Department of Botany, Arunachal University of Studies, PIN-792013, Namsai, India
| | - Tobiul Hussain Ahmed
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Archana Yadav
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| | - Ratul Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, Assam, India
| |
Collapse
|
16
|
Qi N, Zhan X, Milmine J, Sahar M, Chang KH, Li J. Isolation and characterization of a novel hydrolase-producing probiotic Bacillus licheniformis and its application in the fermentation of soybean meal. Front Nutr 2023; 10:1123422. [PMID: 36969826 PMCID: PMC10030947 DOI: 10.3389/fnut.2023.1123422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 03/29/2023] Open
Abstract
Soybean meal (SBM) is one of the most important sources of plant-based protein in the livestock and poultry industry. However, SBM contains anti-nutritional factors (ANFs) such as glycinin, β-conglycinin, trypsin inhibitor and phytic acid that can damage the intestinal health of animals, inevitably reducing growth performance. Fermentation using microorganisms with probiotic potential is a viable strategy to reduce ANFs and enhance the nutritional value of SBM. In this study, a novel potential probiotic Bacillus licheniformis (B4) with phytase, protease, cellulase and xylanase activity was isolated from camel feces. The ability of B4 to tolerate different pH, bile salts concentrations and temperatures were tested using metabolic activity assay. It was found that B4 can survive at pH 3.0, or 1.0% bile salts for 5 h, and displayed high proliferative activity when cultured at 50°C. Furthermore, B4 was capable of degrading glycinin, β-conglycinin and trypsin inhibitor which in turn resulted in significant increases of the degree of protein hydrolysis from 15.9% to 25.5% (p < 0.01) and crude protein from 44.8% to 54.3% (p < 0.001). After fermentation with B4 for 24 h, phytic acid in SBM was reduced by 73.3% (p < 0.001), the neutral detergent fiber (NDF) and the acid detergent fiber of the fermented SBM were significantly decreased by 38.40% (p < 0.001) and 30.20% (p < 0.05), compared to the unfermented SBM sample. Our results suggested that the effect of solid-state fermented SBM using this novel B. licheniformis (B4) strain, could significantly reduce phytic acid concentrations whilst improving the nutritional value of SBM, presenting itself as a promising alternative to phytase additives.
Collapse
Affiliation(s)
- Nanshan Qi
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Xiaoshu Zhan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- Department of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Joshua Milmine
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Maureen Sahar
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Kai-Hsiang Chang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
| | - Julang Li
- Department of Animal Biosciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Julang Li,
| |
Collapse
|
17
|
Application of Milk Permeate as an Inducer for the Production of Microbial Recombinant Lipolytic Enzymes. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recombinantly produced enzymes are applied in many fields, ranging from medicine to food and nutrition, production of detergents, textile, leather, paper, pulp, and plastics. Thus, the cost-effectiveness of recombinant enzyme synthesis is an important issue in biotechnological industry. Isopropyl-β-D-thiogalactoside (IPTG), an analog of lactose, is currently the most widely used chemical agent for the induction of recombinant enzyme synthesis. However, the use of IPTG can lead to production of toxic elements and can introduce physiological stress to cells. Thus, this study aims to find a simpler, cheaper, and safer way to produce recombinant enzymes. In this study, production of several previously designed recombinant lipolytic enzymes (GDEst-95 esterase, GD-95RM lipase, fused GDEst-lip lipolytic enzyme, and putative cutinase Cut+SP from Streptomyces scabiei 87.22) is induced in E. coli BL21 (DE3) using 4 mM milk permeate, a type of waste of the milk manufacturing process possessing >82% lactose. The SDS-PAGE analysis clearly indicates synthesis of all target enzymes during a 2–12 h post-induction timeframe. Further investigation of GDEst-95, GD-95RM, GDEst-lip, and Cut+SP biocatalysts was carried out spectrophotometrically and using zymography method, confirming production of fully active enzymes.
Collapse
|
18
|
Kachhawaha K, Singh S, Joshi K, Nain P, Singh SK. Bioprocessing of recombinant proteins from Escherichia coli inclusion bodies: insights from structure-function relationship for novel applications. Prep Biochem Biotechnol 2022; 53:728-752. [PMID: 36534636 DOI: 10.1080/10826068.2022.2155835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The formation of inclusion bodies (IBs) during expression of recombinant therapeutic proteins using E. coli is a significant hurdle in producing high-quality, safe, and efficacious medicines. The improved understanding of the structure-function relationship of the IBs has resulted in the development of novel biotechnologies that have streamlined the isolation, solubilization, refolding, and purification of the active functional proteins from the bacterial IBs. Together, this overall effort promises to radically improve the scope of experimental biology of therapeutic protein production and expand new prospects in IBs usage. Notably, the IBs are increasingly used for applications in more pristine areas such as drug delivery and material sciences. In this review, we intend to provide a comprehensive picture of the bio-processing of bacterial IBs, including assessing critical gaps that still need to be addressed and potential solutions to overcome them. We expect this review to be a useful resource for those working in the area of protein refolding and therapeutic protein production.
Collapse
Affiliation(s)
- Kajal Kachhawaha
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Santanu Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Khyati Joshi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Priyanka Nain
- Department of Chemical and Bimolecular Engineering, University of Delaware, Newark, DE, USA
| | - Sumit K Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
19
|
Yang H, Wang H, Wang F, Zhang K, Qu J, Guan J, Shen W, Cao Y, Xia Y, Chen X. Efficient extracellular production of recombinant proteins in E. coli via enhancing expression of dacA on the genome. J Ind Microbiol Biotechnol 2022; 49:kuac016. [PMID: 35648451 PMCID: PMC9338883 DOI: 10.1093/jimb/kuac016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/21/2022] [Indexed: 11/14/2022]
Abstract
D, D-carboxypeptidase DacA plays an important role in the synthesis and stabilization of Escherichia coli cell wall peptidoglycan. The production level of extracellular recombinant proteins in E. coli can be enhanced by high D, D-carboxypeptidase activity. Construction of expression systems under optimal promoters is one of the main strategies to realize high protein production in E. coli. In this study, the promoter PdacA-3 from DacA on the genome of E. coli BL21 (DE3) was verified to be efficient for recombinant green fluorescent protein using the plasmid mutant pET28a-PdacA with PdacA-3. Meanwhile, the promoter PdacA-3 was engineered to increase the production level of proteins via inserting one or two Shine-Dalgarno (SD) sequences between the promoter PdacA-3 and the target genes. The expression level of dacA on the genome was increased by the improved transcription of the engineered promoters (especially after inserting one additional SD sequence). The engineered promoters increased cell membrane permeabilities to significantly enhance the secretion production of extracellular recombinant proteins in E. coli. Among them, the extracellular recombinant amylase activities in E. coli BL21::1SD-pET28a-amyK and E. coli BL21::2SD-pET28a-amyK were increased by 2.0- and 1.6-fold that of the control (E. coli BL21-pET28a-amyK), respectively. Promoter engineering also affected the morphology and growth of the E. coli mutants. It was indicated that the engineered promoters enhanced the expression of dacA on the genome to disturb the synthesis and structural stability of cell wall peptidoglycans.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haokun Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Fuxiang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kunjie Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinfeng Qu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianmin Guan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
20
|
Hu R, Cui R, Xu Q, Lan D, Wang Y. Controlling Specific Growth Rate for Recombinant Protein Production by Pichia pastoris Under Oxidation Stress in Fed-batch Fermentation. Appl Biochem Biotechnol 2022; 194:6179-6193. [PMID: 35900712 DOI: 10.1007/s12010-022-04022-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Methanol can be used by Pichia pastoris as the carbon source and inducer to produce recombinant proteins in high-cell-density fermentations. However, methanol oxidation at high specific growth rates can lead to the reactive oxygen species (ROS) accumulation, resulting in cell damage. Here, we study the relationship between methanol feeding and ROS accumulation by controlling specific growth rate during the induction phase. A higher specific growth rate increased the level of ROS accumulation caused by methanol oxidation. While the cell growth rate was proportional to specific growth rate, maximum total protein production and highest enzyme activity were achieved at a specific growth rate of 0.05 1/h as compared to that of 0.065 1/h. Moreover, oxidative damage induced by over-accumulation of ROS in P. pastoris during the methanol induction phase caused cell death and reduced protein expression ability. ROS scavenging system analysis revealed that the higher specific growth rate, especially 0.065 1/h, resulted in increased intracellular catalase activity and decreased glutathione content significantly. Finally, Spearman's correlation analysis further revealed that the reduced glutathione might be beneficial for maintaining cell viability and increasing protein production under oxidative stress caused by ROS toxic accumulation. Our findings suggest an integrated strategy to control the feeding of the essential substrate based on analyzing its response to oxidative stress caused by ROS toxic accumulation, as well as develop a strategy to optimize fed-batch fermentation.
Collapse
Affiliation(s)
- Rongkang Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Ruiguo Cui
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China.,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, Guangdong, 510640, People's Republic of China. .,Guangdong Youmei Institute of Intelligent Bio-Manufacturing Co., Ltd, Foshan, Guangdong, 528200, People's Republic of China.
| |
Collapse
|
21
|
Escuder-Rodríguez JJ, González-Suarez M, deCastro ME, Saavedra-Bouza A, Becerra M, González-Siso MI. Characterization of a novel thermophilic metagenomic GH5 endoglucanase heterologously expressed in Escherichia coli and Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:76. [PMID: 35799200 PMCID: PMC9264688 DOI: 10.1186/s13068-022-02172-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023]
Abstract
Background Endoglucanases from thermophilic microorganisms are a valuable resource as they can be used in a wide variety of biotechnological applications including the valorisation of biomass and the production of biofuels. In the present work we analysed the metagenome from the hot spring Muiño da Veiga, located in the northwest of Spain (in the Galicia region), in search for novel thermostable endoglucanases. Results Sequence analysis of the metagenome revealed a promising enzyme (Cel776). Predictions on protein structure and conserved amino acid sequences were conducted, as well as expression in heterologous systems with Escherichia coli and Saccharomyces cerevisiae as the host. Cel776Ec was correctly expressed and purified by taking advantage of the His-Tag system, with a yield of 0.346 U/mL in the eluted fraction. Cel776Sc was expressed extracellulary and was easily recovered from the supernatant without the need of further purification, requiring only a concentration step by ultrafiltration, with a significantly higher yield of 531.95 U/mL, revealing a much more suitable system for production of large amounts of the enzyme. Their biochemical characterization revealed biotechnologically interesting enzymes. Both Cel776Ec and Cel776Sc had an optimal temperature of 80 °C and optimal pH of 5. Cel776Ec exhibited high thermostability maintaining its activity for 24 h at 60 °C and maintained its activity longer than Cel776Sc at increasing incubation temperatures. Moreover, its substrate specificity allowed the degradation of both cellulose and xylan. Whereas Cel776Ec was more active in the presence of calcium and magnesium, manganese was found to increase Cel776Sc activity. A stronger inhibitory effect was found for Cel776Ec than Cel776Sc adding detergent SDS to the reaction mix, whereas EDTA only significantly affected Cel776Sc activity. Conclusions Our study reports the discovery of a new promising biocatalyst for its application in processes, such as the production of biofuel and the saccharification of plant biomass, due to its bifunctional enzymatic activity as an endoglucanase and as a xylanase, as well as highlights the advantages of a yeast expression system over bacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02172-4.
Collapse
Affiliation(s)
- Juan-José Escuder-Rodríguez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - María González-Suarez
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - María-Eugenia deCastro
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Almudena Saavedra-Bouza
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain
| | - Manuel Becerra
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro de Investigacións Científicas Avanzadas (CICA), Departamento de Bioloxía, Facultade de Ciencias, Universidade da Coruña, 15071, A Coruña, Spain.
| |
Collapse
|
22
|
Li B, Xiao M, Dong X, Huang Z. An improved whole-cell biotransformation system for ( S)-equol production. Food Sci Nutr 2022; 10:2318-2324. [PMID: 35844923 PMCID: PMC9281934 DOI: 10.1002/fsn3.2840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022] Open
Abstract
(S)-equol, the most active metabolite of the soybean isoflavones in vivo, has exhibited various biological activities and clinical benefits. Existing studies on the heterologous biosynthesis of (S)-equol via the engineered E. coli constructed have been significantly progressed. In the present study, the engineered E. coli was further improved to be more suitable for (S)-equol production. The four enzymes involved in the biosynthesis of (S)-equol and another GDH for NADPH regeneration were combined to construct the recombinant E. coli BL21(DE3). The optimal conditions for (S)-equol production were explored, respectively. The yield of equol reached 98.05% with 1 mM substrate daidzein and 4% (wt/vol) glucose. Even when the substrate concentration increased to 1.5 mM, (S)-equol could maintain a high yield of 90.25%. Based on the 100 ml one-pot reaction system, (S)-equol was produced with 223.6 mg/L in 1.5 h. The study presented a more suitable engineered E. coli for the production of (S)-equol.
Collapse
Affiliation(s)
- Bing‐Juan Li
- Tianjin Key Laboratory of Food and BiotechnologyDepartment of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina
| | - Meng‐Ying Xiao
- Tianjin Key Laboratory of Food and BiotechnologyDepartment of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina
| | - Xin‐Yu Dong
- Tianjin Key Laboratory of Food and BiotechnologyDepartment of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina
| | - Zhao‐Xiang Huang
- Tianjin Key Laboratory of Food and BiotechnologyDepartment of Biotechnology and Food ScienceTianjin University of CommerceTianjinChina
| |
Collapse
|
23
|
Sáez Moreno D, Udi Q, Azeredo J, Domingues L. Towards T7 RNA polymerase (T7RNAP)-based expression system in yeast: challenges and opportunities. Bioengineered 2022; 13:14947-14959. [PMID: 37105766 DOI: 10.1080/21655979.2023.2180579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
During the last decades, we have witnessed unprecedented advances in biological engineering and synthetic biology. These disciplines aim to take advantage of gene pathway regulation and gene expression in different organisms, to enable cells to perform desired functions. Yeast has been widely utilized as a model for the study of eukaryotic protein expression while bacteriophage T7RNAP and its promoter constitute the preferred system for prokaryotic protein expression (such as pET-based expression systems). The ability to integrate a T7RNAP-based expression system in yeast could allow for a better understanding of gene regulation in eukaryotic cells, and potentially increase the efficiency and processivity of yeast as an expression system. However, the attempts for the creation of such a system have been unsuccessful to date. This review aims to: (i) summarize the efforts that, for many years, have been devoted to the creation of a T7RNAP-based yeast expression system and ii) provide an overview of the latest advances in knowledge of eukaryotic transcription and translation that could lead to the construction of a successful T7RNAP expression system in yeast. The completion of this new expression system would allow to further expand the toolkit of yeast in synthetic biology and ultimately contribute to boost yeast usage as a key cell factory in sustainable biorefinery and circular economy.
Collapse
Affiliation(s)
- David Sáez Moreno
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Qimron Udi
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joana Azeredo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
- LABBELS-Associate Laboratory, 4835-198, Guimarães, Braga, Portugal
| |
Collapse
|
24
|
Sharma T, Xia C, Sharma A, Raizada P, Singh P, Sharma S, Sharma P, Kumar S, Lam S, Nadda AK. Mechano-chemical and biological energetics of immobilized enzymes onto functionalized polymers and their applications. Bioengineered 2022; 13:10518-10539. [PMID: 35443858 PMCID: PMC9208500 DOI: 10.1080/21655979.2022.2062526] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Enzymes of commercial importance, such as lipase, amylase, laccase, phytase, carbonic anhydrase, pectinase, maltase, glucose oxidase etc., show multifunctional features and have been extensively used in several fields including fine chemicals, environmental, pharmaceutical, cosmetics, energy, food industry, agriculture and nutraceutical etc. The deployment of biocatalyst in harsh industrial conditions has some limitations, such as poor stability. These drawbacks can be overcome by immobilizing the enzyme in order to boost the operational stability, catalytic activity along with facilitating the reuse of biocatalyst. Nowadays, functionalized polymers and composites have gained increasing attention as an innovative material for immobilizing the industrially important enzyme. The different types of polymeric materials and composites are pectin, agarose, cellulose, nanofibers, gelatin, and chitosan. The functionalization of these materials enhances the loading capacity of the enzyme by providing more functional groups to the polymeric material and hence enhancing the enzyme immobilization efficiency. However, appropriate coordination among the functionalized polymeric materials and enzymes of interest plays an important role in producing emerging biocatalysts with improved properties. The optimal coordination at a biological, physical, and chemical level is requisite to develop an industrial biocatalyst. Bio-catalysis has become vital aspect in pharmaceutical and chemical industries for synthesis of value-added chemicals. The present review describes the current advances in enzyme immobilization on functionalized polymers and composites. Furthermore, the applications of immobilized enzymes in various sectors including bioremediation, biosensor and biodiesel are also discussed.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| | - Changlei Xia
- Center of Efficient Processing and Utilization of Forestry Resources, College of Materials Science and Engineering, Nanjing Forestry UniversityCo-Innovation, Nanjing,Jiangsu, China
| | - Abhishek Sharma
- Department of Biotechnology, Himachal Pradesh University, Shimla, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, India
| | - Swati Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur, India
| | - SuShiung Lam
- Higher Institution Centre of Excellence (Hicoe), Institute of Tropical Aquaculture and Fisheries (Akuatrop), Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Ashok Kumar Nadda
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, India
| |
Collapse
|
25
|
Insights into Increasing Selenate Reductase Enzyme Activity in the Presence of Nitrogen-Doped Graphite Electrodes for Selenium Effluent Treatment. WATER 2022. [DOI: 10.3390/w14060931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The weathering of selenium-rich rocks or anthropogenic activities such as mining or smelting can release selenium into the environment, posing a significant environmental risk. The increased monitoring and enforcement of selenium regulations have resulted in protocols to efficiently measure and treat selenium in water and effluent water. The principal aqueous forms of inorganic selenium are selenite (Se(IV)) and selenate (Se(VI)). Selenate, due to its oxy-anionic nature, high mobility, and lack of affinity to conventional adsorbents, is typically more difficult to treat and remove. Thus, it is proposed to remove selenate from water by first reducing it to selenite and then to insoluble elemental selenium, a form that has low toxicity. A naturally occurring selenate reductase enzyme from Thauera selenatis was previously shown to specifically reduce selenate to selenite. To exploit this functionality, recombinant enzyme technologies were used to produce a cell-free, enriched Thauera selenatis selenate reductase heterotrimeric enzyme complex (TsSer-αβγ). The addition of the recombinant enzyme complex to effluent water was found to successfully reduce the selenate. Interestingly, upon adding nitrogen-doped graphite electrodes to the reaction, the selenate-reducing activity significantly increased. Overall, these findings highlight a new, potentially sustainable solution to the reduction of selenate in water and effluent water.
Collapse
|
26
|
Enespa, Chandra P, Singh DP. Sources, purification, immobilization and industrial applications of microbial lipases: An overview. Crit Rev Food Sci Nutr 2022; 63:6653-6686. [PMID: 35179093 DOI: 10.1080/10408398.2022.2038076] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Microbial lipase is looking for better attention with the fast growth of enzyme proficiency and other benefits like easy, cost-effective, and reliable manufacturing. Immobilized enzymes can be used repetitively and are incapable to catalyze the reactions in the system continuously. Hydrophobic supports are utilized to immobilize enzymes when the ionic strength is low. This approach allows for the immobilization, purification, stability, and hyperactivation of lipases in a single step. The diffusion of the substrate is more advantageous on hydrophobic supports than on hydrophilic supports in the carrier. These approaches are critical to the immobilization performance of the enzyme. For enzyme immobilization, synthesis provides a higher pH value as well as greater heat stability. Using a mixture of immobilization methods, the binding force between enzymes and the support rises, reducing enzyme leakage. Lipase adsorption produces interfacial activation when it is immobilized on hydrophobic support. As a result, in the immobilization process, this procedure is primarily used for a variety of industrial applications. Microbial sources, immobilization techniques, and industrial applications in the fields of food, flavor, detergent, paper and pulp, pharmaceuticals, biodiesel, derivatives of esters and amino groups, agrochemicals, biosensor applications, cosmetics, perfumery, and bioremediation are all discussed in this review.
Collapse
Affiliation(s)
- Enespa
- School for Agriculture, Sri Mahesh Prasad Post Graduate College, University of Lucknow, Lucknow, Uttar Pradesh, India
| | - Prem Chandra
- Food Microbiology & Toxicology Laboratory, Department of Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| | - Devendra Pratap Singh
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
27
|
Boock JT, Taw M, King BC, Conrado RJ, Gibson DM, DeLisa MP. Two-Tiered Selection and Screening Strategy to Increase Functional Enzyme Production in E. coli. Methods Mol Biol 2022; 2406:169-187. [PMID: 35089557 DOI: 10.1007/978-1-0716-1859-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Development of recombinant enzymes as industrial biocatalysts or metabolic pathway elements requires soluble expression of active protein. Here we present a two-step strategy, combining a directed evolution selection with an enzyme activity screen, to increase the soluble production of enzymes in the cytoplasm of E. coli. The directed evolution component relies on the innate quality control of the twin-arginine translocation pathway coupled with antibiotic selection to isolate point mutations that promote intracellular solubility. A secondary screen is applied to ensure the solubility enhancement has not compromised enzyme activity. This strategy has been successfully applied to increase the soluble production of a fungal endocellulase by 30-fold in E. coli without change in enzyme specific activity through two rounds of directed evolution.
Collapse
Affiliation(s)
- Jason T Boock
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.
- Department of Chemical, Paper and Biomedical Engineering, Miami University (OH), Oxford, OH, USA.
| | - May Taw
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Brian C King
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Robert J Conrado
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Donna M Gibson
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
- USDA Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
28
|
Harnischfeger J, Beutler M, Salzig D, Rahlfs S, Becker K, Grevelding CG, Czermak P. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Renn D, Shepard L, Vancea A, Karan R, Arold ST, Rueping M. Novel Enzymes From the Red Sea Brine Pools: Current State and Potential. Front Microbiol 2021; 12:732856. [PMID: 34777282 PMCID: PMC8578733 DOI: 10.3389/fmicb.2021.732856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/05/2021] [Indexed: 11/23/2022] Open
Abstract
The Red Sea is a marine environment with unique chemical characteristics and physical topographies. Among the various habitats offered by the Red Sea, the deep-sea brine pools are the most extreme in terms of salinity, temperature and metal contents. Nonetheless, the brine pools host rich polyextremophilic bacterial and archaeal communities. These microbial communities are promising sources for various classes of enzymes adapted to harsh environments - extremozymes. Extremozymes are emerging as novel biocatalysts for biotechnological applications due to their ability to perform catalytic reactions under harsh biophysical conditions, such as those used in many industrial processes. In this review, we provide an overview of the extremozymes from different Red Sea brine pools and discuss the overall biotechnological potential of the Red Sea proteome.
Collapse
Affiliation(s)
- Dominik Renn
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen, Aachen, Germany
| | - Lera Shepard
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ram Karan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre de Biologie Structurale, CNRS, INSERM, Université de Montpellier, Montpellier, France
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute for Experimental Molecular Imaging (ExMI), University Clinic, RWTH Aachen, Aachen, Germany
| |
Collapse
|
30
|
Banerjee S, Maiti TK, Roy RN. Enzyme producing insect gut microbes: an unexplored biotechnological aspect. Crit Rev Biotechnol 2021; 42:384-402. [PMID: 34612103 DOI: 10.1080/07388551.2021.1942777] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
To explore the unmapped biotechnologically important microbial platforms for human welfare, the insect gut system is such a promising arena. Insects, the inhabitant of all ecological niches, harbor a healthy diversified microbial population in their versatile gut environment. This deep-rooted symbiotic relationship between insects and gut microbes is the result of several indispensable microbial performances that include: enzyme production, detoxification of plant defense compounds and insecticides, maintenance of life cycle, host fertility, bioremediation, pest biocontrol, production of antimicrobial compounds, and in addition provide vitamins, amino acids, and lactic acids to their hosts. Insects have developed such symbiotic interactions with different microorganisms for nutritional benefits like the digestion of dietary compounds by the production of several key hydrolytic enzymes viz: amylase, cellulase, lignocellulase, protease, lipase, xylanase, pectinase, chitinase, laccase, etc. The nutritional enrichment offered by these microbes to insects may be the key factor in the evolutionary attainment of this group. Around one million insect species are grouped under 31 orders, however, only ten of such groups' have been studied in relation to enzyme-producing gut microbes. Moreover, insect gut symbionts are a potential source of biotechnologically active biomolecules as these microbes go through a course of selection pressures in their host gut environment. As symbiosis has pronounced potential regarding the production of novel compounds, especially enzymes with multidimensional industrial capabilities, so there are ample scopes to explore this treasure box for human welfare. Biological significance as well as industrially compatible capabilities can categorize these insect gut symbionts as an unexplored biotechnological aspect.
Collapse
Affiliation(s)
- Sandipan Banerjee
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India.,Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati University, Santiniketan, India
| | | | - Raj Narayan Roy
- Microbiology Research Laboratory, Department of Botany, Dr. B. N. Dutta Smriti Mahavidyalaya, Hatgobindapur, Burdwan, India
| |
Collapse
|
31
|
Abstract
Enzymes are widely used in the food industry. Their use as a supplement to the raw material for animal feed is a current research topic. Although there are several studies on the application of enzyme additives in the animal feed industry, it is necessary to search for new enzymes, as well as to utilize bioinformatics tools for the design of specific enzymes that work in certain environmental conditions and substrates. This will allow the improvement of the productive parameters in animals, reducing costs and making the processes more efficient. Technological needs have considered these catalysts as essential in many industrial sectors and research is constantly being carried out to optimize their use in those processes. This review describes the enzymes used in animal nutrition, their mode of action, their production and new sources of production as well as studies on different animal models to evaluate their effect on the productive performance intended for the production of animal feed.
Collapse
|
32
|
Kruschitz A, Peinsipp L, Pfeiffer M, Nidetzky B. Continuous process technology for glucoside production from sucrose using a whole cell-derived solid catalyst of sucrose phosphorylase. Appl Microbiol Biotechnol 2021; 105:5383-5394. [PMID: 34189615 PMCID: PMC8285329 DOI: 10.1007/s00253-021-11411-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 01/30/2023]
Abstract
Advanced biotransformation processes typically involve the upstream processing part performed continuously and interlinked tightly with the product isolation. Key in their development is a catalyst that is highly active, operationally robust, conveniently produced, and recyclable. A promising strategy to obtain such catalyst is to encapsulate enzymes as permeabilized whole cells in porous polymer materials. Here, we show immobilization of the sucrose phosphorylase from Bifidobacterium adolescentis (P134Q-variant) by encapsulating the corresponding E. coli cells into polyacrylamide. Applying the solid catalyst, we demonstrate continuous production of the commercial extremolyte 2-α-D-glucosyl-glycerol (2-GG) from sucrose and glycerol. The solid catalyst exhibited similar activity (≥70%) as the cell-free extract (~800 U g-1 cell wet weight) and showed excellent in-operando stability (40 °C) over 6 weeks in a packed-bed reactor. Systematic study of immobilization parameters related to catalyst activity led to the identification of cell loading and catalyst particle size as important factors of process optimization. Using glycerol in excess (1.8 M), we analyzed sucrose conversion dependent on space velocity (0.075-0.750 h-1) and revealed conditions for full conversion of up to 900 mM sucrose. The maximum 2-GG space-time yield reached was 45 g L-1 h-1 for a product concentration of 120 g L-1. Collectively, our study establishes a step-economic route towards a practical whole cell-derived solid catalyst of sucrose phosphorylase, enabling continuous production of glucosides from sucrose. This strengthens the current biomanufacturing of 2-GG, but also has significant replication potential for other sucrose-derived glucosides, promoting their industrial scale production using sucrose phosphorylase. KEY POINTS: • Cells of sucrose phosphorylase fixed in polyacrylamide were highly active and stable. • Solid catalyst was integrated with continuous flow to reach high process efficiency. • Generic process technology to efficiently produce glucosides from sucrose is shown.
Collapse
Affiliation(s)
- Andreas Kruschitz
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Linda Peinsipp
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Martin Pfeiffer
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology (acib), Krenngasse 37, 8010, Graz, Austria.
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
33
|
Biodegradation of aromatic pollutants meets synthetic biology. Synth Syst Biotechnol 2021; 6:153-162. [PMID: 34278013 PMCID: PMC8260767 DOI: 10.1016/j.synbio.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 05/24/2021] [Accepted: 06/03/2021] [Indexed: 02/02/2023] Open
Abstract
Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.
Collapse
|
34
|
Srivastava S, Kaur S, Verma HK, Rani S, Thakur M, Haldar S, Singh J. Reciprocal relation between reporter gene transcription and translation efficiency in fission yeast. Plasmid 2021; 115:102557. [PMID: 33539828 DOI: 10.1016/j.plasmid.2021.102557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The fission yeast, Schizosaccharomyces pombe, is an excellent model for basic research but is not useful for commercial scale protein expression due to lack of strong expression vectors. Earlier, we showed that the lsd90 promoter elicited significantly greater GFP expression level than the adh1 and nmt1 promoters, albeit in different vector backbones. Here, we have systematically investigated the contribution of selectable markers, LEU2 and URA3m to GFP expression: while LEU2 elicited very low expression, the URA3m gene, with truncated promoter, elicited much greater GFP expression level with all promoters. Paradoxically, an inverse correlation was observed between the GFP transcription and translation efficiency. This system can be useful for understanding the factors governing recombinant gene expression and optimization of protein production.
Collapse
Affiliation(s)
- Suchita Srivastava
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Satinderdeep Kaur
- Central Research Institute, Kasauli, Distt, Solan, Himachal Pradesh 173204, India; Pharmacology Department, School of Science and Technology, Nottingham Trent University, Nottingha, NG11 8NS, UK
| | - Hemant K Verma
- Biotech Department, Mankind Research Center, 191-E, Sector 4-11, IMT, Manesar, Haryana 122050, India
| | - Suman Rani
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Manisha Thakur
- Department of Molecular Biology, Institute of Microbial Technology, Sector 39A, Chandigarh-160036. India
| | - Swati Haldar
- Microbiology Division, Patanjali Research Institute, Haridwar, Uttarakhand, India
| | - Jagmohan Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector- 39 A, Chandigarh 160036, India.
| |
Collapse
|
35
|
Stargardt P, Striedner G, Mairhofer J. Tunable expression rate control of a growth-decoupled T7 expression system by L-arabinose only. Microb Cell Fact 2021; 20:27. [PMID: 33522916 PMCID: PMC7852362 DOI: 10.1186/s12934-021-01512-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Precise regulation of gene expression is of utmost importance for the production of complex membrane proteins (MP), enzymes or other proteins toxic to the host cell. In this article we show that genes under control of a normally Isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible PT7-lacO promoter can be induced solely with L-arabinose in a newly constructed Escherichia coli expression host BL21-AI<gp2>, a strain based on the recently published approach of bacteriophage inspired growth-decoupled recombinant protein production. RESULTS Here, we show that BL21-AI<gp2> is able to precisely regulate protein production rates on a cellular level in an L-arabinose concentration-dependent manner and simultaneously allows for reallocation of metabolic resources due to L-arabinose induced growth decoupling by the phage derived inhibitor peptide Gp2. We have successfully characterized the system under relevant fed-batch like conditions in microscale cultivation (800 µL) and generated data proofing a relevant increase in specific yields for 6 different Escherichia coli derived MP-GFP fusion proteins by using online-GFP signals, FACS analysis, SDS-PAGE and western blotting. CONCLUSIONS In all cases tested, BL21-AI<gp2> outperformed the parental strain BL21-AI, operated in growth-associated production mode. Specific MP-GFP fusion proteins yields have been improved up to 2.7-fold. Therefore, this approach allows for fine tuning of MP production or expression of multi-enzyme pathways where e.g. particular stoichiometries have to be met to optimize product flux.
Collapse
Affiliation(s)
| | - Gerald Striedner
- Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190, Vienna, Austria
| | | |
Collapse
|
36
|
Flow Biocatalysis: A Challenging Alternative for the Synthesis of APIs and Natural Compounds. Int J Mol Sci 2021; 22:ijms22030990. [PMID: 33498198 PMCID: PMC7863935 DOI: 10.3390/ijms22030990] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Biocatalysts represent an efficient, highly selective and greener alternative to metal catalysts in both industry and academia. In the last two decades, the interest in biocatalytic transformations has increased due to an urgent need for more sustainable industrial processes that comply with the principles of green chemistry. Thanks to the recent advances in biotechnologies, protein engineering and the Nobel prize awarded concept of direct enzymatic evolution, the synthetic enzymatic toolbox has expanded significantly. In particular, the implementation of biocatalysts in continuous flow systems has attracted much attention, especially from industry. The advantages of flow chemistry enable biosynthesis to overcome well-known limitations of “classic” enzymatic catalysis, such as time-consuming work-ups and enzyme inhibition, as well as difficult scale-up and process intensifications. Moreover, continuous flow biocatalysis provides access to practical, economical and more sustainable synthetic pathways, an important aspect for the future of pharmaceutical companies if they want to compete in the market while complying with European Medicines Agency (EMA), Food and Drug Administration (FDA) and green chemistry requirements. This review focuses on the most recent advances in the use of flow biocatalysis for the synthesis of active pharmaceutical ingredients (APIs), pharmaceuticals and natural products, and the advantages and limitations are discussed.
Collapse
|
37
|
Hemmerich J, Labib M, Steffens C, Reich SJ, Weiske M, Baumgart M, Rückert C, Ruwe M, Siebert D, Wendisch VF, Kalinowski J, Wiechert W, Oldiges M. Screening of a genome-reduced Corynebacterium glutamicum strain library for improved heterologous cutinase secretion. Microb Biotechnol 2020; 13:2020-2031. [PMID: 32893457 PMCID: PMC7533341 DOI: 10.1111/1751-7915.13660] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
The construction of microbial platform organisms by means of genome reduction is an ongoing topic in biotechnology. In this study, we investigated whether the deletion of single or multiple gene clusters has a positive effect on the secretion of cutinase from Fusarium solani pisi in the industrial workhorse Corynebacterium glutamicum. A total of 22 genome-reduced strain variants were compared applying two Sec signal peptides from Bacillus subtilis. High-throughput phenotyping using robotics-integrated microbioreactor technology with automated harvesting revealed distinct cutinase secretion performance for a specific combination of signal peptide and genomic deletions. The biomass-specific cutinase yield for strain GRS41_51_NprE was increased by ~ 200%, although the growth rate was reduced by ~ 60%. Importantly, the causative deletions of genomic clusters cg2801-cg2828 and rrnC-cg3298 could not have been inferred a priori. Strikingly, bioreactor fed-batch cultivations at controlled growth rates resulted in a complete reversal of the screening results, with the cutinase yield for strain GRS41_51_NprE dropping by ~ 25% compared to the reference strain. Thus, the choice of bioprocess conditions may turn a 'high-performance' strain from batch screening into a 'low-performance' strain in fed-batch cultivation. In conclusion, future studies are needed in order to understand metabolic adaptations of C. glutamicum to both genomic deletions and different bioprocess conditions.
Collapse
Affiliation(s)
- Johannes Hemmerich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
| | - Mohamed Labib
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Carmen Steffens
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Sebastian J. Reich
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Present address:
Institute of Microbiology and BiotechnologyUlm UniversityUlm89081Germany
| | - Marc Weiske
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Meike Baumgart
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
| | - Christian Rückert
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Matthias Ruwe
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Daniel Siebert
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
- Present address:
Microbial BiotechnologyCampus Straubing for Biotechnology and SustainabilityTechnical University of MunichStraubing94315Germany
| | - Volker F. Wendisch
- Faculty of Biology, Chair of Genetics of ProkaryotesBielefeld UniversityBielefeld33615Germany
| | - Jörn Kalinowski
- Microbial Genomics and BiotechnologyCenter for BiotechnologyBielefeld UniversityBielefeld33615Germany
| | - Wolfgang Wiechert
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Computational Systems Biotechnology (AVT.CSB)RWTH Aachen UniversityAachen52074Germany
| | - Marco Oldiges
- Institute of Bio‐ and Geosciences – Biotechnology (IBG‐1)Forschungszentrum Jülich, Institute of Bio‐ and Geosciences ‐ Biotechnology (IBG‐1)Jülich52425Germany
- Bioeconomy Science Center (BioSC)Forschungszentrum JülichJülich52425Germany
- Institute of BiotechnologyRWTH Aachen UniversityAachen52074Germany
| |
Collapse
|
38
|
Microbial lignin peroxidases: Applications, production challenges and future perspectives. Enzyme Microb Technol 2020; 141:109669. [DOI: 10.1016/j.enzmictec.2020.109669] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022]
|
39
|
Bacterial sialyltransferases and their use in biocatalytic cascades for sialo-oligosaccharide production. Biotechnol Adv 2020; 44:107613. [DOI: 10.1016/j.biotechadv.2020.107613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
|
40
|
Mikl M, Dennig A, Nidetzky B. Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 322:74-78. [PMID: 32687957 DOI: 10.1016/j.jbiotec.2020.06.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 01/17/2023]
Abstract
Sugar nucleotide-dependent (Leloir) glycosyltransferases are powerful catalysts for glycoside synthesis. Their applicability can be limited due to elaborate production of enzyme preparations deployable in biocatalytic processes. Here, we show that efficient enzyme formulation promotes glycosyltransferases for the synthesis of the natural C-glycoside nothofagin. Adding Brij-35 detergent (1 %, w/v) during sonication of the E. coli BL21-Gold (DE3) expression strain, recovery of Oryza sativa C-glycosyltransferase was enhanced by ∼3-fold, partly due to the release of enzyme activity trapped in insoluble pellet. Freeze drying of the resulting cell-free extract (∼17 U ml-1) reduced the volume ∼20-fold and gave ∼55 mg solids ml-1 liquid processed, with 83 % retention of the original activity and a specific activity of 0.20 U mg-1 solids. The Glycine max sucrose synthase was processed analogously, giving a solid enzyme preparation of 0.28 U mg-1 in 63 % yield. Both enzyme formulations were stable for several weeks. The glycosyltransferase cascade reaction for 3'-β-C-glucosylation of phloretin (60 mM; as inclusion complex with hydroxypropyl-β-cyclodextrin) from UDP-glucose (generated in situ by sucrose synthase from 500 mM sucrose and 0.5 mM UDP) showed excellent performance metrics (≥ 98 % yield; 3.2 g l-1 h-1 space-time yield; ∼90 regeneration cycles for UDP). Collectively, our study demonstrates a facile procedure for solid glycosyltransferase formulations practically usable in glycoside synthesis.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
41
|
Xie H, Feng X, Wang M, Wang Y, Kumar Awasthi M, Xu P. Implications of endophytic microbiota in Camellia sinensis: a review on current understanding and future insights. Bioengineered 2020; 11:1001-1015. [PMID: 32881650 PMCID: PMC8291792 DOI: 10.1080/21655979.2020.1816788] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Endophytic fungi and bacteria are the most ubiquitous and representative commensal members that have been studied so far in various higher plants. Within colonization and interaction with their host plants, endophytic microbiota are reportedly to modulate not only the host's growth but also holobiont resilience to abiotic and biotic stresses, providing a natural reservoir and a promising solution for sustainable agricultural development challenged by global climate change. Moreover, possessing the talent to produce a wide array of high-value natural products, plant endophytic microbiota also serve as an alternative way for novel drug discovery. In this review, tea, one of the world's three largest nonalcoholic beverages and a worldwide economic woody crop, was highlighted in the context of endophytic microbiota. We explore the recent studies regarding isolation approaches, distribution characteristics and diversity, and also biological functions of endophytic microbiota in Camellia sinensis (L.) O. Kuntze. Profoundly, the future insight into interaction mechanism between endophytic microbiota and tea plants will shed light on in-depth exploration of tea microbial resources.
Collapse
Affiliation(s)
- Hengtong Xie
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China
| | - Xiaoxiao Feng
- Agricultural Experiment Station of Zhejiang University , Hangzhou, China
| | - Mengcen Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture , Hangzhou, China
| | - Yuefei Wang
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University , Yangling, China
| | - Ping Xu
- College of Agriculture and Biotechnology, Zhejiang University , Hangzhou, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture , Hangzhou, China
| |
Collapse
|
42
|
de Oliveira JM, Fernandes P, Benevides RG, de Assis SA. Production, characterization, and immobilization of protease from the yeast Rhodotorula oryzicola. Biotechnol Appl Biochem 2020; 68:1033-1043. [PMID: 32918838 DOI: 10.1002/bab.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protease was produced extracellularly in submerged fermentation by the yeast Rhodotorula oryzicola using different sources of nitrogen and maximum activity (6.54 × 10-3 U/mg) was obtained in medium containing 2% casein (w/v). Purification of the protease by gel filtration chromatography resulted in a 3.07-fold increase of specific protease activity. The optimal pH and temperature for enzyme activity were 6.51 and 63.04 °C, respectively. Incubation in the presence of some salts enhanced enzyme activity, which peaked under 0.01 M BaCl2 . The enzyme retained about 90% of enzymatic activity at temperatures 50-60 °C. The commercially available enzyme carriers evaluated, silica gel, Celite 545, and chitosan effectively immobilized the protease. The enzyme immobilized in Celite 545 retained 73.53% of the initial activity after 15 reuse cycles. These results are quite promising for large-scale production and immobilization of protease from R. oryzicola, as the high operational stability of the immobilized enzyme lowers production costs in biotechnological applications that require high enzymatic activity and stability under high temperatures.
Collapse
Affiliation(s)
- Juliana Mota de Oliveira
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Pedro Fernandes
- DREAMS and Faculty of Engineering, Lusófona University, Lisbon, Portugal.,Department of Bioengineering, IBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Raquel Guimarães Benevides
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Sandra Aparecida de Assis
- Enzymology and Fermentation Technology Laboratory, Health Department, State University of Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
43
|
Mikl M, Dennig A, Nidetzky B. WITHDRAWN: Efficient enzyme formulation promotes Leloir glycosyltransferases for glycoside synthesis. J Biotechnol 2020; 324S:100023. [PMID: 34154728 DOI: 10.1016/j.btecx.2020.100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/26/2020] [Accepted: 06/14/2020] [Indexed: 11/28/2022]
Abstract
The Publisher regrets that this article is an accidental duplication of an article that has already been published in BIOTEC, 322C (2020) 74-78, https://doi.org/10.1016/j.jbiotec.2020.06.023. The duplicate article has therefore been withdrawn. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Markus Mikl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Alexander Dennig
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010 Graz, Austria; Austrian Centre of Industrial Biotechnology (acib), 8010 Graz, Austria.
| |
Collapse
|
44
|
Jia Z, Gwynne L, Sedgwick AC, Müller M, Williams GT, Jenkins ATA, James TD, Schönherr H. Enhanced Colorimetric Differentiation between Staphylococcus aureus and Pseudomonas aeruginosa Using a Shape-Encoded Sensor Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:4398-4407. [DOI: 10.1021/acsabm.0c00403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhiyuan Jia
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany
| | - Lauren Gwynne
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 E 24th street A5300, Austin, Texas 78712-1224, United States
| | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany
| | | | | | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Holger Schönherr
- Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen, Adolf-Reichwein-Straße 2, 57076 Siegen, Germany
| |
Collapse
|
45
|
Liu E, Li M, Abdella A, Wilkins MR. Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain. BIORESOURCE TECHNOLOGY 2020; 305:123038. [PMID: 32120232 DOI: 10.1016/j.biortech.2020.123038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Aryl alcohol oxidase (AAO), an extracellular H2O2-providing enzyme, plays a central role in lignin depolymerization. Cost-effective production of AAO has not been achieved, due to the low yield of enzyme-producing microorganisms and the high cost of fermentation media. This study aims to develop a cost-effective medium for high-yield production of AAO in submerged culture using a recombinant Aspergillus nidulans strain. Results demonstrate that corn steep liquor (CSL) was a rich but inexpensive nitrogen source for AAO production, and CSL can provide enough trace metals and vitamins (i.e. pyridoxine) for A. nidulans. A 2-level Plackett-Burman design was utilized to determine the main affecting factors in AAO production. The medium was further optimized by a 3-level Box-Behnken design to obtain the optimum medium component concentrations (61.0 g/L maltose, 26.4 g/L CSL, and 13.8 g/L NaNO3). The greatest AAO activity achieved was 1021 U/L with a protein concentration of 0.75 g/L.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857, Egypt; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
46
|
Mohseni AH, Taghinezhad-Saroukalaei S, Voglmeir J. Recombinant Glycoenzyme Production in Gram-Positive Bacteria—An Overview. TRENDS GLYCOSCI GLYC 2020. [DOI: 10.4052/tigg.1824.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Amir Hossein Mohseni
- Glycomics and Glycan Bioengineering Research Center, Nanjing Agricultural University
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University
| | - Sedigheh Taghinezhad-Saroukalaei
- Glycomics and Glycan Bioengineering Research Center, Nanjing Agricultural University
- Department of Microbiology, Faculty of Basic Sciences, Science and Research Branch, Islamic Azad University
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering Research Center, Nanjing Agricultural University
| |
Collapse
|
47
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
48
|
Sorokina KN, Samoylova YV, Parmon VN. Thermostable Esterase estUT1 from Ureibacillus thermosphaericus: Effect of TrxA Tag on the Enzyme Properties. CATALYSIS IN INDUSTRY 2020. [DOI: 10.1134/s2070050420020099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Girelli AM, Astolfi ML, Scuto FR. Agro-industrial wastes as potential carriers for enzyme immobilization: A review. CHEMOSPHERE 2020; 244:125368. [PMID: 31790990 DOI: 10.1016/j.chemosphere.2019.125368] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
This review provides a general overview of the suitability of different agro-industrial wastes for enzyme immobilization. For the purposes of this literary study, the support materials are divided into two main groups, called lignocellulosic (coconut fiber, corn cob, spent grain, spent coffee, husk, husk ash, and straw rice, soybean and wheat bran) and not lignocellulosic by-products (eggshell and eggshell membranes). The study pointed out that all of these wastes are materials of great potentiality for enzyme immobilization even if coconut fiber is preferred. This result is of significant interest due to the low cost and great availability of such wastes, which actually are underused and cause significant environmental problems for improper storage. In addition, the development of economic biocatalysts more sustainable, besides reduce environmental impacts, improve the application of enzymatic technology in industry. Therefore, the enzyme immobilization reaction and the application of biocatalysts are reviewed and discussed.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Francesca Romana Scuto
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
50
|
Gong JS, Ye JP, Tao LY, Su C, Qin J, Zhang YY, Li H, Li H, Xu ZH, Shi JS. Efficient keratinase expression via promoter engineering strategies for degradation of feather wastes. Enzyme Microb Technol 2020; 137:109550. [PMID: 32423677 DOI: 10.1016/j.enzmictec.2020.109550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/29/2020] [Accepted: 03/08/2020] [Indexed: 01/13/2023]
Abstract
Keratinases are promising alternatives over ordinary proteases in several industrial applications due to their unique properties compared with their counterparts in the protease categories. However, their large-scale industrial application is limited by the low expression and poor fermentation efficiency of keratinase. Here, we demonstrate that the expression level of keratinase can be improved by constructing a more efficient enzyme expression system hereby enables the highest production titer as regarding recombinant keratinase production to date. Specially, ten promoters were evaluated and the aprE promoter exhibits a significant promotion of keratinase (kerBv) titer from 165 U/mL to 2605 U/mL in Bacillus subtilis. The batch fermentation mode resulted in a maximum keratinase activity of 7176 U/mL at 36 h in a 5-L fermenter. Furthermore, the extracellular keratinase activity attained up to 16,860 U/mL via fed-batch fermentation within 30 h. The combination of keratinase with l-cysteine brings about 66.4 % degree of degradation of feather. Our work provides a new insight into the development of efficient keratinase fermentation processes with B. subtilis cell factory.
Collapse
Affiliation(s)
- Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Peng Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Li-Yan Tao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Yan-Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|