1
|
Rohringer S, Grasl C, Ehrmann K, Hager P, Hahn C, Specht SJ, Walter I, Schneider KH, Zopf LM, Baudis S, Liska R, Schima H, Podesser BK, Bergmeister H. Biodegradable, Self-Reinforcing Vascular Grafts for In Situ Tissue Engineering Approaches. Adv Healthc Mater 2023; 12:e2300520. [PMID: 37173073 PMCID: PMC11468867 DOI: 10.1002/adhm.202300520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Indexed: 05/15/2023]
Abstract
Clinically available small-diameter synthetic vascular grafts (SDVGs) have unsatisfactory patency rates due to impaired graft healing. Therefore, autologous implants are still the gold standard for small vessel replacement. Bioresorbable SDVGs may be an alternative, but many polymers have inadequate biomechanical properties that lead to graft failure. To overcome these limitations, a new biodegradable SDVG is developed to ensure safe use until adequate new tissue is formed. SDVGs are electrospun using a polymer blend composed of thermoplastic polyurethane (TPU) and a new self-reinforcing TP(U-urea) (TPUU). Biocompatibility is tested in vitro by cell seeding and hemocompatibility tests. In vivo performance is evaluated in rats over a period for up to six months. Autologous rat aortic implants serve as a control group. Scanning electron microscopy, micro-computed tomography (µCT), histology, and gene expression analyses are applied. TPU/TPUU grafts show significant improvement of biomechanical properties after water incubation and exhibit excellent cyto- and hemocompatibility. All grafts remain patent, and biomechanical properties are sufficient despite wall thinning. No inflammation, aneurysms, intimal hyperplasia, or thrombus formation are observed. Evaluation of graft healing shows similar gene expression profiles of TPU/TPUU and autologous conduits. These new biodegradable, self-reinforcing SDVGs may be promising candidates for clinical use in the future.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Christian Grasl
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Katharina Ehrmann
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Pia Hager
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Clemens Hahn
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Sophie J. Specht
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Ingrid Walter
- Department of PathobiologyUniversity of Veterinary MedicineVeterinaerplatz 1Vienna1210Austria
| | - Karl H. Schneider
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Lydia M. Zopf
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for TraumatologyDonaueschingenstraße 13Vienna1200Austria
| | - Stefan Baudis
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Robert Liska
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Institute of Applied Synthetic ChemistryTechnical University of ViennaGetreidemarkt 9/163Vienna1060Austria
| | - Heinrich Schima
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
- Center for Medical Physics and Biomedical EngineeringMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
| | - Bruno K. Podesser
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| | - Helga Bergmeister
- Center for Biomedical Research and Translational SurgeryMedical University of ViennaWaehringer Gürtel 18‐20Vienna1090Austria
- Austrian Cluster for Tissue RegenerationDonaueschingenstraße 13Vienna1200Austria
- Ludwig Boltzmann Institute for Cardiovascular ResearchWaehringer Gürtel 18‐20Vienna1090Austria
| |
Collapse
|
2
|
Wang E, Feng B, Chakrabarti S. MicroRNA 9 Is a Regulator of Endothelial to Mesenchymal Transition in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2023; 64:13. [PMID: 37279396 PMCID: PMC10249683 DOI: 10.1167/iovs.64.7.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a significant cause of blindness. Most research around DR focus on late-stage developments rather than early changes such as early endothelial dysfunction. Endothelial-to-mesenchymal transition (EndMT), an epigenetically regulated process whereby endothelial cells lose endothelial characteristics and adopt mesenchymal-like phenotypes, contributes to early endothelial changes in DR. The epigenetic regulator microRNA 9 (miR-9) is suppressed in the eyes during DR. MiR-9 plays a role in various diseases and regulates EndMT-related processes in other organs. We investigated the role miR-9 plays in glucose-induced EndMT in DR. Methods We examined the effects of glucose on miR-9 and EndMT using human retinal endothelial cells (HRECs). We then used HRECs and an endothelial-specific miR-9 transgenic mouse line to investigate the effect of miR-9 on glucose-induced EndMT. Finally, we used HRECs to probe the mechanisms through which miR-9 may regulate EndMT. Results We found that miR-9 inhibition was both necessary and sufficient for glucose-induced EndMT. Overexpression of miR-9 prevented glucose-induced EndMT, whereas suppressing miR-9 caused glucose-like EndMT changes. We also found that preventing EndMT with miR-9 overexpression improved retinal vascular leakage in DR. Finally, we showed that miR-9 regulates EndMT at an early stage by regulating EndMT-inducing signals such as proinflammatory and TGF-β pathways. Conclusions We have shown that miR-9 is an important regulator of EndMT in DR, potentially making it a good target for RNA-based therapy in early DR.
Collapse
Affiliation(s)
- Eric Wang
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Biao Feng
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Li X, Zhu X, Li B, Xia B, Tang H, Hu J, Ying R. Loss of α7nAChR enhances endothelial-to-mesenchymal transition after myocardial infarction via NF-κB activation. Exp Cell Res 2022; 419:113300. [PMID: 35926661 DOI: 10.1016/j.yexcr.2022.113300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The myocardial fibrosis in response to myocardial infarction (MI) is closely related to the dysbalance of endothelial-to-mesenchymal transition (EndMT). Although numerous reports indicate that α7 nicotinic acetylcholine receptor (α7nAChR) activates the cholinergic anti-inflammatory pathway (CAP) to regulate the magnitude of inflammatory responses, the role of α7nAChR in myocardial fibrosis, as well as the underlying mechanisms, have not been elucidated. In this study, we evaluated cardiac function, fibrosis, and EndMT signaling using a mouse model of MI and interleukin (IL)-1β-induced human cardiac microvascular endothelial cells (HCMECs). In vivo, α7nAChR deletion increased cardiac dysfunction, exacerbated the cardiac inflammatory response, and NF-κB activation, and enhanced EndMT, as shown by higher expression levels of fibroblast markers (FSP-1, α-SMA, collagen I, Snail) and decreased levels of the FGFR1, glucocorticoid receptor (GR) and endothelial marker (CD31) compared to wild-type mice. In vitro, the pharmacological activation of α7nAChR with PNU282987 significantly inhibited IL-1β-induced EndMT, as shown by a reduced transition to the fibroblast-like phenotype and the expression of fibrotic markers. Moreover, the IL-1β-mediated activation of NF-κB pathway was suppressed by PNU282987. This anti-EndMT effect of α7nAChR was associated with regulation of Snail. Furthermore, Western blot analysis further revealed that the GR antagonist RU38486 could partially counteract the effect of PNU282987 on NF-κB expression. In conclusion, our results show that α7nAChR is involved in cardiac fibrosis by inhibiting EndMT, providing a novel approach to the treatment of MI.
Collapse
Affiliation(s)
- Xuelian Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong, 266011, China.
| | - Xianjie Zhu
- Department of Orthopedics, Qingdao Municipal Hospital, Qingdao, Shandong, 266011, China.
| | - Bingong Li
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong, 266011, China; Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Baohua Xia
- Department of Clinical Skills Training Center, Qingdao Municipal Hospital, Qingdao, Shandong, 266011, China.
| | - Huaiguang Tang
- Department of Cardiology, Qingdao Municipal Hospital, Qingdao, Shandong, 266011, China.
| | - Jinxing Hu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| | - Ru Ying
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
4
|
Tang Q, McNair AJ, Phadwal K, Macrae VE, Corcoran BM. The Role of Transforming Growth Factor-β Signaling in Myxomatous Mitral Valve Degeneration. Front Cardiovasc Med 2022; 9:872288. [PMID: 35656405 PMCID: PMC9152029 DOI: 10.3389/fcvm.2022.872288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 02/03/2023] Open
Abstract
Mitral valve prolapse (MVP) due to myxomatous degeneration is one of the most important chronic degenerative cardiovascular diseases in people and dogs. It is a common cause of heart failure leading to significant morbidity and mortality in both species. Human MVP is usually classified into primary or non-syndromic, including Barlow’s Disease (BD), fibro-elastic deficiency (FED) and Filamin-A mutation, and secondary or syndromic forms (typically familial), such as Marfan syndrome (MFS), Ehlers-Danlos syndrome, and Loeys–Dietz syndrome. Despite different etiologies the diseased valves share pathological features consistent with myxomatous degeneration. To reflect this common pathology the condition is often called myxomatous mitral valve degeneration (disease) (MMVD) and this term is universally used to describe the analogous condition in the dog. MMVD in both species is characterized by leaflet thickening and deformity, disorganized extracellular matrix, increased transformation of the quiescent valve interstitial cell (qVICs) to an activated state (aVICs), also known as activated myofibroblasts. Significant alterations in these cellular activities contribute to the initiation and progression of MMVD due to the increased expression of transforming growth factor-β (TGF-β) superfamily cytokines and the dysregulation of the TGF-β signaling pathways. Further understanding the molecular mechanisms of MMVD is needed to identify pharmacological manipulation strategies of the signaling pathway that might regulate VIC differentiation and so control the disease onset and development. This review briefly summarizes current understanding of the histopathology, cellular activities, molecular mechanisms and pathogenesis of MMVD in dogs and humans, and in more detail reviews the evidence for the role of TGF-β.
Collapse
Affiliation(s)
- Qiyu Tang
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. McNair
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Kanchan Phadwal
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Vicky E. Macrae
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Brendan M. Corcoran
- The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Brendan M. Corcoran,
| |
Collapse
|
5
|
Lin K, Luo W, Yan J, Shen S, Shen Q, Wang J, Guan X, Wu G, Huang W, Liang G. TLR2 regulates angiotensin II-induced vascular remodeling and EndMT through NF-κB signaling. Aging (Albany NY) 2020; 13:2553-2574. [PMID: 33318302 PMCID: PMC7880316 DOI: 10.18632/aging.202290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Excessive vascular remodeling has been shown in hypertensive patients. In experimental models of hypertensive vascular injury, such as angiotensin II (Ang II) challenged mice, toll like receptor 2 (TLR2) initiates inflammatory responses. More recently, studies have reported atypical endothelial to mesenchymal transition (EndMT) in vascular injuries and inflammatory conditions. Here, we aimed to investigate whether TLR2 mediates Ang II-induced vascular inflammation and initiates EndMT. In a mouse model of angiotensin II-induced hypertension, we show that aortas exhibit increased medial thickening, fibrosis, and features of EndMT. These alterations were not observed in TLR2 knockout mice in response to Ang II. TLR2 silencing in cultured endothelial cells confirmed the essential role of TLR2 in Ang II-induced inflammatory factor induction, and EndMT-associated phenotypic change. Mechanistically, we found Ang II activates nuclear factor-κB signaling, inducing pro-inflammatory cytokine production, and mediates EndMT in both cultured endothelial cells and in mice. These studies illustrate a novel role of TLR2 in regulating Ang II-induced deleterious vascular remodeling through the induction of EndMT. The studies also suggest that TLR2 may be targeted to alleviate hypertension-associated vascular injury.
Collapse
Affiliation(s)
- Ke Lin
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.,Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jueqian Yan
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Siyuan Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.,Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qirui Shen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jun Wang
- Department of Cardiology, Wenzhou Central Hospital and Affiliated Dingli Clinical Institute, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xinfu Guan
- Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan 325800, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.,Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.,Affiliated Cangnan Hospital, Wenzhou Medical University, Cangnan 325800, Zhejiang, China
| |
Collapse
|
6
|
Apoptotic exosome-like vesicles regulate endothelial gene expression, inflammatory signaling, and function through the NF-κB signaling pathway. Sci Rep 2020; 10:12562. [PMID: 32724121 PMCID: PMC7387353 DOI: 10.1038/s41598-020-69548-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Persistent endothelial injury promotes maladaptive responses by favoring the release of factors leading to perturbation in vascular homeostasis and tissue architecture. Caspase-3 dependent death of microvascular endothelial cells leads to the release of unique apoptotic exosome-like vesicles (ApoExo). Here, we evaluate the impact of ApoExo on endothelial gene expression and function in the context of a pro-apoptotic stimulus. Endothelial cells exposed to ApoExo differentially express genes involved in cell death, inflammation, differentiation, and cell movement. Endothelial cells exposed to ApoExo showed inhibition of apoptosis, improved wound closure along with reduced angiogenic activity and reduced expression of endothelial markers consistent with the first phase of endothelial-to-mesenchymal transition (endoMT). ApoExo interaction with endothelial cells also led to NF-κB activation. NF-κB is known to participate in endothelial dysfunction in numerous diseases. Silencing NF-κB reversed the anti-apoptotic effect and the pro-migratory state and prevented angiostatic properties and CD31 downregulation in endothelial cells exposed to ApoExo. This study identifies vascular injury-derived extracellular vesicles (ApoExo) as novel drivers of NF-κB activation in endothelial cells and demonstrates the pivotal role of this signaling pathway in coordinating ApoExo-induced functional changes in endothelial cells. Hence, targeting ApoExo-mediated NF-κB activation in endothelial cells opens new avenues to prevent endothelial dysfunction.
Collapse
|
7
|
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S, Dey S, Haug G, Markos J, Glanville AR, Sohal SS. Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 2020; 14:1027-1043. [PMID: 32659128 DOI: 10.1080/17476348.2020.1795832] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible fibrotic disease associated with respiratory failure. The disease remains idiopathic, but repeated alveolar epithelium injury, disruption of alveolar-capillary integrity, abnormal vascular repair, and pulmonary vascular remodeling are considered possible pathogenic mechanisms. Also, the development of comorbidities such as pulmonary hypertension (PH) could further impact disease outcome, quality of life and survival rates in IPF. AREAS COVERED The current review provides a comprehensive literature survey of the mechanisms involved in the development and manifestations of IPF and their links to PH pathology. This review also provides the current understanding of molecular mechanisms that link the two pathologies and will specifically decipher the role of endothelial to mesenchymal transition (EndMT) along with the possible triggers of EndMT. The possibility of targeting EndMT as a therapeutic option in IPF is discussed. EXPERT OPINION With a steady increase in prevalence and mortality, IPF is no longer considered a rare disease. Thus, it is of utmost importance and urgency that the underlying profibrotic pathways and mechanisms are fully understood, to enable the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Kielan D McAlinden
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Josie Larby
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Stephen Myers
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| | - Greg Haug
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - James Markos
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia.,Department of Respiratory Medicine, Launceston General Hospital , Launceston, Australia
| | - Allan R Glanville
- Lung Transplant Unit, Department of Thoracic Medicine, St Vincent's Hospital , Sydney, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania , Launceston, Australia
| |
Collapse
|
8
|
Chen J, Jia J, Ma L, Li B, Qin Q, Qian J, Ge J. Nur77 deficiency exacerbates cardiac fibrosis after myocardial infarction by promoting endothelial-to-mesenchymal transition. J Cell Physiol 2020; 236:495-506. [PMID: 32542822 DOI: 10.1002/jcp.29877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/10/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
Abstract
Cardiac fibrosis is a reparative process after myocardial infarction (MI), which leads to cardiac remodeling and finally heart failure. Endothelial-to-mesenchymal transition (EndMT) is induced after MI and contributes to cardiac fibrosis after MI. Orphan nuclear receptor Nur77 is a key regulator of inflammation, angiogenesis, proliferation, and apoptosis in vascular endothelial cells. Here, we investigated the role of orphan nuclear receptor Nur77 in EndMT and cardiac fibrosis after MI. Cardiac fibrosis was induced through MI by ligation of the left anterior descending coronary artery. We demonstrated that Nur77 knockout aggravated cardiac dysfunction and cardiac fibrosis 30 days after MI. Moreover, Nur77 deficiency resulted in enhanced EndMT as shown by increased expression of FSP-1, SM22α, Snail, and decreased expression of PECAM-1 and eNOS compared with wild-type mice after MI. Then, we found overexpression Nur77 in human coronary artery endothelial cells significantly inhibited interleukin 1β and transforming growth factor β2-induced EndMT, as shown by a reduced transition to a fibroblast-like phenotype and preserved angiogenesis potential. Mechanistically, we demonstrated that Nur77 downregulated EndMT by inhibiting the nuclear factor-κB-dependent pathway. In conclusion, Nur77 is involved in cardiac fibrosis by inhibiting EndMT and may be a promising target for therapy of cardiac fibrosis after MI.
Collapse
Affiliation(s)
- Jiahui Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianguo Jia
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Ma
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingyu Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qing Qin
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Juying Qian
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
You S, Qian J, Wu G, Qian Y, Wang Z, Chen T, Wang J, Huang W, Liang G. Schizandrin B attenuates angiotensin II induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152955. [PMID: 31146168 DOI: 10.1016/j.phymed.2019.152955] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Angiotensin II (Ang II)-induced chronic inflammation and oxidative stress often leads to irreversible vascular injury, in which the endothelial to mesenchymal transition (EndMT) in the endothelial layers are involved. Schisandrin B (Sch B), a natural product isolated from traditional Schisandra chinensis, has been reported to exert vascular protective properties with unclear mechanism. HYPOTHESIS/PURPOSE This study investigated the protective effects and mechanism of Sch B against Ang II-induced vascular injury. METHODS C57BL/6 mice were subcutaneous injected of Ang II for 4 weeks to induce irreversible vascular injury. In vitro, Ang II-induced HUVECs injury was used to study the underlying mechanism. The markers of EndMT, inflammation and oxidative stress were studied both in vitro and in vivo. RESULTS Pre-administration of Sch B effectively attenuated phenotypes of vascular EndMT and fibrosis in Ang II-treated animals, accompanied with decreased inflammatory cytokine and ROS. The in vitro data from HUVECs suggest that Sch B directly targets NF-κB activation to suppress Ang II-induced EndMT and vascular injury. The activation of EndMT in the presence of Ang II is regulated by the NF-κB, a common player in inflammation and oxidative stress. Ang II-induced inflammation and oxidative stress also contributed to vascular EndMT development and Sch B inhibited inflammation/ROS-mediated EndMT by suppressing NF-κB. CONCLUSION EndMT contributes to vascular injury in Ang II-treated mice, and it can be prevented via suppressing NF-κB activation by Sch B treatment. These results also imply that NF-κB might be a promising target to attenuate vascular remodeling induced by inflammation and oxidative stress through an EndMT mechanism.
Collapse
Affiliation(s)
- Shengban You
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianchang Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gaojun Wu
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Qian
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengxian Wang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Taiwei Chen
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Huang
- Department of Cardiology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
10
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Ginsenoside Rg3 protects against iE-DAP-induced endothelial-to-mesenchymal transition by regulating the miR-139-5p-NF-κB axis. J Ginseng Res 2019; 44:300-307. [PMID: 32148412 PMCID: PMC7031736 DOI: 10.1016/j.jgr.2019.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 01/02/2023] Open
Abstract
Background Emerging evidence suggests that endothelial-to-mesenchymal transition (EndMT) in endothelial dysfunction due to persistent inflammation is a key component and emerging concept in the pathogenesis of vascular diseases. Ginsenoside Rg3 (Rg3), an active compound from red ginseng, has been known to be important for vascular homeostasis. However, the effect of Rg3 on inflammation-induced EndMT has never been reported. Here, we hypothesize that Rg3 might reverse the inflammation-induced EndMT and serve as a novel therapeutic strategy for vascular diseases. Methods EndMT was examined under an inflammatory condition mediated by the NOD1 agonist, γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP), treatment in human umbilical vein endothelial cells. The expression of EndMT markers was determined by Western blot analysis, real-time polymerase chain reaction, and immunocytochemistry. The underlying mechanisms of Rg3-mediated EndMT regulation were investigated by modulating the microRNA expression. Results The NOD1 agonist, iE-DAP, led to a fibroblast-like morphology change with a decrease in the expression of endothelial markers and an increase in the expression of the mesenchymal marker, namely EndMT. On the other hand, Rg3 markedly attenuated the iE-DAP–induced EndMT and preserved the endothelial phenotype. Mechanically, miR-139 was downregulated in cells with iE-DAP–induced EndMT and partly reversed in response to Rg3 via the regulation of NF-κB signaling, suggesting that the Rg3–miR-139-5p-NF-κB axis is a key mediator in iE-DAP-induced EndMT. Conclusion These results suggest, for the first time, that Rg3 can be used to inhibit inflammation-induced EndMT and may be a novel therapeutic option against EndMT-associated vascular diseases.
Collapse
|
12
|
Tang M, Yang Y, Yu J, Qiu J, Chen P, Wu Y, Wang Q, Xu Z, Ge J, Yu K, Zhuang J. Tetramethylpyrazine in a Murine Alkali-Burn Model Blocks NFκB/NRF-1/CXCR4-Signaling-Induced Corneal Neovascularization. Invest Ophthalmol Vis Sci 2019; 59:2133-2141. [PMID: 29801148 DOI: 10.1167/iovs.17-23712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Tetramethylpyrazine (TMP) is the active ingredient extracted from the Chinese herb Chuanxiong. The purpose of our study was to identify the mechanism of therapeutic TMP suppression of pathologic chemokine receptor 4 (CXCR4) transcription. Methods C57BL/6J mice with alkali-burned corneas were treated with either TMP eye drops (1.5 mg/mL) or PBS. Corneal neovascularization (CNV) was measured and a clinical assessment was made by slit lamp microscopy. Expression of CXCR4 and the transcription factors nuclear respiratory factor-1 (NRF-1), nuclear factor kappa B (NFκB), forkhead box C1, and yin yang 1 were tracked by real-time RT-PCR and immunofluorescence staining of murine corneas. Western blot, real-time PCR, and immunofluorescence evaluated expression of related genes in human umbilical vein endothelial cells (HUVECs) after 200-μmol/L TMP treatment. In addition, plasmid transfection and chromatin immunoprecipitation assays elucidated the relationship among NRF-1, NFκB, and CXCR4. Results Corneas treated with TMP had smaller areas of neovascularization and scored better in clinical assessments. Injured corneas showed significantly elevated expressions of NRF-1, NFκB, and CXCR4 that were normalized in vivo by TMP treatment. Similarly, in HUVECs in vitro, TMP decreased expression of NRF-1, NFκB, and CXCR4. Overexpression of NFκB or NRF-1 raised the expression of CXCR4 in HUVECs, but not synergistically. Chromatin immunoprecipitation assays detected only NRF-1 bound to the CXCR4 promoter region, suggesting NFκB controls CXCR4 expression by upregulating NRF-1. Together, our data suggest TMP downregulates CXCR4 by repressing NRF-1 expression in CNV, likely indirectly by downregulating NFκB. Conclusions Our results implicate a novel mechanism wherein TMP inhibits neovascularization via an NFκB/NRF-1/CXCR4 circuit.
Collapse
Affiliation(s)
- Mingjun Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ying Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingzhi Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Qiu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Pei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yihui Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qiyun Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhuojun Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jian Ge
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Keming Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing Zhuang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Derada Troletti C, Fontijn RD, Gowing E, Charabati M, van Het Hof B, Didouh I, van der Pol SMA, Geerts D, Prat A, van Horssen J, Kooij G, de Vries HE. Inflammation-induced endothelial to mesenchymal transition promotes brain endothelial cell dysfunction and occurs during multiple sclerosis pathophysiology. Cell Death Dis 2019; 10:45. [PMID: 30718504 PMCID: PMC6361981 DOI: 10.1038/s41419-018-1294-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/19/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
The blood-brain barrier (BBB) has a major role in maintaining brain homeostasis through the specialized function of brain endothelial cells (BECs). Inflammation of the BECs and loss of their neuroprotective properties is associated with several neurological disorders, including the chronic neuro-inflammatory disorder multiple sclerosis (MS). Yet, the underlying mechanisms of a defective BBB in MS remain largely unknown. Endothelial to mesenchymal transition (EndoMT) is a pathophysiological process in which endothelial cells lose their specialized function and de-differentiate into mesenchymal cells. This transition is characterized by an increase in EndoMT-related transcription factors (TFs), a downregulation of brain endothelial markers, and an upregulation of mesenchymal markers accompanied by morphological changes associated with cytoskeleton reorganization. Here, we postulate that EndoMT drives BEC de-differentiation, mediates inflammation-induced human BECs dysfunction, and may play a role in MS pathophysiology. We provide evidence that stimulation of human BECs with transforming growth factor (TGF)-β1 and interleukin (IL)-1β promotes EndoMT, a process in which the TF SNAI1, a master regulator of EndoMT, plays a crucial role. We demonstrate the involvement of TGF-β activated kinase 1 (TAK1) in EndoMT induction in BECs. Finally, immunohistochemical analysis revealed EndoMT-associated alterations in the brain vasculature of human post-mortem MS brain tissues. Taken together, our novel findings provide a better understanding of the molecular mechanisms underlying BECs dysfunction during MS pathology and can be used to develop new potential therapeutic strategies to restore BBB function.
Collapse
Affiliation(s)
- Claudio Derada Troletti
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Elizabeth Gowing
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Marc Charabati
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Bert van Het Hof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Imad Didouh
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Susanne M A van der Pol
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Jack van Horssen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Gijs Kooij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, MS Center Amsterdam, Amsterdam Neuroscience, de Boelelaan 1117, Amsterdam, The Netherlands.
| |
Collapse
|
14
|
Yin Q, Wang W, Cui G, Yan L, Zhang S. Potential role of the Jagged1/Notch1 signaling pathway in the endothelial-myofibroblast transition during BLM-induced pulmonary fibrosis. J Cell Physiol 2017; 233:2451-2463. [PMID: 28776666 DOI: 10.1002/jcp.26122] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 08/01/2017] [Indexed: 01/06/2023]
Abstract
Endothelial cell myofibroblast transition (EndoMT) is found during the process of bleomycin (BLM)-induced pulmonary fibrosis in rats, and plays a very important role in sustaining inflammation and collagen secretion. Moreover, some studies have suggested that the Notch1 signaling pathway may be involved in the expression of α-smooth muscle actin (α-SMA) in pulmonary microvascular endothelial cells (PMVECs), a protein marker of EndoMT. Therefore, we aimed to investigate the expression level of α-SMA and Notch1-related signaling molecules in PMVECs from BLM-induced rats and determine the relationship between the Notch1 signaling pathway and the expression of α-SMA in PMVECs. We found that the expression levels of α-SMA, Notch1, and Jagged1 were upregulated, while the expression levels of Dll4 were downregulated. Furthermore, there was a positive correlation between the expression of Jagged1 and the α-SMA proteins in PMVECs, and NF-κB was downregulated by decreasing the expression of Jagged1. In conclusion, the Jagged1/Notch1 signaling pathway is activated in PMVECs during the pathogenesis of BLM-induced pulmonary fibrosis in rats, and it may induce α-SMA expression via a non-canonical pathway involving NF-κB as the target molecule. The precise mechanism and the molecules involved in this signaling pathway need to be further elucidated.
Collapse
Affiliation(s)
- Qian Yin
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Weihua Wang
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Guangbin Cui
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Linfeng Yan
- Department of Radiology, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| | - Song Zhang
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xian, P. R. China
| |
Collapse
|
15
|
Pérez L, Muñoz-Durango N, Riedel CA, Echeverría C, Kalergis AM, Cabello-Verrugio C, Simon F. Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev 2016; 33:41-54. [PMID: 27692608 DOI: 10.1016/j.cytogfr.2016.09.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/30/2016] [Accepted: 09/22/2016] [Indexed: 12/30/2022]
Abstract
During the last decade, the endothelial-to-mesenchymal transition (EndMT) process has attracted considerable attention due to associations with the onset of certain diseases, such as organ fibrosis and cancer. Several studies have assessed the mechanisms and signaling pathways that regulate endothelial fibrosis in the context of human pathologies. A number of inflammatory mediators, including pro-inflammatory cytokines, growth factors, oxidative stress, and toxins, induce the conversion of endothelial cells into mesenchymal fibroblast-like cells that promote disease progression. This review is separated into five chapters that critically present current knowledge on EndMT in the context of pathology. First, the main characteristics of EndMT are summarized, with a focus on the endothelial protein pattern changes that modulate the expressions of endothelial/fibrotic markers and extracellular matrix proteins. These expressions could serve as mechanisms for explaining potential EndMT contributions to human pathologies in adults. Second, the main findings supporting a connection between EndMT-mediated endothelial fibrosis and inflammatory conditions are presented. These connections could be linked to the onset and progression of pathological conditions. Third, EndMT inducers are described in detail. This includes considerations on the actions of the first and most well-known EndMT inducer, TGF-β; of the most prominent pro-inflammatory cytokines released during inflammation, such as IL 1-β and TNF-α; and of the NF-κB transcription factor, a common player during inflammation-induced EndMT. Furthermore, thorough attention is given to EndMT induction by endotoxins in the context of bacterial infectious diseases. Additionally, the participation of the inflammatory oxidative stress environment in the EndMT induction was also reviewed. Fourth, the pathophysiological findings of inflammation-induced EndMT are presented, and, fifth, special focus is placed on associations with cancer onset and development. Altogether, this review highlights the important role of EndMT-mediated endothelial fibrosis during inflammation in human pathologies.
Collapse
Affiliation(s)
- Lorena Pérez
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Ave. Republica 239, 8370134, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile
| | - Natalia Muñoz-Durango
- Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Ave. Republica 239, 8370134, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile
| | - Cesar Echeverría
- Laboratorio de Bionanotecnologia, Universidad Bernardo O Higgins, General Gana 1780, 8370854, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile; Departamento de Reumatología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Ave. Alameda 340, 8331150, Santiago, Chile; Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Ave. Alameda 340, 8331150, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Ave. Republica 239, 8370134, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile
| | - Felipe Simon
- Departamento de Ciencias Biologicas, Facultad de Ciencias Biologicas and Facultad de Medicina, Universidad Andres Bello, Ave. Republica 239, 8370134, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Ave. Alameda 340, 8331150, Santiago, Chile.
| |
Collapse
|
16
|
Wang F, He W, Fanghui P, Wang L, Fan Q. NF-κBP65 promotes invasion and metastasis of oesophageal squamous cell cancer by regulating matrix metalloproteinase-9 and epithelial-to-mesenchymal transition. Cell Biol Int 2013; 37:780-8. [PMID: 23504993 DOI: 10.1002/cbin.10089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 03/02/2013] [Indexed: 12/15/2022]
Abstract
NF-κB has been recognized as one of the factors responsible for the development of cancer; however, the mechanism by which high expression of NF-κB contributes to the progression of human oesophageal squamous cell cancer (ESCC) is not fully understood. In our investigations, NF-κBP65 was overexpressed in human ESCC tissues, especially in ESCC tissues with deep invasion and lymph node metastasis. Suppression of NF-κBP65 by siRNA decreased the invasion and proliferation ability of EC9706 cells in vitro. Furthermore, siRNA-mediated NF-κBP65 knock-down could lead to the downregulation of MMP-9, a metastasis-related gene. Reduced E-cadherin is a hallmark of invasive carcinomas that have acquired epithelial-mesenchymal transition (EMT) phenotypes and Vimentin is another molecule that is used widely as a marker of the EMT. We found upregulation of E-cadherin expression and downregulation of Vimentin was induced by NF-κBP65 siRNA, which suggests that NF-κBP65 siRNA could inhibit the invasion and proliferation ability of ECSS through attenuating the expression of MMP-9 and EMT. Thus, ESCC NF-κBP65 could be a useful target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Feng Wang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Zheng X, Wu Y, Zhu L, Chen Q, Zhou Y, Yan H, Chen T, Xiao Q, Zhu J, Zhang L. Angiotensin II promotes differentiation of mouse embryonic stem cells to smooth muscle cells through PI3-kinase signaling pathway and NF-κB. Differentiation 2013; 85:41-54. [DOI: 10.1016/j.diff.2012.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 11/21/2012] [Accepted: 11/26/2012] [Indexed: 12/30/2022]
|
18
|
Maleszewska M, Moonen JRAJ, Huijkman N, van de Sluis B, Krenning G, Harmsen MC. IL-1β and TGFβ2 synergistically induce endothelial to mesenchymal transition in an NFκB-dependent manner. Immunobiology 2012; 218:443-54. [PMID: 22739237 DOI: 10.1016/j.imbio.2012.05.026] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/27/2012] [Accepted: 05/30/2012] [Indexed: 01/27/2023]
Abstract
Endothelial to mesenchymal transition (EndMT) contributes to fibrotic diseases. The main inducer of EndMT is TGFβ signaling. TGFβ2 is the dominant isoform in the physiological embryonic EndMT, but its role in the pathological EndMT in the context of inflammatory co-stimulation is not known. The aim of this study was to investigate TGFβ2-induced EndMT in the context of inflammatory IL-1β signaling. Co-stimulation with IL-1β and TGFβ2, but not TGFβ1, caused synergistic induction of EndMT. Also, TGFβ2 was the only TGFβ isoform that was progressively upregulated during EndMT. External IL-1β stimulation was dispensable once EndMT was induced. The inflammatory transcription factor NFκB was upregulated in an additive manner by IL-1β and TGFβ2 co-stimulation. Co-stimulation also led to the nuclear translocation of NFκB which was sustained over long-term treatment. Activation of NFκB was indispensable for the co-induction of EndMT. Our data suggest that the microenvironment at the verge between inflammation (IL-1β) and tissue remodeling (TGFβ2) can strongly promote the process of EndMT. Therefore our findings provide new insights into the mechanisms of pathological EndMT.
Collapse
Affiliation(s)
- Monika Maleszewska
- Department of Pathology and Medical Biology, Cardiovascular Regenerative Medicine Research Group, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Yevzlin AS, Chan MR, Becker YT, Roy-Chaudhury P, Lee T, Becker BN. "Venopathy" at work: recasting neointimal hyperplasia in a new light. Transl Res 2010; 156:216-25. [PMID: 20875897 PMCID: PMC4310704 DOI: 10.1016/j.trsl.2010.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/05/2010] [Accepted: 07/13/2010] [Indexed: 12/26/2022]
Abstract
Hemodialysis vascular access is a unique form of vascular anastomosis. Although it is created in a unique disease state, it has much to offer in terms of insights into venous endothelial and anastomotic biology. The development of neointimal hyperplasia (NH) has been identified as a pathologic entity, decreasing the lifespan and effectiveness of hemodialysis vascular access. Subtle hints and new data suggest a contrary idea-that NH, to some extent an expected response, if controlled properly, may play a beneficial role in the promotion of maturation to a functional access. This review attempts to recast our understanding of NH and redefine research goals for an evolving discipline that focuses on a life-sustaining connection between an artery and vein.
Collapse
Affiliation(s)
- Alexander S Yevzlin
- Departments of Medicine and Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wis, USA
| | | | | | | | | | | |
Collapse
|