1
|
Guo J, Kent A, Davila E. Chimeric non-antigen receptors in T cell-based cancer therapy. J Immunother Cancer 2021; 9:jitc-2021-002628. [PMID: 34344725 PMCID: PMC8336119 DOI: 10.1136/jitc-2021-002628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2021] [Indexed: 01/04/2023] Open
Abstract
Adoptively transferred T cell-based cancer therapies have shown incredible promise in treatment of various cancers. So far therapeutic strategies using T cells have focused on manipulation of the antigen-recognition machinery itself, such as through selective expression of tumor-antigen specific T cell receptors or engineered antigen-recognition chimeric antigen receptors (CARs). While several CARs have been approved for treatment of hematopoietic malignancies, this kind of therapy has been less successful in the treatment of solid tumors, in part due to lack of suitable tumor-specific targets, the immunosuppressive tumor microenvironment, and the inability of adoptively transferred cells to maintain their therapeutic potentials. It is critical for therapeutic T cells to overcome immunosuppressive environmental triggers, mediating balanced antitumor immunity without causing unwanted inflammation or autoimmunity. To address these hurdles, chimeric receptors with distinct signaling properties are being engineered to function as allies of tumor antigen-specific receptors, modulating unique aspects of T cell function without directly binding to antigen themselves. In this review, we focus on the design and function of these chimeric non-antigen receptors, which fall into three broad categories: ‘inhibitory-to-stimulatory’ switch receptors that bind natural ligands, enhanced stimulatory receptors that interact with natural ligands, and synthetic receptor-ligand pairs. Our intent is to offer detailed descriptions that will help readers to understand the structure and function of these receptors, as well as inspire development of additional novel synthetic receptors to improve T cell-based cancer therapy.
Collapse
Affiliation(s)
- Jitao Guo
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, Colorado, USA .,Human Immunology and Immunotherapy Initiative, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA.,University of Colorado Comprehensive Cancer Center, Aurora, Colorado, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Kent A, Longino NV, Christians A, Davila E. Naturally Occurring Genetic Alterations in Proximal TCR Signaling and Implications for Cancer Immunotherapy. Front Immunol 2021; 12:658611. [PMID: 34012443 PMCID: PMC8126620 DOI: 10.3389/fimmu.2021.658611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
T cell-based immunotherapies including genetically engineered T cells, adoptive transfer of tumor-infiltrating lymphocytes, and immune checkpoint blockade highlight the impressive anti-tumor effects of T cells. These successes have provided new hope to many cancer patients with otherwise poor prognoses. However, only a fraction of patients demonstrates durable responses to these forms of therapies and many develop significant immune-mediated toxicity. These heterogeneous clinical responses suggest that underlying nuances in T cell genetics, phenotypes, and activation states likely modulate the therapeutic impact of these approaches. To better characterize known genetic variations that may impact T cell function, we 1) review the function of early T cell receptor-specific signaling mediators, 2) offer a synopsis of known mutations and genetic alterations within the associated molecules, 3) discuss the link between these mutations and human disease and 4) review therapeutic strategies under development or in clinical testing that target each of these molecules for enhancing anti-tumor T cell activity. Finally, we discuss novel engineering approaches that could be designed based on our understanding of the function of these molecules in health and disease.
Collapse
Affiliation(s)
- Andrew Kent
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Natalie V. Longino
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| | - Allison Christians
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
| | - Eduardo Davila
- Division of Medical Oncology, Department of Medicine, University of Colorado, Aurora, CO, United States
- Human Immunology and Immunotherapy Initiative, University of Colorado, Aurora, CO, United States
- University of Colorado Comprehensive Cancer Center, Aurora, CO, United States
- Department of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
3
|
Beijnen EMS, van Haren SD. Vaccine-Induced CD8 + T Cell Responses in Children: A Review of Age-Specific Molecular Determinants Contributing to Antigen Cross-Presentation. Front Immunol 2020; 11:607977. [PMID: 33424857 PMCID: PMC7786054 DOI: 10.3389/fimmu.2020.607977] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Infections are most common and most severe at the extremes of age, the young and the elderly. Vaccination can be a key approach to enhance immunogenicity and protection against pathogens in these vulnerable populations, who have a functionally distinct immune system compared to other age groups. More than 50% of the vaccine market is for pediatric use, yet to date vaccine development is often empiric and not tailored to molecular distinctions in innate and adaptive immune activation in early life. With modern vaccine development shifting from whole-cell based vaccines to subunit vaccines also comes the need for formulations that can elicit a CD8+ T cell response when needed, for example, by promoting antigen cross-presentation. While our group and others have identified many cellular and molecular determinants of successful activation of antigen-presenting cells, B cells and CD4+ T cells in early life, much less is known about the ontogeny of CD8+ T cell induction. In this review, we summarize the literature pertaining to the frequency and phenotype of newborn and infant CD8+ T cells, and any evidence of induction of CD8+ T cells by currently licensed pediatric vaccine formulations. In addition, we review the molecular determinants of antigen cross-presentation on MHC I and successful CD8+ T cell induction and discuss potential distinctions that can be made in children. Finally, we discuss recent advances in development of novel adjuvants and provide future directions for basic and translational research in this area.
Collapse
Affiliation(s)
- Elisabeth M. S. Beijnen
- Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Simon D. van Haren
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
4
|
Jacob L, Sawma P, Garnier N, Meyer LAT, Fritz J, Hussenet T, Spenlé C, Goetz J, Vermot J, Fernandez A, Baumlin N, Aci-Sèche S, Orend G, Roussel G, Crémel G, Genest M, Hubert P, Bagnard D. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide. Oncotarget 2018; 7:57851-57865. [PMID: 27506939 PMCID: PMC5295395 DOI: 10.18632/oncotarget.11072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022] Open
Abstract
The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.
Collapse
Affiliation(s)
- Laurent Jacob
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Paul Sawma
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, CNRS-Aix Marseille Université, Marseille, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France
| | - Lionel A T Meyer
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Justine Fritz
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Thomas Hussenet
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Caroline Spenlé
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky Goetz
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UDS, Illkirch, France
| | - Julien Vermot
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UDS, Illkirch, France
| | - Aurore Fernandez
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Baumlin
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Samia Aci-Sèche
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France.,Current address: Institut de Chimie Organique et Analytique UMR, Université d'Orléans, Orléans, France
| | - Gertraud Orend
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Guy Roussel
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Gérard Crémel
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Monique Genest
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France
| | - Pierre Hubert
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, CNRS-Aix Marseille Université, Marseille, France
| | - Dominique Bagnard
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|