1
|
Versini R, Baaden M, Cavellini L, Cohen MM, Taly A, Fuchs PFJ. Lys716 in the transmembrane domain of yeast mitofusin Fzo1 modulates anchoring and fusion. Structure 2024; 32:1997-2012.e7. [PMID: 39299234 DOI: 10.1016/j.str.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Outer mitochondrial membrane fusion, a vital cellular process, is mediated by mitofusins. However, the underlying molecular mechanism remains elusive. We have performed extensive multiscale molecular dynamics simulations to predict a model of the transmembrane (TM) domain of the yeast mitofusin Fzo1. Coarse-grained simulations of the two TM domain helices, TM1 and TM2, reveal a stable interface, which is controlled by the charge status of residue Lys716. Atomistic replica-exchange simulations further tune our model, which is confirmed by a remarkable agreement with an independent AlphaFold2 (AF2) prediction of Fzo1 in complex with its fusion partner Ugo1. Furthermore, the presence of the TM domain destabilizes the membrane, even more if Lys716 is charged, which can be an asset for initiating fusion. The functional role of Lys716 was confirmed with yeast experiments, which show that mutating Lys716 to a hydrophobic residue prevents mitochondrial fusion.
Collapse
Affiliation(s)
- Raphaëlle Versini
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France; Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France
| | - Marc Baaden
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France
| | - Laetitia Cavellini
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Mickaël M Cohen
- Laboratoire de Biologie Cellulaire et Moléculaire des Eucaryotes, Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, Paris, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, CNRS, Université Paris Cité, 75005 Paris, France.
| | - Patrick F J Fuchs
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, 75005 Paris, France; Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
2
|
Kileeg Z, Haldar A, Khan H, Qamar A, Mott GA. Differential expansion and retention patterns of LRR-RLK genes across plant evolution. PLANT DIRECT 2023; 7:e556. [PMID: 38145254 PMCID: PMC10739070 DOI: 10.1002/pld3.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/03/2023] [Accepted: 11/28/2023] [Indexed: 12/26/2023]
Abstract
To maximize overall fitness, plants must accurately respond to a host of growth, developmental, and environmental signals throughout their life. Many of these internal and external signals are perceived by the leucine-rich repeat receptor-like kinases, which play roles in regulating growth, development, and immunity. This largest family of receptor kinases in plants can be divided into subfamilies based on the conservation of the kinase domain, which demonstrates that shared evolutionary history often indicates shared molecular function. Here we investigate the evolutionary history of this family across the evolution of 112 plant species. We identify lineage-specific expansions of the malectin-domain containing subfamily LRR subfamily I primarily in the Brassicales and bryophytes. Most other plant lineages instead show a large expansion in LRR subfamily XII, which in Arabidopsis is known to contain key receptors in pathogen perception. This striking asymmetric expansion may reveal a dichotomy in the evolutionary history and adaptation strategies employed by plants. A greater understanding of the evolutionary pressures and adaptation strategies acting on members of this receptor family offers a way to improve functional predictions for orphan receptors and simplify the identification of novel stress-related receptors.
Collapse
Affiliation(s)
- Zachary Kileeg
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Aparna Haldar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Hasna Khan
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Arooj Qamar
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
| | - G. Adam Mott
- Department of Biological SciencesUniversity of Toronto ‐ ScarboroughTorontoCanada
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
- Centre for the Analysis of Genome Evolution & FunctionUniversity of TorontoTorontoCanada
| |
Collapse
|
3
|
Reth M. Discovering immunoreceptor coupling and organization motifs. Front Immunol 2023; 14:1253412. [PMID: 37731510 PMCID: PMC10507400 DOI: 10.3389/fimmu.2023.1253412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
The recently determined cryo-EM structures of the T cell antigen receptor (TCR) and B cell antigen receptor (BCR) show in molecular details the interactions of the ligand-binding part with the signaling subunits but they do not reveal the signaling mechanism of these antigen receptors. Without knowing the molecular basis of antigen sensing by these receptors, a rational design of optimal vaccines is not possible. The existence of conserved amino acids (AAs) that are not involved in the subunit interaction suggests that antigen receptors form higher complexes and/or have lateral interactors that control their activity. Here, I describe evolutionary conserved leucine zipper (LZ) motifs within the transmembrane domains (TMD) of antigen and coreceptor components that are likely to be involved in the oligomerization and lateral interaction of antigen receptor complexes on T and B cells. These immunoreceptor coupling and organization motifs (ICOMs) are also found within the TMDs of other important receptor types and viral envelope proteins. This discovery suggests that antigen receptors do not function as isolated entities but rather as part of an ICOM-based interactome that controls their nanoscale organization on resting cells and their dynamic remodeling on activated lymphocytes.
Collapse
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Wu D, Lei J, Zhang Z, Huang F, Buljan M, Yu G. Polymerization in living organisms. Chem Soc Rev 2023; 52:2911-2945. [PMID: 36987988 DOI: 10.1039/d2cs00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Vital biomacromolecules, such as RNA, DNA, polysaccharides and proteins, are synthesized inside cells via the polymerization of small biomolecules to support and multiply life. The study of polymerization reactions in living organisms is an emerging field in which the high diversity and efficiency of chemistry as well as the flexibility and ingeniousness of physiological environment are incisively and vividly embodied. Efforts have been made to design and develop in situ intra/extracellular polymerization reactions. Many important research areas, including cell surface engineering, biocompatible polymerization, cell behavior regulation, living cell imaging, targeted bacteriostasis and precise tumor therapy, have witnessed the elegant demeanour of polymerization reactions in living organisms. In this review, recent advances in polymerization in living organisms are summarized and presented according to different polymerization methods. The inspiration from biomacromolecule synthesis in nature highlights the feasibility and uniqueness of triggering living polymerization for cell-based biological applications. A series of examples of polymerization reactions in living organisms are discussed, along with their designs, mechanisms of action, and corresponding applications. The current challenges and prospects in this lifeful field are also proposed.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
| | - Zhankui Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology Hangzhou, 310014, P. R. China
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China
| | - Marija Buljan
- Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
- School of Medicine, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
5
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
6
|
Podolsky KA, Masubuchi T, Debelouchina GT, Hui E, Devaraj NK. In Situ Assembly of Transmembrane Proteins from Expressed and Synthetic Components in Giant Unilamellar Vesicles. ACS Chem Biol 2022; 17:1015-1021. [PMID: 35482050 PMCID: PMC9255206 DOI: 10.1021/acschembio.2c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reconstituting functional transmembrane (TM) proteins into model membranes is challenging due to the difficulty of expressing hydrophobic TM domains, which often require stabilizing detergents that can perturb protein structure and function. Recent model systems solve this problem by linking the soluble domains of membrane proteins to lipids, using noncovalent conjugation. Herein, we test an alternative solution involving the in vitro assembly of TM proteins from synthetic TM domains and expressed soluble domains using chemoselective peptide ligation. We developed an intein mediated ligation strategy to semisynthesize single-pass TM proteins in synthetic giant unilamellar vesicle (GUV) membranes by covalently attaching soluble protein domains to a synthetic TM polypeptide, avoiding the requirement for detergent. We show that the extracellular domain of programmed cell death protein 1, a mammalian immune checkpoint receptor, retains its ligand-binding function at a membrane interface after ligation to a synthetic TM peptide in GUVs, facilitating the study of receptor-ligand interactions.
Collapse
Affiliation(s)
- K. A. Podolsky
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - T. Masubuchi
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - G. T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A
| | - E. Hui
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, CA, U.S.A
| | - N. K. Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, CA, U.S.A.,Corresponding Author: Neal K. Devaraj,
| |
Collapse
|
7
|
Ma Q, Zou K, Zhang Z, Yang F. GLTM: A Global-Local Attention LSTM Model to Locate Dimer Motif of Single-Pass Membrane Proteins. Front Genet 2022; 13:854571. [PMID: 35368690 PMCID: PMC8965067 DOI: 10.3389/fgene.2022.854571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Single-pass membrane proteins, which constitute up to 50% of all transmembrane proteins, are typically active in significant conformational changes, such as a dimer or other oligomers, which is essential for understanding the function of transmembrane proteins. Finding the key motifs of oligomers through experimental observation is a routine method used in the field to infer the potential conformations of other members of the transmembrane protein family. However, approaches based on experimental observation need to consume a lot of time and manpower costs; moreover, they are hard to reveal the potential motifs. A proposed approach is to build an accurate and efficient transmembrane protein oligomer prediction model to screen the key motifs. In this paper, an attention-based Global-Local structure LSTM model named GLTM is proposed to predict dimers and screen potential dimer motifs. Different from traditional motifs screening based on highly conserved sequence search frame, a self-attention mechanism has been employed in GLTM to locate the highest dimerization score of subsequence fragments and has been proven to locate most known dimer motifs well. The proposed GLTM can reach 97.5% accuracy on the benchmark dataset collected from Membranome2.0. The three characteristics of GLTM can be summarized as follows: First, the original sequence fragment was converted to a set of subsequences which having the similar length of known motifs, and this additional step can greatly enhance the capability of capturing motif pattern; Second, to solve the problem of sample imbalance, a novel data enhancement approach combining improved one-hot encoding with random subsequence windows has been proposed to improve the generalization capability of GLTM; Third, position penalization has been taken into account, which makes a self-attention mechanism focused on special TM fragments. The experimental results in this paper fully demonstrated that the proposed GLTM has a broad application perspective on the location of potential oligomer motifs, and is helpful for preliminary and rapid research on the conformational change of mutants.
Collapse
Affiliation(s)
- Quanchao Ma
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Kai Zou
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Zhihai Zhang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Fan Yang
- School of Communications and Electronics, Jiangxi Science and Technology Normal University, Nanchang, China.,Artificial Intelligence and Bioinformation Cognition Laboratory, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
8
|
Pinto RT, Cardoso TB, Paiva LV, Benedito VA. Genomic and transcriptomic inventory of membrane transporters in coffee: Exploring molecular mechanisms of metabolite accumulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111018. [PMID: 34620453 DOI: 10.1016/j.plantsci.2021.111018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/07/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The genus Coffea (Rubiaceae) encompasses a group of perennial plant species, including a commodity crop from which seeds are roasted, ground, and infused to make one of the most appreciated beverages in the world. As an important tropical crop restricted to specific regions of the world, coffee production is highly susceptible to the effects of environmental instabilities (i.e., local year-to-year weather fluctuations and global climate change) and threatening pest pressures, not to mention an increasing quality rigor by consumers in industrialized countries. Specialized metabolites are substances that largely affect plant-environment interactions as well as how consumers experience agricultural products. Membrane transporters are key targets, albeit understudied, for understanding and tailoring the spatiotemporal distribution of specialized metabolites as they mediate and control molecular trafficking and substance accumulation. Therefore, we analyzed the transportome of C. canephora encoded within the 25,574 protein-coding genes annotated in the genome of this species and identified 1847 putative membrane transporters. Following, we mined 152 transcriptional profiles of C. canephora and C. arabica and performed a comprehensive co-expression analysis to identify transporters potentially involved in the accumulation of specialized metabolites associated with beverage quality and bioactivity attributes. In toto, this report points to an avenue of possibilities on Coffea genomic and transcriptomic data mining for genetic breeding strategies, which can lead to the development of new, resilient varieties for more sustainable coffee production systems.
Collapse
Affiliation(s)
- Renan T Pinto
- Division of Plant and Soil Sciences, West Virginia University, 3425 Agricultural Sciences Building, Morgantown, WV 26506-6108, USA; Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Thiago B Cardoso
- Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Luciano V Paiva
- Molecular Biology Laboratory, Federal University of Lavras, Lavras, MG 37200-000, Brazil
| | - Vagner A Benedito
- Division of Plant and Soil Sciences, West Virginia University, 3425 Agricultural Sciences Building, Morgantown, WV 26506-6108, USA.
| |
Collapse
|
9
|
Small Residues Inhibit Homo-Dimerization of the Human Carbonic Anhydrase XII Transmembrane Domain. MEMBRANES 2021; 11:membranes11070512. [PMID: 34357162 PMCID: PMC8307134 DOI: 10.3390/membranes11070512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022]
Abstract
Amino acids with small side chains and motifs of small residues in a distance of four are rather abundant in human single-span transmembrane helices. While interaction of such helices appears to be common, the role of the small residues in mediating and/or stabilizing transmembrane helix oligomers remains mostly elusive. Yet, the mere existence of (small)xxx(small) motifs in transmembrane helices is frequently used to model dimeric TM helix structures. The single transmembrane helix of the human carbonic anhydrases XII contains a large number of amino acids with small side chains, and critical involvement of these small amino acids in dimerization of the transmembrane domain has been suggested. Using the GALLEX assay, we show here that the transmembrane domain indeed forms a strong transmembrane helix oligomer within a biological membrane. However, single or multiple mutations of small residue(s) to isoleucine almost always increased, rather than decreased, the interaction propensities. Reduction of helix flexibility and of protein–lipid contacts caused by a reduced lipid accessible surface area likely results in stabilization of helix–helix interactions within the membrane.
Collapse
|
10
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
11
|
Lee KM, Kim CH, Kim JH, Kim SS, Cho SH. e-Membranome: A Database for Genome-Wide Analysis of Escherichia coli Outer Membrane Proteins. Curr Pharm Biotechnol 2021; 22:501-507. [PMID: 32520685 DOI: 10.2174/1389201021666200610105549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Lectin-like adhesins of enteric bacterial pathogens such as Escherichia coli are an attractive target for vaccine or drug development. Here, we have developed e-Membranome as a database of genome-wide putative adhesins in Escherichia coli (E. coli). METHODS The outer membrane adhesins were predicted from the annotated genes of Escherichia coli strains using the PSORTb program. Further analysis was performed using Interproscan and the String database. The candidate proteins can be investigated for homology modeling of the Three-Dimensional (3D) structure (I-TASSER version 5.1), epitope region (ABCpred), and the glycan array. RESULTS e-Membranome is implemented using the Django (version 2.2.5) framework. The Web Application Server Apache Tomcat 6.0 is integrated into the platform on Ubuntu Linux (version 16.04). MySQL database (version 5.7) is used as a database engine. The information on homology model of the 3D structure, epitope region, and affinity information from the glycan array will be stored in the e- Membranome database. As a case study, we performed a genome-wide screening of outer membraneembedded proteins from the annotated genes of E. coli using the e-Membranome pipeline. CONCLUSION This platform is expected to be a valuable resource for advancing research of outer membrane proteins for the construction of lectin-glycan interaction network of E. coli. In addition, the e- Membranome pipeline can be extended to other similar biological systems that need to address hostpathogen interactions.
Collapse
Affiliation(s)
- Kang M Lee
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Cheorl-Ho Kim
- Glycobiology Unit, Department of Biological Science, SungKyunkwan University and Samsung Advanced Institute for Health Science and Technology (SAIHST), Suwon, Korea
| | - Jong H Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Sung S Kim
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| | - Seung-Hak Cho
- Division of Bacterial Disease Research, Center for Infectious Disease Research, Korea National Institute of Health, Cheongju, Korea
| |
Collapse
|
12
|
Li J, Xun K, Zheng L, Peng X, Qiu L, Tan W. DNA-Based Dynamic Mimicry of Membrane Proteins for Programming Adaptive Cellular Interactions. J Am Chem Soc 2021; 143:4585-4592. [DOI: 10.1021/jacs.0c11245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Kanyu Xun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liyan Zheng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Kelel M, Yang RB, Tsai TF, Liang PH, Wu FY, Huang YT, Yang MF, Hsiao YP, Wang LF, Tu CF, Liu FT, Lee YL. FUT8 Remodeling of EGFR Regulates Epidermal Keratinocyte Proliferation during Psoriasis Development. J Invest Dermatol 2021; 141:512-522. [PMID: 32888953 DOI: 10.1016/j.jid.2020.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
α-(1,6)-fucosyltransferase 8 (FUT8) is implicated in the pathogenesis of several malignancies, but its role in psoriasis is poorly understood. In this study, we show that FUT8 remodeling of EGFR plays a critical role in the development of psoriasis phenotypes. Notably, elevated FUT8 expression was associated with disease severity in the lesional epidermis of a patient with psoriasis. FUT8 gain of function promoted HaCaT cell proliferation, whereas short hairpin FUT8 reduced cell proliferation and induced a longer S phase with downregulation of cyclin A1 expression. Furthermore, cell proliferation, which is controlled by the activation of EGFR, was shown to be regulated by FUT8 core fucosylation of EGFR. Short hairpin FUT8 significantly reduced EGFR/protein kinase B signaling and slowed EGF‒EGFR complex trafficking to the perinuclear region. Moreover, short hairpin FUT8 reduced ligand-induced EGFR dimerization. Overactivated EGFR was observed in the lesional epidermis of both human patient and psoriasis-like mouse model, whereas conditional knockout of FUT8 in an IL-23 psoriasis-like mouse model ameliorated disease phenotypes and reduced EGFR activation in the epidermis. These findings implied that elevated FUT8 expression in the lesional epidermis is implicated in the development of psoriasis phenotypes, being required for EGFR overactivation and leading to keratinocyte hyperproliferation.
Collapse
Affiliation(s)
- Musin Kelel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Yu Wu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Huang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Fong Yang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital and Chung Shan Medical University, Taichung, Taiwan
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Abstract
Molecular dynamics (MD) simulations have become increasingly useful in the modern drug development process. In this review, we give a broad overview of the current application possibilities of MD in drug discovery and pharmaceutical development. Starting from the target validation step of the drug development process, we give several examples of how MD studies can give important insights into the dynamics and function of identified drug targets such as sirtuins, RAS proteins, or intrinsically disordered proteins. The role of MD in antibody design is also reviewed. In the lead discovery and lead optimization phases, MD facilitates the evaluation of the binding energetics and kinetics of the ligand-receptor interactions, therefore guiding the choice of the best candidate molecules for further development. The importance of considering the biological lipid bilayer environment in the MD simulations of membrane proteins is also discussed, using G-protein coupled receptors and ion channels as well as the drug-metabolizing cytochrome P450 enzymes as relevant examples. Lastly, we discuss the emerging role of MD simulations in facilitating the pharmaceutical formulation development of drugs and candidate drugs. Specifically, we look at how MD can be used in studying the crystalline and amorphous solids, the stability of amorphous drug or drug-polymer formulations, and drug solubility. Moreover, since nanoparticle drug formulations are of great interest in the field of drug delivery research, different applications of nano-particle simulations are also briefly summarized using multiple recent studies as examples. In the future, the role of MD simulations in facilitating the drug development process is likely to grow substantially with the increasing computer power and advancements in the development of force fields and enhanced MD methodologies.
Collapse
|
15
|
RAGE Signaling in Melanoma Tumors. Int J Mol Sci 2020; 21:ijms21238989. [PMID: 33256110 PMCID: PMC7730603 DOI: 10.3390/ijms21238989] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Abstract
Despite recent progresses in its treatment, malignant cutaneous melanoma remains a cancer with very poor prognosis. Emerging evidences suggest that the receptor for advance glycation end products (RAGE) plays a key role in melanoma progression through its activation in both cancer and stromal cells. In tumors, RAGE activation is fueled by numerous ligands, S100B and HMGB1 being the most notable, but the role of many other ligands is not well understood and should not be underappreciated. Here, we provide a review of the current role of RAGE in melanoma and conclude that targeting RAGE in melanoma could be an approach to improve the outcomes of melanoma patients.
Collapse
|
16
|
Stylianakis I, Shalev A, Scheiner S, Sigalas MP, Arkin IT, Glykos N, Kolocouris A. The balance between side-chain and backbone-driven association in folding of the α-helical influenza A transmembrane peptide. J Comput Chem 2020; 41:2177-2188. [PMID: 32735736 DOI: 10.1002/jcc.26381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 11/07/2022]
Abstract
The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.
Collapse
Affiliation(s)
- Ioannis Stylianakis
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ariella Shalev
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Michael P Sigalas
- Department of Chemistry, Laboratory of Applied Quantum Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isaiah T Arkin
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus Givat-Ram, Jerusalem, Israel
| | - Nikolas Glykos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Antonios Kolocouris
- Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
17
|
Ojha R, Pandey RK, Prajapati VK. Vaccinomics strategy to concoct a promising subunit vaccine for visceral leishmaniasis targeting sandfly and leishmania antigens. Int J Biol Macromol 2020; 156:548-557. [DOI: 10.1016/j.ijbiomac.2020.04.097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/19/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
|
18
|
Bhowmick B, Han Q. Understanding Tick Biology and Its Implications in Anti-tick and Transmission Blocking Vaccines Against Tick-Borne Pathogens. Front Vet Sci 2020; 7:319. [PMID: 32582785 PMCID: PMC7297041 DOI: 10.3389/fvets.2020.00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks are obligate blood-feeding ectoparasites that transmit a wide variety of pathogens to animals and humans in many parts of the world. Currently, tick control methods primarily rely on the application of chemical acaricides, which results in the development of resistance among tick populations and environmental contamination. Therefore, an alternative tick control method, such as vaccines have been shown to be a feasible strategy that offers a sustainable, safe, effective, and environment-friendly solution. Nevertheless, novel control methods are hindered by a lack of understanding of tick biology, tick-pathogen-host interface, and identification of effective antigens in the development of vaccines. This review highlights the current knowledge and data on some of the tick-protective antigens that have been identified for the formulation of anti-tick vaccines along with the effects of these vaccines on the control of tick-borne diseases.
Collapse
Affiliation(s)
- Biswajit Bhowmick
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Qian Han
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
- Laboratory of Tropical Veterinary Medicine and Vector Biology, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| |
Collapse
|
19
|
Albrecht C, Appert-Collin A, Bagnard D, Blaise S, Romier-Crouzet B, Efremov RG, Sartelet H, Duca L, Maurice P, Bennasroune A. Transmembrane Peptides as Inhibitors of Protein-Protein Interactions: An Efficient Strategy to Target Cancer Cells? Front Oncol 2020; 10:519. [PMID: 32351895 PMCID: PMC7174899 DOI: 10.3389/fonc.2020.00519] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular functions are regulated by extracellular signals such as hormones, neurotransmitters, matrix ligands, and other chemical or physical stimuli. Ligand binding on its transmembrane receptor induced cell signaling and the recruitment of several interacting partners to the plasma membrane. Nowadays, it is well-established that the transmembrane domain is not only an anchor of these receptors to the membrane, but it also plays a key role in receptor dimerization and activation. Indeed, interactions between transmembrane helices are associated with specific biological activity of the proteins as cell migration, proliferation, or differentiation. Overexpression or constitutive dimerization (due notably to mutations) of these transmembrane receptors are involved in several physiopathological contexts as cancers. The transmembrane domain of tyrosine kinase receptors as ErbB family proteins (implicated in several cancers as HER2 in breast cancer) or other receptors as Neuropilins has been described these last years as a target to inhibit their dimerization/activation using several strategies. In this review, we will focus on the strategy which consists in using peptides to disturb in a specific manner the interactions between transmembrane domains and the signaling pathways (induced by ligand binding) of these receptors involved in cancer. This approach can be extended to inhibit other transmembrane protein dimerization as neuraminidase-1 (the catalytic subunit of elastin receptor complex), Discoidin Domain Receptor 1 (a tyrosine kinase receptor activated by type I collagen) or G-protein coupled receptors (GPCRs) which are involved in cancer processes.
Collapse
Affiliation(s)
- Camille Albrecht
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Aline Appert-Collin
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Dominique Bagnard
- Université de Strasbourg, Strasbourg, France.,INSERM U1119 Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Sébastien Blaise
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Béatrice Romier-Crouzet
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Roman G Efremov
- M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.,Higher School of Economics, Moscow, Russia
| | - Hervé Sartelet
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Laurent Duca
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Pascal Maurice
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Amar Bennasroune
- Université de Reims Champagne-Ardenne, Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
20
|
Bloch E, Sikorski EL, Pontoriero D, Day EK, Berger BW, Lazzara MJ, Thévenin D. Disrupting the transmembrane domain-mediated oligomerization of protein tyrosine phosphatase receptor J inhibits EGFR-driven cancer cell phenotypes. J Biol Chem 2019; 294:18796-18806. [PMID: 31676686 DOI: 10.1074/jbc.ra119.010229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
Receptor protein tyrosine phosphatases (RPTPs) play critical regulatory roles in mammalian signal transduction. However, the structural basis for the regulation of their catalytic activity is not fully understood, and RPTPs are generally not therapeutically targetable. This knowledge gap is partially due to the lack of known natural ligands or selective agonists of RPTPs. Contrary to what is known from structure-function studies of receptor tyrosine kinases (RTKs), RPTP activities have been reported to be suppressed by dimerization, which may prevent RPTPs from accessing their RTK substrates. We report here that homodimerization of protein tyrosine phosphatase receptor J (PTPRJ, also known as DEP-1) is regulated by specific transmembrane (TM) residues. We found that disrupting these interactions destabilizes homodimerization of full-length PTPRJ in cells, reduces the phosphorylation of the known PTPRJ substrate epidermal growth factor receptor (EGFR) and of other downstream signaling effectors, antagonizes EGFR-driven cell phenotypes, and promotes substrate access. We demonstrate these observations in human cancer cells using mutational studies and identified a peptide that binds to the PTPRJ TM domain and represents the first example of an allosteric agonist of RPTPs. The results of our study provide fundamental structural and functional insights into how PTPRJ activity is tuned by TM interactions in cells. Our findings also open up opportunities for developing peptide-based agents that could be used as tools to probe RPTPs' signaling mechanisms or to manage cancers driven by RTK signaling.
Collapse
Affiliation(s)
- Elizabeth Bloch
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Eden L Sikorski
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| | - David Pontoriero
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Evan K Day
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Bryan W Berger
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903
| | - Damien Thévenin
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015.
| |
Collapse
|
21
|
Corradi V, Sejdiu BI, Mesa-Galloso H, Abdizadeh H, Noskov SY, Marrink SJ, Tieleman DP. Emerging Diversity in Lipid-Protein Interactions. Chem Rev 2019; 119:5775-5848. [PMID: 30758191 PMCID: PMC6509647 DOI: 10.1021/acs.chemrev.8b00451] [Citation(s) in RCA: 264] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Indexed: 02/07/2023]
Abstract
Membrane lipids interact with proteins in a variety of ways, ranging from providing a stable membrane environment for proteins to being embedded in to detailed roles in complicated and well-regulated protein functions. Experimental and computational advances are converging in a rapidly expanding research area of lipid-protein interactions. Experimentally, the database of high-resolution membrane protein structures is growing, as are capabilities to identify the complex lipid composition of different membranes, to probe the challenging time and length scales of lipid-protein interactions, and to link lipid-protein interactions to protein function in a variety of proteins. Computationally, more accurate membrane models and more powerful computers now enable a detailed look at lipid-protein interactions and increasing overlap with experimental observations for validation and joint interpretation of simulation and experiment. Here we review papers that use computational approaches to study detailed lipid-protein interactions, together with brief experimental and physiological contexts, aiming at comprehensive coverage of simulation papers in the last five years. Overall, a complex picture of lipid-protein interactions emerges, through a range of mechanisms including modulation of the physical properties of the lipid environment, detailed chemical interactions between lipids and proteins, and key functional roles of very specific lipids binding to well-defined binding sites on proteins. Computationally, despite important limitations, molecular dynamics simulations with current computer power and theoretical models are now in an excellent position to answer detailed questions about lipid-protein interactions.
Collapse
Affiliation(s)
- Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Besian I. Sejdiu
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haydee Mesa-Galloso
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Haleh Abdizadeh
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Sergei Yu. Noskov
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute and Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
22
|
Georgiou CD. Functional Properties of Amino Acid Side Chains as Biomarkers of Extraterrestrial Life. ASTROBIOLOGY 2018; 18:1479-1496. [PMID: 30129781 PMCID: PMC6211371 DOI: 10.1089/ast.2018.1868] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/10/2018] [Indexed: 05/22/2023]
Abstract
The present study proposes to search our solar system (Mars, Enceladus, Europa) for patterns of organic molecules that are universally associated with biological functions and structures. The functions are primarily catalytic because life could only have originated within volume/space-constrained compartments containing chemical reactions catalyzed by certain polymers. The proposed molecular structures are specific groups in the side chains of amino acids with the highest catalytic propensities related to life on Earth, that is, those that most frequently participate as key catalytic groups in the active sites of enzymes such as imidazole, thiol, guanidinium, amide, and carboxyl. Alternatively, these or other catalytic groups can be searched for on non-amino-acid organic molecules, which can be tested for certain hydrolytic catalytic activities. The first scenario assumes that life may have originated in a similar manner as the terrestrial set of α-amino acids, while the second scenario does not set such a requirement. From the catalytic propensity perspective proposed in the first scenario, life must have invented amino acids with high catalytic propensity (His, Cys, Arg) in order to overcome, and be complemented by, the low catalytic propensity of the initially available abiogenic amino acids. The abiogenic and the metabolically invented amino acids with the lowest catalytic propensity can also serve as markers of extraterrestrial life when searching for patterns on the basis of the following functional propensities related to protein secondary/quaternary structure: (1) amino acids that are able to form α-helical intramembrane peptide domains, which can serve as primitive transporters in protocell membrane bilayers and catalysts of simple biochemical reactions; (2) amino acids that tend to accumulate in extremophile proteins of Earth and possibly extraterrestrial life. The catalytic/structural functional propensity approach offers a new perspective in the search for extraterrestrial life and could help unify previous amino acid-based approaches.
Collapse
|
23
|
Jang B, Jung H, Hong H, Oh ES. Syndecan transmembrane domain modulates intracellular signaling by regulating the oligomeric status of the cytoplasmic domain. Cell Signal 2018; 52:121-126. [PMID: 30195038 DOI: 10.1016/j.cellsig.2018.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 11/19/2022]
Abstract
Cell surface receptors must specifically recognize an extracellular ligand and then trigger an appropriate response within the cell. Their general structure enables this, as it comprises an extracellular domain that can bind an extracellular ligand, a cytoplasmic domain that can transduce a signal inside the cell to produce an appropriate response, and a transmembrane domain that links the two and is responsible for accurately delivering specific information on a binding event from the extracellular domain to the cytoplasmic domain, to trigger the proper response. A vast body of research has focused on elucidating the specific mechanisms responsible for regulating extracellular binding events and the subsequent interactions of the cytoplasmic domain with intracellular signaling. In contrast, far less work has focused on examining how the transmembrane domain links these domains and delivers the necessary information. In this review, we propose the importance of the transmembrane domain as a signal regulator. We highlight the cell adhesion receptor, syndecan, as a special case, and propose that the transmembrane domain-mediated oligomerization of the syndecan cytoplasmic domain is a unique regulatory mechanism in syndecan signaling.
Collapse
Affiliation(s)
- Bohee Jang
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Hyejung Jung
- Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea
| | - Heejeong Hong
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eok-Soo Oh
- Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 120-750, Republic of Korea; Skin QC Institute of Dermatological Sciences, Seoul, 03759, Republic of Korea.
| |
Collapse
|
24
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
25
|
Tryptophan-mediated Dimerization of the TssL Transmembrane Anchor Is Required for Type VI Secretion System Activity. J Mol Biol 2018; 430:987-1003. [DOI: 10.1016/j.jmb.2018.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 11/23/2022]
|
26
|
Jacob L, Sawma P, Garnier N, Meyer LAT, Fritz J, Hussenet T, Spenlé C, Goetz J, Vermot J, Fernandez A, Baumlin N, Aci-Sèche S, Orend G, Roussel G, Crémel G, Genest M, Hubert P, Bagnard D. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide. Oncotarget 2018; 7:57851-57865. [PMID: 27506939 PMCID: PMC5295395 DOI: 10.18632/oncotarget.11072] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022] Open
Abstract
The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.
Collapse
Affiliation(s)
- Laurent Jacob
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Paul Sawma
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, CNRS-Aix Marseille Université, Marseille, France
| | - Norbert Garnier
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France
| | - Lionel A T Meyer
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Justine Fritz
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Thomas Hussenet
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Caroline Spenlé
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jacky Goetz
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UDS, Illkirch, France
| | - Julien Vermot
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS/INSERM/UDS, Illkirch, France
| | - Aurore Fernandez
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadège Baumlin
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Samia Aci-Sèche
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France.,Current address: Institut de Chimie Organique et Analytique UMR, Université d'Orléans, Orléans, France
| | - Gertraud Orend
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Guy Roussel
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Gérard Crémel
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Monique Genest
- Centre de Biophysique Moléculaire, UPR 4301, CNRS, Affiliated to the University of Orléans, Orléans, France
| | - Pierre Hubert
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), UMR 7255, CNRS-Aix Marseille Université, Marseille, France
| | - Dominique Bagnard
- MN3T Team, INSERM U1109, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,LabEx Medalis, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
27
|
Evolution and adaptation of single-pass transmembrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:364-377. [DOI: 10.1016/j.bbamem.2017.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/29/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
|
28
|
Koehler Leman J, Bonneau R. A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures. Biochemistry 2017; 57:1939-1944. [PMID: 29185719 DOI: 10.1021/acs.biochem.7b00995] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.
Collapse
Affiliation(s)
- Julia Koehler Leman
- Department of Biology and Center for Genomics and Systems Biology , New York University , New York , New York 10003 , United States.,Center for Computational Biology, Flatiron Institute , Simons Foundation , 162 Fifth Avenue , New York , New York 10010 , United States
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute , Simons Foundation , 162 Fifth Avenue , New York , New York 10010 , United States.,Center for Data Science , New York University , New York , New York 10011 , United States
| |
Collapse
|
29
|
Anderson SM, Mueller BK, Lange EJ, Senes A. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. J Am Chem Soc 2017; 139:15774-15783. [PMID: 29028318 PMCID: PMC5927632 DOI: 10.1021/jacs.7b07505] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GxxxG motif is frequently found at the dimerization interface of a transmembrane structural motif called GASright, which is characterized by a short interhelical distance and a right-handed crossing angle between the helices. In GASright dimers, such as glycophorin A (GpA), BNIP3, and members of the ErbB family, the backbones of the helices are in contact, and they invariably display networks of 4 to 8 weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O═C hydrogen bonds). These networks of weak hydrogen bonds at the helix-helix interface are presumably stabilizing, but their energetic contribution to dimerization has yet to be determined experimentally. Here, we present a computational and experimental structure-based analysis of GASright dimers of different predicted stabilities, which show that a combination of van der Waals packing and Cα-H hydrogen bonding predicts the experimental trend of dimerization propensities. This finding provides experimental support for the hypothesis that the networks of Cα-H hydrogen bonds are major contributors to the free energy of association of GxxxG-mediated dimers. The structural comparison between groups of GASright dimers of different stabilities reveals distinct sequence as well as conformational preferences. Stability correlates with shorter interhelical distances, narrower crossing angles, better packing, and the formation of larger networks of Cα-H hydrogen bonds. The identification of these structural rules provides insight on how nature could modulate stability in GASright and finely tune dimerization to support biological function.
Collapse
Affiliation(s)
- Samantha M Anderson
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Benjamin K Mueller
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Evan J Lange
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
30
|
A membrane-inserted structural model of the yeast mitofusin Fzo1. Sci Rep 2017; 7:10217. [PMID: 28860650 PMCID: PMC5578988 DOI: 10.1038/s41598-017-10687-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 01/23/2023] Open
Abstract
Mitofusins are large transmembrane GTPases of the dynamin-related protein family, and are required for the tethering and fusion of mitochondrial outer membranes. Their full-length structures remain unknown, which is a limiting factor in the study of outer membrane fusion. We investigated the structure and dynamics of the yeast mitofusin Fzo1 through a hybrid computational and experimental approach, combining molecular modelling and all-atom molecular dynamics simulations in a lipid bilayer with site-directed mutagenesis and in vivo functional assays. The predicted architecture of Fzo1 improves upon the current domain annotation, with a precise description of the helical spans linked by flexible hinges, which are likely of functional significance. In vivo site-directed mutagenesis validates salient aspects of this model, notably, the long-distance contacts and residues participating in hinges. GDP is predicted to interact with Fzo1 through the G1 and G4 motifs of the GTPase domain. The model reveals structural determinants critical for protein function, including regions that may be involved in GTPase domain-dependent rearrangements.
Collapse
|
31
|
Schmidt V, Sturgis JN. Making Monomeric Aquaporin Z by Disrupting the Hydrophobic Tetramer Interface. ACS OMEGA 2017; 2:3017-3027. [PMID: 31457635 PMCID: PMC6641176 DOI: 10.1021/acsomega.7b00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/14/2017] [Indexed: 05/31/2023]
Abstract
The assembly of integral membrane proteins depends on the packing of hydrophobic interfaces. The forces driving this packing remain unclear. In this study, we have investigated the effect of mutations in these hydrophobic interfaces on the structure and function of the tetrameric Escherichia coli water channel aquaporin Z (AqpZ). Among the variants, we have constructed several fail to form tetramers and are monomeric. In particular, both of the mutants which are expected to create interfacial cavities become monomeric. Furthermore, one of the mutations can be compensated by a second-site mutation. We suggest that the constraints imposed by the nature of the lipid solvent result in interfaces that respond differently to modifications of residues. Specifically, the large size and complex conformations of lipid molecules are unable to fill small interfacial holes. Further, we observe in AqpZ that there is a link between the oligomeric state and the water channel activity. This despite the robustness of both protein folding and topology, both of which remain unchanged by the mutations we introduce. We propose that this linkage may result from the specific modes of structural flexibility in the monomeric protein.
Collapse
|
32
|
Yamamoto K, Caporini MA, Im SC, Waskell L, Ramamoorthy A. Transmembrane Interactions of Full-length Mammalian Bitopic Cytochrome-P450-Cytochrome-b 5 Complex in Lipid Bilayers Revealed by Sensitivity-Enhanced Dynamic Nuclear Polarization Solid-state NMR Spectroscopy. Sci Rep 2017; 7:4116. [PMID: 28646173 PMCID: PMC5482851 DOI: 10.1038/s41598-017-04219-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 05/11/2017] [Indexed: 01/12/2023] Open
Abstract
The dynamic protein-protein and protein-ligand interactions of integral bitopic membrane proteins with a single membrane-spanning helix play a plethora of vital roles in the cellular processes associated with human health and diseases, including signaling and enzymatic catalysis. While an increasing number of high-resolution structural studies of membrane proteins have successfully manifested an in-depth understanding of their biological functions, intact membrane-bound bitopic protein-protein complexes pose tremendous challenges for structural studies by crystallography or solution NMR spectroscopy. Therefore, there is a growing interest in developing approaches to investigate the functional interactions of bitopic membrane proteins embedded in lipid bilayers at atomic-level. Here we demonstrate the feasibility of dynamic nuclear polarization (DNP) magic-angle-spinning NMR techniques, along with a judiciously designed stable isotope labeling scheme, to measure atomistic-resolution transmembrane-transmembrane interactions of full-length mammalian ~72-kDa cytochrome P450-cytochrome b5 complex in lipid bilayers. Additionally, the DNP sensitivity-enhanced two-dimensional 13C/13C chemical shift correlations via proton driven spin diffusion provided distance constraints to characterize protein-lipid interactions and revealed the transmembrane topology of cytochrome b5. The results reported in this study would pave ways for high-resolution structural and topological investigations of membrane-bound full-length bitopic protein complexes under physiological conditions.
Collapse
Affiliation(s)
- Kazutoshi Yamamoto
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Marc A Caporini
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, USA
| | - Sang-Choul Im
- Department of Anesthesiology, VA Medical Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Lucy Waskell
- Department of Anesthesiology, VA Medical Center, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA.
| |
Collapse
|
33
|
Scanlon DP, Bah A, Krzeminski M, Zhang W, Leduc-Pessah HL, Dong YN, Forman-Kay JD, Salter MW. An evolutionary switch in ND2 enables Src kinase regulation of NMDA receptors. Nat Commun 2017; 8:15220. [PMID: 28508887 PMCID: PMC5440837 DOI: 10.1038/ncomms15220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/10/2017] [Indexed: 12/22/2022] Open
Abstract
The non-receptor tyrosine kinase Src is a key signalling hub for upregulating the function of N-methyl D-aspartate receptors (NMDARs). Src is anchored within the NMDAR complex via NADH dehydrogenase subunit 2 (ND2), a mitochondrially encoded adaptor protein. The interacting regions between Src and ND2 have been broadly identified, but the interaction between ND2 and the NMDAR has remained elusive. Here we generate a homology model of ND2 and dock it onto the NMDAR via the transmembrane domain of GluN1. This interaction is enabled by the evolutionary loss of three helices in bilaterian ND2 proteins compared to their ancestral homologues. We experimentally validate our model and demonstrate that blocking this interaction with an ND2 fragment identified in our experimental studies prevents Src-mediated upregulation of NMDAR currents in neurons. Our findings establish the mode of interaction between an NMDAR accessory protein with one of the core subunits of the receptor. N-methyl D-aspartate receptor (NMDAR) activity is modulated by Src tyrosine kinase via the mitochondrial protein NADH dehydrogenase subunit 2 (ND2). Here the authors show that ND2 interacts with the transmembrane region of NMDAR GluN1 subunit, a process that is crucial for Src regulation of NMDAR activity.
Collapse
Affiliation(s)
- David P Scanlon
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Alaji Bah
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Mickaël Krzeminski
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Wenbo Zhang
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Heather L Leduc-Pessah
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Yi Na Dong
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Julie D Forman-Kay
- Program in Molecular Medicine, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael W Salter
- Program in Neurosciences &Mental Health, The Hospital for Sick Children, 686 Bay St, Toronto, Ontario, Canada M5G 0A4.,Department of Physiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
34
|
TMDOCK: An Energy-Based Method for Modeling α-Helical Dimers in Membranes. J Mol Biol 2017; 429:390-398. [DOI: 10.1016/j.jmb.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/26/2016] [Accepted: 09/02/2016] [Indexed: 11/22/2022]
|
35
|
Steindorf D, Schneider D. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:245-256. [DOI: 10.1016/j.bbamem.2016.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 11/16/2022]
|
36
|
Lomize AL, Lomize MA, Krolicki SR, Pogozheva ID. Membranome: a database for proteome-wide analysis of single-pass membrane proteins. Nucleic Acids Res 2017; 45:D250-D255. [PMID: 27510400 PMCID: PMC5210604 DOI: 10.1093/nar/gkw712] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/31/2016] [Accepted: 08/04/2016] [Indexed: 12/29/2022] Open
Abstract
The Membranome database was developed to assist analysis and computational modeling of single-pass (bitopic) transmembrane (TM) proteins and their complexes by providing structural information about these proteins on a genomic scale. The database currently collects data on >6000 bitopic proteins from Homo sapiens, Arabidopsis thaliana, Dictyostelium discoideum, Saccharomyces cerevisiae, Escherichia coli and Methanocaldococcus jannaschii It presents the following data: (i) hierarchical classification of bitopic proteins into 15 functional classes, 689 structural superfamilies and 1404 families; (ii) 446 complexes of bitopic proteins with known three-dimensional (3D) structures classified into 129 families; (iii) computationally generated three-dimensional models of TM α-helices positioned in membranes; (iv) amino acid sequences, domain architecture, functional annotation and available experimental structures of bitopic proteins; (v) TM topology and intracellular localization, (vi) physical interactions between proteins from the database along with links to other resources. The database is freely accessible at http://membranome.org There is a variety of options for browsing, sorting, searching and retrieval of the content, including downloadable coordinate files of TM domains with calculated membrane boundaries.
Collapse
Affiliation(s)
- Andrei L Lomize
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | | | - Shean R Krolicki
- Department of Computational Science and Engineering, University of Michigan, Ann Arbor, MI 48109-1065, USA
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
37
|
Seppälä S, Solomon KV, Gilmore SP, Henske JK, O'Malley MA. Mapping the membrane proteome of anaerobic gut fungi identifies a wealth of carbohydrate binding proteins and transporters. Microb Cell Fact 2016; 15:212. [PMID: 27998268 PMCID: PMC5168858 DOI: 10.1186/s12934-016-0611-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Engineered cell factories that convert biomass into value-added compounds are emerging as a timely alternative to petroleum-based industries. Although often overlooked, integral membrane proteins such as solute transporters are pivotal for engineering efficient microbial chassis. Anaerobic gut fungi, adapted to degrade raw plant biomass in the intestines of herbivores, are a potential source of valuable transporters for biotechnology, yet very little is known about the membrane constituents of these non-conventional organisms. Here, we mined the transcriptome of three recently isolated strains of anaerobic fungi to identify membrane proteins responsible for sensing and transporting biomass hydrolysates within a competitive and rather extreme environment. RESULTS Using sequence analyses and homology, we identified membrane protein-coding sequences from assembled transcriptomes from three strains of anaerobic gut fungi: Neocallimastix californiae, Anaeromyces robustus, and Piromyces finnis. We identified nearly 2000 transporter components: about half of these are involved in the general secretory pathway and intracellular sorting of proteins; the rest are predicted to be small-solute transporters. Unexpectedly, we found a number of putative sugar binding proteins that are associated with prokaryotic uptake systems; and approximately 100 class C G-protein coupled receptors (GPCRs) with non-canonical putative sugar binding domains. CONCLUSIONS We report the first comprehensive characterization of the membrane protein machinery of biotechnologically relevant anaerobic gut fungi. Apart from identifying conserved machinery for protein sorting and secretion, we identify a large number of putative solute transporters that are of interest for biotechnological applications. Notably, our data suggests that the fungi display a plethora of carbohydrate binding domains at their surface, perhaps as a means to sense and sequester some of the sugars that their biomass degrading, extracellular enzymes produce.
Collapse
Affiliation(s)
- Susanna Seppälä
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800, Kgs. Lyngby, Denmark.,Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Kevin V Solomon
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.,Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Sean P Gilmore
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - John K Henske
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
38
|
Meyer LAT, Fritz J, Pierdant-Mancera M, Bagnard D. Current drug design to target the Semaphorin/Neuropilin/Plexin complexes. Cell Adh Migr 2016; 10:700-708. [PMID: 27906605 PMCID: PMC5160035 DOI: 10.1080/19336918.2016.1261785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022] Open
Abstract
The Semaphorin/Neuropilin/Plexin (SNP) complexes control a wide range of biological processes. Consistently, activity deregulation of these complexes is associated with many diseases. The increasing knowledge on SNP had in turn validated these molecular complexes as novel therapeutic targets. Targeting SNP activities by small molecules, antibodies and peptides or by soluble semaphorins have been proposed as new therapeutic approach. This review is focusing on the latest demonstration of this potential and discusses some of the key questions that need to be addressed before translating SNP targeting into clinically relevant approaches.
Collapse
Affiliation(s)
- Lionel A. T. Meyer
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Justine Fritz
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Marie Pierdant-Mancera
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| | - Dominique Bagnard
- INSERM U1109 – MN3T Lab, Fédération de Médecine Translationnelle, Labex Medalis, University of Strasbourg, France
| |
Collapse
|
39
|
Qureshi T, Goto NK. Impact of Differential Detergent Interactions on Transmembrane Helix Dimerization Affinities. ACS OMEGA 2016; 1:277-285. [PMID: 31457129 PMCID: PMC6640775 DOI: 10.1021/acsomega.6b00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 06/10/2023]
Abstract
Interactions between transmembrane (TM) helices play a critical role in the fundamental processes required for cells to communicate and exchange materials with their surroundings. Our understanding of the factors that promote TM helix interactions has greatly benefited from our ability to study these interactions in the solution phase through the use of membrane-mimetic micelles. However, less is known about the potential influence of juxtamembrane regions flanking the interacting TM helices that may modulate dimerization affinities, even when the interacting surface itself is not altered. To investigate this question, we used solution NMR to quantitate the dimerization affinity of the major coat protein from the M13 bacteriophage in sodium dodecyl sulfate (SDS), a well-characterized model of a single-spanning self-associating TM protein. Here, we showed that a shorter construct lacking the N-terminal amphipathic helix has a higher dimerization affinity relative to that of the full-length protein, with no change in the helical structure between the monomeric and dimeric states in both cases. Although this translated into a 0.6 kcal/mol difference in free energy when the SDS solvent was approximated as a continuous phase, there were deviations from this model at high protein to detergent ratios. Instead, the equilibria were better fit to a model that treats the empty micelle as an active participant in the reaction, giving rise to standard free energies of association that were the same for both full-length and TM-segment constructs. According to this model, the higher apparent affinity of the shorter peptide could be completely explained by the enhanced detergent binding by the monomer relative to that bound by the dimer. Therefore, differential detergent binding between the monomeric and dimeric states provides a mechanism by which TM helix interactions can be modulated by noninteracting juxtamembrane regions.
Collapse
|
40
|
Khadria AS, Senes A. Fluorophores, environments, and quantification techniques in the analysis of transmembrane helix interaction using FRET. Biopolymers 2016; 104:247-64. [PMID: 25968159 DOI: 10.1002/bip.22667] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 12/31/2022]
Abstract
Förster resonance energy transfer (FRET) has been widely used as a spectroscopic tool in vitro to study the interactions between transmembrane (TM) helices in detergent and lipid environments. This technique has been instrumental to many studies that have greatly contributed to quantitative understanding of the physical principles that govern helix-helix interactions in the membrane. These studies have also improved our understanding of the biological role of oligomerization in membrane proteins. In this review, we focus on the combinations of fluorophores used, the membrane mimetic environments, and measurement techniques that have been applied to study model systems as well as biological oligomeric complexes in vitro. We highlight the different formalisms used to calculate FRET efficiency and the challenges associated with accurate quantification. The goal is to provide the reader with a comparative summary of the relevant literature for planning and designing FRET experiments aimed at measuring TM helix-helix associations.
Collapse
Affiliation(s)
- Ambalika S Khadria
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706
| |
Collapse
|
41
|
Trenker R, Call MJ, Call ME. Progress and prospects for structural studies of transmembrane interactions in single-spanning receptors. Curr Opin Struct Biol 2016; 39:115-123. [DOI: 10.1016/j.sbi.2016.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/28/2022]
|
42
|
Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2573-2583. [PMID: 27453198 DOI: 10.1016/j.bbamem.2016.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/15/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022]
Abstract
TOXCAT is a widely used genetic assay to study interactions of transmembrane helices within the inner membrane of the bacterium Escherichia coli. TOXCAT is based on a fusion construct that links a transmembrane domain of interest with a cytoplasmic DNA-binding domain from the Vibrio cholerae ToxR protein. Interaction driven by the transmembrane domain results in dimerization of the ToxR domain, which, in turn, activates the expression of the reporter gene chloramphenicol acetyl transferase (CAT). Quantification of CAT is used as a measure of the ability of the transmembrane domain to self-associate. Because the quantification of CAT is relatively laborious, we developed a high-throughput variant of the assay, TOXGREEN, based on the expression of super-folded GFP and detection of fluorescence directly in unprocessed cell cultures. Careful side-by-side comparison of TOXCAT and TOXGREEN demonstrates that the methods have comparable response, dynamic range, sensitivity and intrinsic variability both in LB and minimal media. The greatly enhanced workflow makes TOXGREEN much more scalable and ideal for screening, since hundreds of constructs can be rapidly assessed in 96 well plates. Even for small scale investigations, TOXGREEN significantly reduces time, labor and cost associated with the procedure. We demonstrate applicability with a large screening for self-association among the transmembrane domains of bitopic proteins of the divisome (FtsL, FtsB, FtsQ, FtsI, FtsN, ZipA and EzrA) belonging to 11 bacterial species. The analysis confirms a previously reported tendency for FtsB to self-associate, and suggests that the transmembrane domains of ZipA, EzrA and FtsN may also possibly oligomerize.
Collapse
|
43
|
Göpfrich K, Li CY, Mames I, Bhamidimarri SP, Ricci M, Yoo J, Mames A, Ohmann A, Winterhalter M, Stulz E, Aksimentiev A, Keyser UF. Ion Channels Made from a Single Membrane-Spanning DNA Duplex. NANO LETTERS 2016; 16:4665-9. [PMID: 27324157 PMCID: PMC4948918 DOI: 10.1021/acs.nanolett.6b02039] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/17/2016] [Indexed: 05/21/2023]
Abstract
Because of their hollow interior, transmembrane channels are capable of opening up pathways for ions across lipid membranes of living cells. Here, we demonstrate ion conduction induced by a single DNA duplex that lacks a hollow central channel. Decorated with six porpyrin-tags, our duplex is designed to span lipid membranes. Combining electrophysiology measurements with all-atom molecular dynamics simulations, we elucidate the microscopic conductance pathway. Ions flow at the DNA-lipid interface as the lipid head groups tilt toward the amphiphilic duplex forming a toroidal pore filled with water and ions. Ionic current traces produced by the DNA-lipid channel show well-defined insertion steps, closures, and gating similar to those observed for traditional protein channels or synthetic pores. Ionic conductances obtained through simulations and experiments are in excellent quantitative agreement. The conductance mechanism realized here with the smallest possible DNA-based ion channel offers a route to design a new class of synthetic ion channels with maximum simplicity.
Collapse
Affiliation(s)
- Kerstin Göpfrich
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Chen-Yu Li
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Iwona Mames
- School of
Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | | | - Maria Ricci
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jejoong Yoo
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Adam Mames
- School of
Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
| | - Alexander Ohmann
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | | | - Eugen Stulz
- School of
Chemistry and Institute for Life Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, United Kingdom
- E-mail: . Phone: +44(0)238059 9369
| | - Aleksei Aksimentiev
- Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
- E-mail: . Phone: +1(0) 217333 6495
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- E-mail: . Phone: +44(0)1223
337272
| |
Collapse
|
44
|
Mohammadiarani H, Vashisth H. All-Atom Structural Models of the Transmembrane Domains of Insulin and Type 1 Insulin-Like Growth Factor Receptors. Front Endocrinol (Lausanne) 2016; 7:68. [PMID: 27379020 PMCID: PMC4913204 DOI: 10.3389/fendo.2016.00068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/07/2016] [Indexed: 11/13/2022] Open
Abstract
The receptor tyrosine kinase superfamily comprises many cell-surface receptors including the insulin receptor (IR) and type 1 insulin-like growth factor receptor (IGF1R) that are constitutively homodimeric transmembrane glycoproteins. Therefore, these receptors require ligand-triggered domain rearrangements rather than receptor dimerization for activation. Specifically, binding of peptide ligands to receptor ectodomains transduces signals across the transmembrane domains for trans-autophosphorylation in cytoplasmic kinase domains. The molecular details of these processes are poorly understood in part due to the absence of structures of full-length receptors. Using MD simulations and enhanced conformational sampling algorithms, we present all-atom structural models of peptides containing 51 residues from the transmembrane and juxtamembrane regions of IR and IGF1R. In our models, the transmembrane regions of both receptors adopt helical conformations with kinks at Pro961 (IR) and Pro941 (IGF1R), but the C-terminal residues corresponding to the juxtamembrane region of each receptor adopt unfolded and flexible conformations in IR as opposed to a helix in IGF1R. We also observe that the N-terminal residues in IR form a kinked-helix sitting at the membrane-solvent interface, while homologous residues in IGF1R are unfolded and flexible. These conformational differences result in a larger tilt-angle of the membrane-embedded helix in IGF1R in comparison to IR to compensate for interactions with water molecules at the membrane-solvent interfaces. Our metastable/stable states for the transmembrane domain of IR, observed in a lipid bilayer, are consistent with a known NMR structure of this domain determined in detergent micelles, and similar states in IGF1R are consistent with a previously reported model of the dimerized transmembrane domains of IGF1R. Our all-atom structural models suggest potentially unique structural organization of kinase domains in each receptor.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, USA
- *Correspondence: Harish Vashisth,
| |
Collapse
|
45
|
One-pot system for synthesis, assembly, and display of functional single-span membrane proteins on oil-water interfaces. Proc Natl Acad Sci U S A 2015; 113:608-13. [PMID: 26721399 DOI: 10.1073/pnas.1504992113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Single-span membrane proteins (ssMPs) represent approximately one-half of all membrane proteins and play important roles in cellular communications. However, like all membrane proteins, ssMPs are prone to misfolding and aggregation because of the hydrophobicity of transmembrane helices, making them difficult to study using common aqueous solution-based approaches. Detergents and membrane mimetics can solubilize membrane proteins but do not always result in proper folding and functionality. Here, we use cell-free protein synthesis in the presence of oil drops to create a one-pot system for the synthesis, assembly, and display of functional ssMPs. Our studies suggest that oil drops prevent aggregation of some in vitro-synthesized ssMPs by allowing these ssMPs to localize on oil surfaces. We speculate that oil drops may provide a hydrophobic interior for cotranslational insertion of the transmembrane helices and a fluidic surface for proper assembly and display of the ectodomains. These functionalized oil drop surfaces could mimic cell surfaces and allow ssMPs to interact with cell surface receptors under an environment closest to cell-cell communication. Using this approach, we showed that apoptosis-inducing human transmembrane proteins, FasL and TRAIL, synthesized and displayed on oil drops induce apoptosis of cultured tumor cells. In addition, we take advantage of hydrophobic interactions of transmembrane helices to manipulate the assembly of ssMPs and create artificial clusters on oil drop surfaces. Thus, by coupling protein synthesis with self-assembly at the water-oil interface, we create a platform that can use recombinant ssMPs to communicate with cells.
Collapse
|
46
|
Kuznetsov AS, Volynsky PE, Efremov RG. Role of the Lipid Environment in the Dimerization of Transmembrane Domains of Glycophorin A. Acta Naturae 2015; 7:122-7. [PMID: 26798499 PMCID: PMC4717257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An efficient computational approach is developed to quantify the free energy of a spontaneous association of the α-helices of proteins in the membrane environment. The approach is based on the numerical decomposition of the free energy profiles of the transmembrane (TM) helices into components corresponding to protein-protein, protein-lipid, and protein-water interactions. The method was tested for the TM segments of human glycophorin A (GpA) and two mutant forms, Gly83Ala and Thr87Val. It was shown that lipids make a significant negative contribution to the free energy of dimerization, while amino acid residues forming the interface of the helix-helix contact may be unfavorable in terms of free energy. The detailed balance between different energy contributions is highly dependent on the amino acid sequence of the TM protein segment. The results show the dominant role of the environment in the interaction of membrane proteins that is changing our notion of the driving force behind the spontaneous association of TM α-helices. Adequate estimation of the contribution of the water-lipid environment thus becomes an extremely urgent task for a rational design of new molecules targeting bitopic membrane proteins, including receptor tyrosine kinases.
Collapse
Affiliation(s)
- A. S. Kuznetsov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - P. E. Volynsky
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
| | - R. G. Efremov
- M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, GSP-7, Miklukho-Maklaya Str., 16/10, 117997, Moscow, Russia
- Higher School of Economics, Myasnitskaya Str., 20, 101000, Moscow, Russia
- Joint Supercomputer Center of Russian Academy of Sciences, Leninskiy Pr., 32a, 119991, Moscow, Russia
| |
Collapse
|
47
|
Abstract
Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane.
Collapse
Affiliation(s)
- Mark G Teese
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| |
Collapse
|
48
|
Richards SA, Stutzer C, Bosman AM, Maritz-Olivier C. Transmembrane proteins--Mining the cattle tick transcriptome. Ticks Tick Borne Dis 2015; 6:695-710. [PMID: 26096851 DOI: 10.1016/j.ttbdis.2015.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/12/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
Abstract
Managing the spread and load of pathogen-transmitting ticks is an important task worldwide. The cattle tick, Rhipicephalus microplus, not only impacts the economy through losses in dairy and meat production, but also raises concerns for human health in regards to the potential of certain transmitted pathogens becoming zoonotic. However, novel strategies to control R. microplus are hindered by lack of understanding tick biology and the discovery of suitable vaccine or acaricide targets. The importance of transmembrane proteins as vaccine targets are well known, as is the case in tick vaccines with Bm86 as antigen. In this study, we describe the localization and functional annotation of 878 putative transmembrane proteins. Thirty proteins could be confirmed in the R. microplus gut using LC-MS/MS analysis and their roles in tick biology are discussed. To the best of our knowledge, 19 targets have not been reported before in any proteomics study in various tick species and the possibility of using the identified proteins as targets for tick control are discussed. Although tissue expression of identified putative proteins through expansive proteomics is necessary, this study demonstrates the possibility of using bioinformatics for the identification of targets for further evaluation in tick control strategies.
Collapse
Affiliation(s)
- Sabine A Richards
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Christian Stutzer
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa
| | - Anna-Mari Bosman
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa
| | - Christine Maritz-Olivier
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
49
|
Chavent M, Chetwynd AP, Stansfeld PJ, Sansom MSP. Dimerization of the EphA1 receptor tyrosine kinase transmembrane domain: Insights into the mechanism of receptor activation. Biochemistry 2014; 53:6641-52. [PMID: 25286141 PMCID: PMC4298228 DOI: 10.1021/bi500800x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
EphA1
is a receptor tyrosine kinase (RTK) that plays a key role
in developmental processes, including guidance of the migration of
axons and cells in the nervous system. EphA1, in common with other
RTKs, contains an N-terminal extracellular domain, a single transmembrane
(TM) α-helix, and a C-terminal intracellular kinase domain.
The TM helix forms a dimer, as seen in recent NMR studies. We have
modeled the EphA1 TM dimer using a multiscale approach combining coarse-grain
(CG) and atomistic molecular dynamics (MD) simulations. The one-dimensional
potential of mean force (PMF) for this system, based on interhelix
separation, has been calculated using CG MD simulations. This provides
a view of the free energy landscape for helix–helix interactions
of the TM dimer in a lipid bilayer. The resulting PMF profiles suggest
two states, consistent with a rotation-coupled activation mechanism.
The more stable state corresponds to a right-handed helix dimer interacting
via an N-terminal glycine zipper motif, consistent with a recent NMR
structure (2K1K). A second metastable state corresponds to a structure in which
the glycine zipper motif is not involved. Analysis of unrestrained
CG MD simulations based on representative models from the PMF calculations
or on the NMR structure reveals possible pathways of interconversion
between these two states, involving helix rotations about their long
axes. This suggests that the interaction of TM helices in EphA1 dimers
may be intrinsically dynamic. This provides a potential mechanism
for signaling whereby extracellular events drive a shift in the repopulation
of the underlying TM helix dimer energy landscape.
Collapse
Affiliation(s)
- Matthieu Chavent
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
50
|
Sawma P, Roth L, Blanchard C, Bagnard D, Crémel G, Bouveret E, Duneau JP, Sturgis JN, Hubert P. Evidence for new homotypic and heterotypic interactions between transmembrane helices of proteins involved in receptor tyrosine kinase and neuropilin signaling. J Mol Biol 2014; 426:4099-4111. [PMID: 25315821 DOI: 10.1016/j.jmb.2014.10.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 10/08/2014] [Indexed: 12/31/2022]
Abstract
Signaling in eukaryotic cells frequently relies on dynamic interactions of single-pass membrane receptors involving their transmembrane (TM) domains. To search for new such interactions, we have developed a bacterial two-hybrid system to screen for both homotypic and heterotypic interactions between TM helices. We have explored the dimerization of TM domains from 16 proteins involved in both receptor tyrosine kinase and neuropilin signaling. This study has revealed several new interactions. We found that the TM domain of Mucin-4, a putative intramembrane ligand for erbB2, dimerizes not only with erbB2 but also with all four members of the erbB family. In the Neuropilin/Plexin family of receptors, we showed that the TM domains of Neuropilins 1 and 2 dimerize with themselves and also with Plexin-A1, Plexin-B1, and L1CAM, but we were unable to observe interactions with several other TM domains notably those of members of the VEGF receptor family. The potentially important Neuropilin 1/Plexin-A1 interaction was confirmed using a surface plasmon resonance assay. This work shows that TM domain interactions can be highly specific. Exploring further the propensities of TM helix-helix association in cell membrane should have important practical implications related to our understanding of the structure-function of bitopic proteins' assembly and subsequent function, especially in the regulation of signal transduction.
Collapse
Affiliation(s)
- Paul Sawma
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Lise Roth
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Cécile Blanchard
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Dominique Bagnard
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Gérard Crémel
- INSERM U 1109 and University of Strasbourg, 3 Avenue Molière, 67200 Strasbourg, France
| | - Emmanuelle Bouveret
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Jean-Pierre Duneau
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - James N Sturgis
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Pierre Hubert
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR 7255, Centre National de la Recherche Scientifique and Aix-Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
| |
Collapse
|