1
|
Sampedro MF, Miño GL, Galetto CD, Sigot V. Spatio-temporal analysis of collective migration in vivoby particle image velocimetry. Phys Biol 2021; 18. [PMID: 34633306 DOI: 10.1088/1478-3975/ac2e71] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/11/2021] [Indexed: 11/11/2022]
Abstract
Collective cell migration drives the formation of complex organ systems as well as certain tumour invasions and wound healing processes. A characteristic feature of many migrating collectives is tissue-scale polarity, whereby 'leader' cells at the tissue edge guide 'followers' cells that become assembled into polarized epithelial tissues. In this study, we employed particle image velocimetry (PIV) as a tool to quantitate local dynamics underlying the migration of the posterior lateral line primordium (pLLP) in zebrafish at a short time scale. Epithelial cadherin-EGFP was the fluorescent tracer in time-lapse images for PIV analysis. At the tissue level, global speed and directionality of the primordium were extracted from spatially averaged velocity fields. Interestingly, fluctuating velocity patterns evolve at the mesoscale level, which distinguishes the pseudo-mesenchymal leading front from the epithelialized trailing edge, and superimpose to the global deceleration of the whole primordium during the separation of a protoneuromast. Local velocity fields obtained by PIV proved sensitive to estimate the migration speed and directionality of the pLLP in zebrafish, predicting protoneuromast separation at short time scales. Finally, the PIV approach may be suitable for analysing the dynamics of otherin vivomodels of collective migration.
Collapse
Affiliation(s)
- María F Sampedro
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Gastón L Miño
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina.,Grupo de Investigación en Microfluídica (GIM), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Carolina D Galetto
- Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| | - Valeria Sigot
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática (IBB-CONICET-UNER), CP 3100 Oro Verde, Argentina.,Laboratorio de Microscopía Aplicada a Estudios Moleculares y Celulares (LAMAE), Facultad de Ingeniería, Universidad Nacional de Entre Ríos, CP 3100 Oro Verde, Argentina
| |
Collapse
|
2
|
Peloggia J, Münch D, Meneses-Giles P, Romero-Carvajal A, Lush ME, Lawson ND, McClain M, Pan YA, Piotrowski T. Adaptive cell invasion maintains lateral line organ homeostasis in response to environmental changes. Dev Cell 2021; 56:1296-1312.e7. [PMID: 33878346 DOI: 10.1016/j.devcel.2021.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/21/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Mammalian inner ear and fish lateral line sensory hair cells (HCs) detect fluid motion to transduce environmental signals. Actively maintained ionic homeostasis of the mammalian inner ear endolymph is essential for HC function. In contrast, fish lateral line HCs are exposed to the fluctuating ionic composition of the aqueous environment. Using lineage labeling, in vivo time-lapse imaging and scRNA-seq, we discovered highly motile skin-derived cells that invade mature mechanosensory organs of the zebrafish lateral line and differentiate into Neuromast-associated (Nm) ionocytes. This invasion is adaptive as it is triggered by environmental fluctuations. Our discovery of Nm ionocytes challenges the notion of an entirely placodally derived lateral line and identifies Nm ionocytes as likely regulators of HC function possibly by modulating the ionic microenvironment. Nm ionocytes provide an experimentally accessible in vivo system to study cell invasion and migration, as well as the physiological adaptation of vertebrate organs to changing environmental conditions.
Collapse
Affiliation(s)
- Julia Peloggia
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Daniela Münch
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Andrés Romero-Carvajal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, Quito, Ecuador
| | - Mark E Lush
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Nathan D Lawson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester 01605, USA
| | - Melainia McClain
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Y Albert Pan
- Center for Neurobiology Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA 24016, USA; Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24060, USA; Department of Psychiatry and Behavioral Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | | |
Collapse
|
3
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
4
|
Urasaki A, Morishita S, Naka K, Uozumi M, Abe K, Huang L, Watase E, Nakagawa O, Kawakami K, Matsui T, Bessho Y, Inagaki N. Shootins mediate collective cell migration and organogenesis of the zebrafish posterior lateral line system. Sci Rep 2019; 9:12156. [PMID: 31434971 PMCID: PMC6704158 DOI: 10.1038/s41598-019-48585-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/07/2019] [Indexed: 01/23/2023] Open
Abstract
The zebrafish sensory posterior lateral line is an excellent model system to study collective cell migration and organogenesis. Shootin1 is a cytoplasmic protein involved in neuronal polarization and axon guidance. Previous studies have shown that shootin1 couples actin filament retrograde flow with extracellular adhesive substrates at the leading edge of axonal growth cones, thereby producing mechanical force for the migration and guidance of axonal growth cones. However, the functions of shootin in peripheral cells remain unknown. Here we identified two novel shootin family members, shootin2 and shootin3. In zebrafish, shootin1 and shootin3 are expressed in the posterior lateral line primordium (PLLP) and neuromasts during embryonic development. A shootin1 mutant displayed a reduced speed of PLLP migration, while shootin1;shootin3 double mutation inhibited cell proliferation in the PLLP. Furthermore, our results suggest that shootin1 and shootin3 positively regulate the number of neuromasts and the number of cells in deposited neuromasts. Our study demonstrates that shootins mediate collective cell migration of the posterior lateral line primordium and formation of neuromasts in zebrafish.
Collapse
Affiliation(s)
- Akihiro Urasaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.,Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Seiya Morishita
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kosuke Naka
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Minato Uozumi
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Kouki Abe
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Liguo Huang
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Emiko Watase
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shinmachi, Suita, Osaka, 564-8565, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Naoyuki Inagaki
- Laboratory of Systems Neurobiology and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
5
|
Chen S, Du Z, Zou J, Qiu S, Rao Z, Liu S, Sun X, Xu Y, Zhu Q, Liu X, Mao HQ, Bai Y, Quan D. Promoting Neurite Growth and Schwann Cell Migration by the Harnessing Decellularized Nerve Matrix onto Nanofibrous Guidance. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17167-17176. [PMID: 31002219 DOI: 10.1021/acsami.9b01066] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synergistic intercellular interactions have been widely acknowledged in tuning functional cell behaviors in vivo, and these interactions have inspired the development of a variety of scaffolds for regenerative medicine. In this paper, the promotion of Schwann cell (SC)-neurite interactions through the use of a nerve extracellular matrix-coated nanofiber composite in vitro was demonstrated using a cell culturing platform consisting of either random or aligned electrospun poly(l-lactic acid) nanofibers and decellularized peripheral nerve matrix gel (pDNM gel) from porcine peripheral nervous tissue. The pDNM-coated nanofiber platform served as a superior substrate for dorsal root ganglion culturing. Furthermore, SC migration was facilitated by pDNM gel coating on the nanofibers, accompanied with much faster axonal extension, in comparison with the effect of topographical guidance from the aligned electrospun fibers only. Finally, the decellularized nerve matrix promoted the ability of SCs to wrap around bundled neurites, triggering axonal remyelination toward nerve fiber functionalization.
Collapse
Affiliation(s)
| | | | - Jianlong Zou
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery , The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou 510080 , China
| | - Shuai Qiu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery , The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou 510080 , China
| | | | | | | | | | - Qingtang Zhu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery , The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou 510080 , China
| | - Xiaolin Liu
- Guangdong Peripheral Nerve Tissue Engineering and Technology Research Center, Department of Orthopedic and Microsurgery , The First Affiliated Hospital of Sun Yat-Sen University , Guangzhou 510080 , China
| | - Hai-Quan Mao
- Translational Tissue Engineering Center, and Department of Biomedical Engineering , Johns Hopkins University School of Medicine , Baltimore , Maryland 21287 , United States
- Institute for NanoBioTechnology, and Department of Materials Science and Engineering , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | | | | |
Collapse
|
6
|
Left/right asymmetric collective migration of parapineal cells is mediated by focal FGF signaling activity in leading cells. Proc Natl Acad Sci U S A 2018; 115:E9812-E9821. [PMID: 30282743 PMCID: PMC6196547 DOI: 10.1073/pnas.1812016115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The ability of cells to collectively interpret surrounding environmental signals underpins their capacity to coordinate their migration in various contexts, including embryonic development and cancer metastasis. One tractable model for studying collective migration is the parapineal, a left-sided group of neurons that arises from bilaterally positioned precursors that undergo a collective migration to the left side of the brain. In zebrafish, the migration of these cells requires Fgf8 and, in this study, we resolve how FGF signaling correlates with-and impacts the migratory dynamics of-the parapineal cell collective. The temporal and spatial dynamics of an FGF reporter transgene reveal that FGF signaling is activated in only few parapineal cells usually located at the leading edge of the parapineal during its migration. Overexpressing a constitutively active Fgf receptor compromises parapineal migration in wild-type embryos, while it partially restores both parapineal migration and mosaic expression of the FGF reporter transgene in fgf8 -/- mutant embryos. Focal activation of FGF signaling in few parapineal cells is sufficient to promote the migration of the whole parapineal collective. Finally, we show that asymmetric Nodal signaling contributes to the restriction and leftwards bias of FGF pathway activation. Our data indicate that the first overt morphological asymmetry in the zebrafish brain is promoted by FGF pathway activation in cells that lead the collective migration of the parapineal to the left. This study shows that cell-state differences in FGF signaling in front versus rear cells is required to promote migration in a model of FGF-dependent collective migration.
Collapse
|
7
|
CXCL12 and MYC control energy metabolism to support adaptive responses after kidney injury. Nat Commun 2018; 9:3660. [PMID: 30202007 PMCID: PMC6131511 DOI: 10.1038/s41467-018-06094-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/15/2018] [Indexed: 01/12/2023] Open
Abstract
Kidney injury is a common complication of severe disease. Here, we report that injuries of the zebrafish embryonal kidney are rapidly repaired by a migratory response in 2-, but not in 1-day-old embryos. Gene expression profiles between these two developmental stages identify cxcl12a and myca as candidates involved in the repair process. Zebrafish embryos with cxcl12a, cxcr4b, or myca deficiency display repair abnormalities, confirming their role in response to injury. In mice with a kidney-specific knockout, Cxcl12 and Myc gene deletions suppress mitochondrial metabolism and glycolysis, and delay the recovery after ischemia/reperfusion injury. Probing these observations in zebrafish reveal that inhibition of glycolysis slows fast migrating cells and delays the repair after injury, but does not affect the slow cell movements during kidney development. Our findings demonstrate that Cxcl12 and Myc facilitate glycolysis to promote fast migratory responses during development and repair, and potentially also during tumor invasion and metastasis.
Collapse
|
8
|
Zinn-Björkman L, Adler FR. Modeling factors that regulate cell cooperativity in the zebrafish posterior lateral line primordium. J Theor Biol 2018; 444:93-99. [PMID: 29470991 DOI: 10.1016/j.jtbi.2018.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/09/2018] [Accepted: 02/12/2018] [Indexed: 01/10/2023]
Abstract
Collective cell migration is an integral part of organismal development. We consider migration of the zebrafish primordium during development of the posterior lateral line, a sensory system that detects water movement patterns. Experiments have shown that the chemokine ligand CXCL12a and its receptors CXCR4b and CXCR7b are key players for driving migration of the primordium, while FGF signaling helps maintain cohesion. In this work, we formulate a mathematical model of a laser ablated primordium separated into two smaller cell collectives: a leading collective that responds to local CXCL12a levels and a trailing collective that migrates up a local FGF gradient. Our model replicates recent experimental results, while also predicting a "runaway" behavior when FGF gradient response is inhibited. We also use our model to estimate diffusion coefficients of CXCL12a and FGF in the lateral line.
Collapse
Affiliation(s)
- Leif Zinn-Björkman
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States.
| | - Frederick R Adler
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, United States; School of Biology, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
9
|
Notch and Fgf signaling during electrosensory versus mechanosensory lateral line organ development in a non-teleost ray-finned fish. Dev Biol 2017; 431:48-58. [PMID: 28818669 PMCID: PMC5650464 DOI: 10.1016/j.ydbio.2017.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/05/2017] [Accepted: 08/11/2017] [Indexed: 02/07/2023]
Abstract
The lateral line system is a useful model for studying the embryonic and evolutionary diversification of different organs and cell types. In jawed vertebrates, this ancestrally comprises lines of mechanosensory neuromasts over the head and trunk, flanked on the head by fields of electrosensory ampullary organs, all innervated by lateral line neurons in cranial lateral line ganglia. Both types of sense organs, and their afferent neurons, develop from cranial lateral line placodes. Current research primarily focuses on the posterior lateral line primordium in zebrafish, which migrates as a cell collective along the trunk; epithelial rosettes form in the trailing zone and are deposited as a line of neuromasts, within which hair cells and supporting cells differentiate. However, in at least some other teleosts (e.g. catfishes) and all non-teleosts, lines of cranial neuromasts are formed by placodes that elongate to form a sensory ridge, which subsequently fragments, with neuromasts differentiating in a line along the crest of the ridge. Furthermore, in many non-teleost species, electrosensory ampullary organs develop from the flanks of the sensory ridge. It is unknown to what extent the molecular mechanisms underlying neuromast formation from the zebrafish migrating posterior lateral line primordium are conserved with the as-yet unexplored molecular mechanisms underlying neuromast and ampullary organ formation from elongating lateral line placodes. Here, we report experiments in an electroreceptive non-teleost ray-finned fish, the Mississippi paddlefish Polyodon spathula, that suggest a conserved role for Notch signaling in regulating lateral line organ receptor cell number, but potentially divergent roles for the fibroblast growth factor signaling pathway, both between neuromasts and ampullary organs, and between paddlefish and zebrafish. Notch and Fgf pathway genes are expressed during paddlefish lateral line development. Fgf ligand genes are differentially expressed in neuromasts and ampullary organs. DAPT treatment results in irregular organ spacing and supernumerary receptor cells. SU5402 treatment yields fewer neuromasts, but ampullary organs form precociously. SU5402 treatment also results in supernumerary receptor cells.
Collapse
|
10
|
Abstract
Perception of the environment in vertebrates relies on a variety of neurosensory mini-organs. These organs develop via a multi-step process that includes placode induction, cell differentiation, patterning and innervation. Ultimately, cells derived from one or more different tissues assemble to form a specific mini-organ that exhibits a particular structure and function. The initial building blocks of these organs are epithelial cells that undergo rearrangements and interact with neighbouring tissues, such as neural crest-derived mesenchymal cells and sensory neurons, to construct a functional sensory organ. In recent years, advances in in vivo imaging methods have allowed direct observation of these epithelial cells, showing that they can be displaced within the epithelium itself via several modes. This Review focuses on the diversity of epithelial cell behaviours that are involved in the formation of small neurosensory organs, using the examples of dental placodes, hair follicles, taste buds, lung neuroendocrine cells and zebrafish lateral line neuromasts to highlight both well-established and newly described modes of epithelial cell motility.
Collapse
Affiliation(s)
- Marika Kapsimali
- Institute of Biology of the Ecole Normale Supérieure, IBENS, Paris 75005, France .,INSERM U1024, Paris 75005, France.,CNRS UMR 8197, Paris 75005, France
| |
Collapse
|
11
|
He Y, Lu X, Qian F, Liu D, Chai R, Li H. Insm1a Is Required for Zebrafish Posterior Lateral Line Development. Front Mol Neurosci 2017; 10:241. [PMID: 28824372 PMCID: PMC5539400 DOI: 10.3389/fnmol.2017.00241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022] Open
Abstract
Insulinoma-associated 1 (Insm1), a zinc-finger transcription factor, is widely expressed in the developing nervous system and plays important roles in cell cycle progression and cell fate specification. However, the functions of Insm1 in the embryonic development of the sensory system and its underlying molecular mechanisms remain largely unexplored. Here, through whole-mount in situ hybridization, we found that the zebrafish insm1a gene was expressed in the posterior lateral line (pLL) system, including both the migrating pLL primordium and the deposited neuromast cells. In order to decipher the specific roles of insm1a in zebrafish pLL development, we inhibited insm1a expression by using a morpholino knockdown strategy. The insm1a morphants exhibited primordium migration defects that resulted in reduced numbers of neuromasts. The inactivation of insm1a reduced the numbers of hair cells in neuromasts, and this defect could be a secondary consequence of disrupting rosette formation in the pLL primordium. Additionally, we showed that insm1a knockdown decreased the proliferation of pLL primordium cells, which likely contributed to these pLL defects. Furthermore, we showed that loss of insm1a resulted in elevated Wnt/β-catenin signaling and downregulation of Fgf target genes in the primordium. Insm1a knockdown also perturbed the expression patterns of chemokine signaling genes. Taken together, this study reveals a pivotal role for Insm1a in regulating pLL development during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Yingzi He
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China.,Key Laboratory of Hearing Medicine of NHFPCShanghai, China
| | - Xiaoling Lu
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China
| | - Fuping Qian
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China
| | - Dong Liu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast UniversityNanjing, China.,Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong UniversityNantong, China.,Research Institute of OtolaryngologyNanjing, China
| | - Huawei Li
- ENT Institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan UniversityShanghai, China.,Key Laboratory of Hearing Medicine of NHFPCShanghai, China.,Institutes of Biomedical Sciences, Fudan UniversityShanghai, China.,Shanghai Engineering Research Centre of Cochlear ImplantShanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan UniversityShanghai, China
| |
Collapse
|
12
|
Zevian SC, Johnson JL, Winterwood NE, Walters KS, Herndon ME, Henry MD, Stipp CS. CD151 promotes α3β1 integrin-dependent organization of carcinoma cell junctions and restrains collective cell invasion. Cancer Biol Ther 2015; 16:1626-40. [PMID: 26418968 PMCID: PMC4846106 DOI: 10.1080/15384047.2015.1095396] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 08/09/2015] [Accepted: 09/12/2015] [Indexed: 01/31/2023] Open
Abstract
Integrins function in collective migration both as major receptors for extracellular matrix and by crosstalk to adherens junctions. Despite extensive research, important questions remain about how integrin signaling mechanisms are integrated into collective migration programs. Tetraspanins form cell surface complexes with a subset of integrins and thus are good candidates for regulating the balance of integrin functional inputs into cell-matrix and cell-cell interactions. For example, tetraspanin CD151 directly associates with α3β1 integrin in carcinoma cells and promotes rapid α3β1-dependent single cell motility, but CD151 also promotes organized adherens junctions and restrains collective carcinoma cell migration on 2D substrates. However, the individual roles of CD151s integrin partners in CD151s pro-junction activity in carcinoma cells were not well understood. Here we find that CD151 promotes organized carcinoma cell junctions via α3β1 integrin, by a mechanism that requires the a3b1 ligand, laminin-332. Loss of CD151 promotes collective 3D invasion and growth in vitro and in vivo, and the enhanced invasion of CD151-silenced cells is α3 integrin dependent, suggesting that CD151 can regulate the balance between α3β1s pro-junction and pro-migratory activities in collective invasion. An analysis of human cancer cases revealed that changes in CD151 expression can be linked to either better or worse clinical outcomes depending on context, including potentially divergent roles for CD151 in different subsets of breast cancer cases. Thus, the role of the CD151-α3β1 complex in carcinoma progression is context dependent, and may depend on the mode of tumor cell invasion.
Collapse
Affiliation(s)
| | | | | | | | - Mary E Herndon
- Department of Biology; University of Iowa; Iowa City, IA USA
| | - Michael D Henry
- Department of Molecular Physiology & Biophysics; University of Iowa; Iowa City, IA USA
- Department of Pathology; University of Iowa; Iowa City, IA USA
- Holden Comprehensive Cancer Center, University of Iowa; Iowa City, IA USA
| | - Christopher S Stipp
- Department of Biology; University of Iowa; Iowa City, IA USA
- Department of Molecular Physiology & Biophysics; University of Iowa; Iowa City, IA USA
- Holden Comprehensive Cancer Center, University of Iowa; Iowa City, IA USA
| |
Collapse
|
13
|
Uriu K, Morelli LG. Collective cell movement promotes synchronization of coupled genetic oscillators. Biophys J 2015; 107:514-526. [PMID: 25028893 DOI: 10.1016/j.bpj.2014.06.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 05/20/2014] [Accepted: 06/10/2014] [Indexed: 12/25/2022] Open
Abstract
Collective cell movement is a crucial component of embryonic development. Intercellular interactions regulate collective cell movement by allowing cells to transfer information. A key question is how collective cell movement itself influences information flow produced in tissues by intercellular interactions. Here, we study the effect of collective cell movement on the synchronization of locally coupled genetic oscillators. This study is motivated by the segmentation clock in zebrafish somitogenesis, where short-range correlated movement of cells has been observed. We describe the segmentation clock tissue by a Voronoi diagram, cell movement by the force balance of self-propelled and repulsive forces between cells, the dynamics of the direction of self-propelled motion, and the synchronization of genetic oscillators by locally coupled phase oscillators. We find that movement with a correlation length of about 2 ∼ 3 cell diameters is optimal for the synchronization of coupled oscillators. Quantification of cell mixing reveals that this short-range correlation of cell movement allows cells to exchange neighbors most efficiently. Moreover, short-range correlated movement strongly destabilizes nonuniform spatial phase patterns, further promoting global synchronization. Our theoretical results suggest that collective cell movement may enhance the synchronization of the segmentation clock in zebrafish somitogenesis. More generally, collective cell movement may promote information flow in tissues by enhancing cell mixing and destabilizing spurious patterns.
Collapse
Affiliation(s)
- Koichiro Uriu
- Theoretical Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, Japan.
| | - Luis G Morelli
- Departamento de Física, FCEyN UBA and IFIBA, CONICET, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Gallardo VE, Varshney GK, Lee M, Bupp S, Xu L, Shinn P, Crawford NP, Inglese J, Burgess SM. Phenotype-driven chemical screening in zebrafish for compounds that inhibit collective cell migration identifies multiple pathways potentially involved in metastatic invasion. Dis Model Mech 2015; 8:565-76. [PMID: 25810455 PMCID: PMC4457032 DOI: 10.1242/dmm.018689] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 03/19/2015] [Indexed: 01/17/2023] Open
Abstract
In the last decade, high-throughput chemical screening has become the dominant approach for discovering novel compounds with therapeutic properties. Automated screening using in vitro or cultured cell assays have yielded thousands of candidate drugs for a variety of biological targets, but these approaches have not resulted in an increase in drug discovery despite major increases in expenditures. In contrast, phenotype-driven screens have shown a much stronger success rate, which is why we developed an in vivo assay using transgenic zebrafish with a GFP-marked migrating posterior lateral line primordium (PLLp) to identify compounds that influence collective cell migration. We then conducted a high-throughput screen using a compound library of 2160 annotated bioactive synthetic compounds and 800 natural products to identify molecules that block normal PLLp migration. We identified 165 compounds that interfere with primordium migration without overt toxicity in vivo. Selected compounds were confirmed in their migration-blocking activity by using additional assays for cell migration. We then proved the screen to be successful in identifying anti-metastatic compounds active in vivo by performing orthotopic tumor implantation assays in mice. We demonstrated that the Src inhibitor SU6656, identified in our screen, can be used to suppress the metastatic capacity of a highly aggressive mammary tumor cell line. Finally, we used CRISPR/Cas9-targeted mutagenesis in zebrafish to genetically validate predicted targets of compounds. This approach demonstrates that the migrating PLLp in zebrafish can be used for large-scale, high-throughput screening for compounds that inhibit collective cell migration and, potentially, anti-metastatic compounds. Summary: We have developed a phenotype-driven screen for identifying new inhibitors of collective cell migration and demonstrated the screen can successfully identify compounds active in vivo and potentially new pathways for targeting cancer metastasis.
Collapse
Affiliation(s)
- Viviana E Gallardo
- Developmental Genomics Section, Genome Technology Branch National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gaurav K Varshney
- Developmental Genomics Section, Genome Technology Branch National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Minnkyong Lee
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sujata Bupp
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisha Xu
- Developmental Genomics Section, Genome Technology Branch National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul Shinn
- Department of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Nigel P Crawford
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James Inglese
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA Department of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Shawn M Burgess
- Developmental Genomics Section, Genome Technology Branch National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Size control during organogenesis: Development of the lateral line organs in zebrafish. Dev Growth Differ 2015; 57:169-78. [DOI: 10.1111/dgd.12196] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/18/2014] [Accepted: 12/18/2014] [Indexed: 12/30/2022]
|
16
|
Venero Galanternik M, Kramer KL, Piotrowski T. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration. Cell Rep 2015; 10:414-428. [PMID: 25600875 PMCID: PMC4531098 DOI: 10.1016/j.celrep.2014.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/17/2014] [Accepted: 12/17/2014] [Indexed: 12/21/2022] Open
Abstract
Collective cell migration is a highly regulated morphogenetic movement during embryonic development and cancer invasion that involves the precise orchestration and integration of cell-autonomous mechanisms and environmental signals. Coordinated lateral line primordium migration is controlled by the regulation of chemokine receptors via compartmentalized Wnt/β-catenin and fibroblast growth factor (Fgf) signaling. Analysis of mutations in two exostosin glycosyltransferase genes (extl3 and ext2) revealed that loss of heparan sulfate (HS) chains results in a failure of collective cell migration due to enhanced Fgf ligand diffusion and loss of Fgf signal transduction. Consequently, Wnt/β-catenin signaling is activated ectopically, resulting in the subsequent loss of the chemokine receptor cxcr7b. Disruption of HS proteoglycan (HSPG) function induces extensive, random filopodia formation, demonstrating that HSPGs are involved in maintaining cell polarity in collectively migrating cells. The HSPGs themselves are regulated by the Wnt/β-catenin and Fgf pathways and thus are integral components of the regulatory network that coordinates collective cell migration with organ specification and morphogenesis.
Collapse
Affiliation(s)
- Marina Venero Galanternik
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Kenneth L Kramer
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | - Tatjana Piotrowski
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Xing C, Gong B, Xue Y, Han Y, Wang Y, Meng A, Jia S. TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. J Mol Cell Biol 2015; 7:48-61. [PMID: 25603803 DOI: 10.1093/jmcb/mjv004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/β-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFβ signaling pathway is involved in pLL development. Here we report a critical role of TGFβ1 in regulating morphogenesis of the pLL primordium (pLLP). The tgfβ1a gene is abundantly expressed in the lateral line primordium. Knockdown or knockout of tgfβ1a leads to a reduction of neuromast number, an increase of inter-neuromast distance, and a reduced number of hair cells. The aberrant morphogenesis in embryos depleted of tgfβ1a correlates with the reduced expression of atoh1a, deltaA, and n-cadherin/cdh2, which are known important regulators of the pLLP morphogenesis. Like tgfβ1a depletion, knockdown of smad5 that expresses in the pLLP, affects pLLP development whereas overexpression of a constitutive active Smad5 isoform rescues the defects in embryos depleted of tgfβ1a, indicating that Smad5 mediates tgfβ1a function in pLLP development. Therefore, TGFβ/Smad5 signaling plays an important role in the zebrafish lateral line formation.
Collapse
Affiliation(s)
- Cencan Xing
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Xue
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchao Han
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixia Wang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Zebrafish prion protein PrP2 controls collective migration process during lateral line sensory system development. PLoS One 2014; 9:e113331. [PMID: 25436888 PMCID: PMC4249873 DOI: 10.1371/journal.pone.0113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/27/2014] [Indexed: 12/05/2022] Open
Abstract
Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2−/− mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion.
Collapse
|
19
|
Allena R, Maini PK. Reaction–Diffusion Finite Element Model of Lateral Line Primordium Migration to Explore Cell Leadership. Bull Math Biol 2014; 76:3028-50. [DOI: 10.1007/s11538-014-0043-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
|
20
|
Itch is required for lateral line development in zebrafish. PLoS One 2014; 9:e111799. [PMID: 25369329 PMCID: PMC4219781 DOI: 10.1371/journal.pone.0111799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/03/2014] [Indexed: 11/20/2022] Open
Abstract
The zebrafish posterior lateral line is formed during early development by the deposition of neuromasts from a migrating primordium. The molecular mechanisms regulating the regional organization and migration of the primordium involve interactions between Fgf and Wnt/β-catenin signaling and the establishment of specific cxcr4b and cxcr7b cytokine receptor expression domains. Itch has been identified as a regulator in several different signaling pathways, including Wnt and Cxcr4 signaling. We identified two homologous itch genes in zebrafish, itcha and itchb, with generalized expression patterns. By reducing itchb expression in particular upon morpholino knockdown, we demonstrated the importance of Itch in regulating lateral line development by perturbing the patterns of cxcr4b and cxcr7b expression. Itch knockdown results in a failure to down-regulate Wnt signaling and overexpression of cxcr4b in the primordium, slowing migration of the posterior lateral line primordium and resulting in abnormal development of the lateral line.
Collapse
|
21
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
22
|
Stark MR. Vertebrate neurogenic placode development: historical highlights that have shaped our current understanding. Dev Dyn 2014; 243:1167-75. [PMID: 24899368 DOI: 10.1002/dvdy.24152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/30/2014] [Indexed: 01/31/2023] Open
Abstract
With the flood of published research encountered today, it is important to occasionally reflect upon how we arrived at our current understanding in a particular scientific discipline, thereby positioning new discoveries into proper context with long-established models. This historical review highlights some of the important scientific contributions in the field of neurogenic placode development. By viewing cumulatively the rich historical data, we can more fully appreciate and apply what has been accomplished. Early descriptive work in fish and experimental approaches in amphibians and chick yielded important conceptual models of placode induction and cellular differentiation. Current efforts to discover genes and their molecular functions continue to expand our understanding of the placodes. Carefully considering the body of work may improve current models and help focus modern experimental design.
Collapse
Affiliation(s)
- Michael R Stark
- Department of Physiology & Developmental Biology, Brigham Young University, Provo, UT, 84602
| |
Collapse
|
23
|
Ridenour DA, McLennan R, Teddy JM, Semerad CL, Haug JS, Kulesa PM. The neural crest cell cycle is related to phases of migration in the head. Development 2014; 141:1095-103. [PMID: 24550117 DOI: 10.1242/dev.098855] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Embryonic cells that migrate long distances must critically balance cell division in order to maintain stream dynamics and population of peripheral targets. Yet details of individual cell division events and how cell cycle is related to phases of migration remain unclear. Here, we examined these questions using the chick cranial neural crest (NC). In vivo time-lapse imaging revealed that a typical migrating NC cell division event lasted ~1 hour and included four stereotypical steps. Cell tracking showed that dividing NC cells maintained position relative to non-dividing neighbors. NC cell division orientation and the time and distance to first division after neural tube exit were stochastic. To address how cell cycle is related to phases of migration, we used FACs analysis to identify significant spatiotemporal differences in NC cell cycle profiles. Two-photon photoconversion of single and small numbers of mKikGR-labeled NC cells confirmed that lead NC cells exhibited a nearly fourfold faster doubling time after populating the branchial arches. By contrast, Ki-67 staining showed that one out of every five later emerging NC cells exited the cell cycle after reaching proximal head targets. The relatively quiescent mitotic activity during NC cell migration to the branchial arches was altered when premigratory cells were reduced in number by tissue ablation. Together, our results provide the first comprehensive details of the pattern and dynamics of cell division events during cranial NC cell migration.
Collapse
Affiliation(s)
- Dennis A Ridenour
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | | | |
Collapse
|
24
|
Noda M, Takii K, Parajuli B, Kawanokuchi J, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A. FGF-2 released from degenerating neurons exerts microglial-induced neuroprotection via FGFR3-ERK signaling pathway. J Neuroinflammation 2014; 11:76. [PMID: 24735639 PMCID: PMC4022102 DOI: 10.1186/1742-2094-11-76] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/26/2014] [Indexed: 12/02/2022] Open
Abstract
Background The accumulation of activated microglia is a hallmark of various neurodegenerative diseases. Microglia may have both protective and toxic effects on neurons through the production of various soluble factors, such as chemokines. Indeed, various chemokines mediate the rapid and accurate migration of microglia to lesions. In the zebra fish, another well-known cellular migrating factor is fibroblast growth factor-2 (FGF-2). Although FGF-2 does exist in the mammalian central nervous system (CNS), it is unclear whether FGF-2 influences microglial function. Methods The extent of FGF-2 release was determined by ELISA, and the expression of its receptors was examined by immunocytochemistry. The effect of several drug treatments on a neuron and microglia co-culture system was estimated by immunocytochemistry, and the neuronal survival rate was quantified. Microglial phagocytosis was evaluated by immunocytochemistry and quantification, and microglial migration was estimated by fluorescence-activated cell sorting (FACS). Molecular biological analyses, such as Western blotting and promoter assay, were performed to clarify the FGF-2 downstream signaling pathway in microglia. Results Fibroblast growth factor-2 is secreted by neurons when damaged by glutamate or oligomeric amyloid β 1-42. FGF-2 enhances microglial migration and phagocytosis of neuronal debris, and is neuroprotective against glutamate toxicity through FGFR3-extracellular signal-regulated kinase (ERK) signaling pathway, which is directly controlled by Wnt signaling in microglia. Conclusions FGF-2 secreted from degenerating neurons may act as a ‘help-me’ signal toward microglia by inducing migration and phagocytosis of unwanted debris.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tetsuya Mizuno
- Department of Neuroimmunology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | | |
Collapse
|
25
|
Loh SL, Teh C, Muller J, Guccione E, Hong W, Korzh V. Zebrafish yap1 plays a role in differentiation of hair cells in posterior lateral line. Sci Rep 2014; 4:4289. [PMID: 24598795 PMCID: PMC3944368 DOI: 10.1038/srep04289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
The evolutionarily conserved Hippo signaling pathway controls organ size by regulating cell proliferation and apoptosis and this process involves Yap1. The zebrafish Yap1 acts during neural differentiation, but its function is not fully understood. The detailed analysis of yap1 expression in proliferative regions, revealed it in the otic placode that gives rise to the lateral line system affected by the morpholino-mediated knockdown of Yap1. The comparative microarray analysis of transcriptome of Yap1-deficient embryos demonstrated changes in expression of many genes, including the Wnt signaling pathway and, in particular, prox1a known for its role in development of mechanoreceptors in the lateral line. The knockdown of Yap1 causes a deficiency of differentiation of mechanoreceptors, and this defect can be rescued by prox1a mRNA. Our studies revealed a role of Yap1 in regulation of Wnt signaling pathway and its target Prox1a during differentiation of mechanosensory cells.
Collapse
Affiliation(s)
- Siau-Lin Loh
- Institute of Molecular and Cell Biology, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Singapore
| | | | | | - Wanjin Hong
- 1] Institute of Molecular and Cell Biology, Singapore [2] Department of Biochemistry, National University of Singapore, Singapore
| | - Vladimir Korzh
- 1] Institute of Molecular and Cell Biology, Singapore [2] Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
26
|
Piotrowski T, Baker CVH. The development of lateral line placodes: taking a broader view. Dev Biol 2014; 389:68-81. [PMID: 24582732 DOI: 10.1016/j.ydbio.2014.02.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
Abstract
The lateral line system of anamniote vertebrates enables the detection of local water movement and weak bioelectric fields. Ancestrally, it comprises neuromasts - small sense organs containing mechanosensory hair cells - distributed in characteristic lines over the head and trunk, flanked on the head by fields of electroreceptive ampullary organs, innervated by afferent neurons projecting respectively to the medial and dorsal octavolateral nuclei in the hindbrain. Given the independent loss of the electrosensory system in multiple lineages, the development and evolution of the mechanosensory and electrosensory components of the lateral line must be dissociable. Nevertheless, the entire system arises from a series of cranial lateral line placodes, which exhibit two modes of sensory organ formation: elongation to form sensory ridges that fragment (with neuromasts differentiating in the center of the ridge, and ampullary organs on the flanks), or migration as collectives of cells, depositing sense organs in their wake. Intensive study of the migrating posterior lateral line placode in zebrafish has yielded a wealth of information concerning the molecular control of migration and neuromast formation in this migrating placode, in this cypriniform teleost species. However, our mechanistic understanding of neuromast and ampullary organ formation by elongating lateral line placodes, and even of other zebrafish lateral line placodes, is sparse or non-existent. Here, we attempt to highlight the diversity of lateral line development and the limits of the current research focus on the zebrafish posterior lateral line placode. We hope this will stimulate a broader approach to this fascinating sensory system.
Collapse
Affiliation(s)
- Tatjana Piotrowski
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO 64110, USA.
| | - Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge CB2 3DY, UK
| |
Collapse
|
27
|
Webb JF, Bird NC, Carter L, Dickson J. Comparative development and evolution of two lateral line phenotypes in lake Malawi cichlids. J Morphol 2014; 275:678-92, cover illustration. [PMID: 24469933 DOI: 10.1002/jmor.20247] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Accepted: 12/08/2013] [Indexed: 11/05/2022]
Abstract
A comparison of the pattern and timing of development of cranial lateral line canals and canal neuromasts in three species of Lake Malawi cichlids, Labeotropheus fuelleborni and Metriaclima zebra (narrow lateral line canals), and Aulonocara baenschi (widened lateral line canals) was used to test the hypothesis that the evolution of widened canals (thought to be an adaptive phenotype in the lateral line system) from narrow canals is the result of heterochrony. Using histological analysis and scanning electron microscopy, this study has provided the first detailed and quantitative description of the development of widened lateral line canals in a teleost, and has demonstrated that: 1) canal neuromast number and the pattern of canal morphogenesis are conserved among species with different adult canal phenotypes, 2) heterochrony ("dissociated heterochrony" in particular) can explain the evolution of widened canals and variation in morphology between canals within a species with respect to canal diameter and neuromast size, and 3) the morphology of the lateral line canals and the dermal bones in which they are found (e.g., the mandibular canal the dentary and anguloarticular bones of the mandible) can evolve independently of each other, thus requiring the addition of another level of complexity to discussions of modularity and integration in the skull of bony fishes.
Collapse
Affiliation(s)
- Jacqueline F Webb
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island, 02881
| | | | | | | |
Collapse
|
28
|
Baker CVH, Modrell MS, Gillis JA. The evolution and development of vertebrate lateral line electroreceptors. ACTA ACUST UNITED AC 2014; 216:2515-22. [PMID: 23761476 DOI: 10.1242/jeb.082362] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electroreception is an ancient vertebrate sense with a fascinating evolutionary history involving multiple losses as well as independent evolution at least twice within teleosts. We review the phylogenetic distribution of electroreception and the morphology and innervation of electroreceptors in different vertebrate groups. We summarise recent work from our laboratory that has confirmed the homology of ampullary electroreceptors in non-teleost jawed vertebrates by showing, in conjunction with previously published work, that these are derived embryonically from lateral line placodes. Finally, we review hypotheses to explain the distribution of electroreception within teleosts, including the hypothesis that teleost ampullary and tuberous electroreceptors evolved via the modification of mechanosensory hair cells in lateral line neuromasts. We conclude that further experimental work on teleost electroreceptor development is needed to test such hypotheses.
Collapse
Affiliation(s)
- Clare V H Baker
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | | | | |
Collapse
|
29
|
Jacques BE, Montgomery WH, Uribe PM, Yatteau A, Asuncion JD, Resendiz G, Matsui JI, Dabdoub A. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line. Dev Neurobiol 2013; 74:438-56. [PMID: 24115534 DOI: 10.1002/dneu.22134] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/09/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
Abstract
Canonical Wnt/β-catenin signaling has been implicated in multiple developmental events including the regulation of proliferation, cell fate, and differentiation. In the inner ear, Wnt/β-catenin signaling is required from the earliest stages of otic placode specification through the formation of the mature cochlea. Within the avian inner ear, the basilar papilla (BP), many Wnt pathway components are expressed throughout development. Here, using reporter constructs for Wnt/β-catenin signaling, we show that this pathway is active throughout the BP (E6-E14) in both hair cells (HCs) and supporting cells. To characterize the role of Wnt/β-catenin activity in developing HCs, we performed gain- and loss-of-function experiments in vitro and in vivo in the chick BP and zebrafish lateral line systems, respectively. Pharmacological inhibition of Wnt signaling in the BP and lateral line neuromasts during the periods of proliferation and HC differentiation resulted in reduced proliferation and decreased HC formation. Conversely, pharmacological activation of this pathway significantly increased the number of HCs in the lateral line and BP. Results demonstrated that this increase was the result of up-regulated cell proliferation within the Sox2-positive cells of the prosensory domains. Furthermore, Wnt/β-catenin activation resulted in enhanced HC regeneration in the zebrafish lateral line following aminoglycoside-induced HC loss. Combined, our data suggest that Wnt/β-catenin signaling specifies the number of cells within the prosensory domain and subsequently the number of HCs. This ability to induce proliferation suggests that the modulation of Wnt/β-catenin signaling could play an important role in therapeutic HC regeneration.
Collapse
Affiliation(s)
- Bonnie E Jacques
- Department of Surgery/Otolaryngology, UCSD School of Medicine, La Jolla, CA, 92093
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Theveneau E, Mayor R. Collective cell migration of epithelial and mesenchymal cells. Cell Mol Life Sci 2013; 70:3481-92. [PMID: 23314710 PMCID: PMC11113167 DOI: 10.1007/s00018-012-1251-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 12/13/2012] [Accepted: 12/20/2012] [Indexed: 12/14/2022]
Abstract
Directional cell migration is required for proper embryogenesis, immunity, and healing, and its underpinning regulatory mechanisms are often hijacked during diseases such as chronic inflammations and cancer metastasis. Studies on migratory epithelial tissues have revealed that cells can move as a collective group with shared responsibilities. First thought to be restricted to proper epithelial cell types able to maintain stable cell-cell junctions, the field of collective cell migration is now widening to include cooperative behavior of mesenchymal cells. In this review, we give an overview of the mechanisms driving collective cell migration in epithelial tissues and discuss how mesenchymal cells can cooperate to behave as a collective in the absence of bona fide cell-cell adhesions.
Collapse
Affiliation(s)
- Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK
| |
Collapse
|
31
|
Gallardo VE, Behra M. Fluorescent activated cell sorting (FACS) combined with gene expression microarrays for transcription enrichment profiling of zebrafish lateral line cells. Methods 2013; 62:226-31. [PMID: 23791746 DOI: 10.1016/j.ymeth.2013.06.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 06/05/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Transgenic lines carrying fluorescent reporter genes like GFP have been of great value in the elucidation of developmental features and physiological processes in various animal models, including zebrafish. The lateral line (LL), which is a fish specific superficial sensory organ, is an emerging organ model for studying complex cellular processes in the context of the whole living animal. Cell migration, mechanosensory cell development/differentiation and regeneration are some examples. This sensory system is made of superficial and sparse small sensory patches called neuromasts, with less than 50 cells in any given patch. The paucity of cells is a real problem in any effort to characterize those cells at the transcriptional level. We describe here a method which we applied to efficiently separate subpopulation of cells of the LL, using two distinct stable transgenic zebrafish lines, Tg(cldnb:gfp) and Tg(tnks1bp1:EGFP). In both cases, the GFP positive (GFP+) cells were separated from the remainder of the animal by using a Fluorescent Activated Cell Sorter (FACS). The transcripts of the GFP+ cells were subsequently analyzed on gene expression microarrays. The combination of FACS and microarrays is an efficient method to establish a transcriptional signature for discrete cell populations which would otherwise be masked in whole animal preparation.
Collapse
Affiliation(s)
- Viviana E Gallardo
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
32
|
Bae YK, Trisnadi N, Kadam S, Stathopoulos A. The role of FGF signaling in guiding coordinate movement of cell groups: guidance cue and cell adhesion regulator? Cell Adh Migr 2012; 6:397-403. [PMID: 23076054 PMCID: PMC3496675 DOI: 10.4161/cam.21103] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cell migration influences cell-cell interactions to drive cell differentiation and organogenesis. To support proper development, cell migration must be regulated both temporally and spatially. Mesoderm cell migration in the Drosophila embryo serves as an excellent model system to study how cell migration is controlled and influences organogenesis. First, mesoderm spreading transforms the embryo into a multilayered form during gastrulation and, subsequently, cells originating from the caudal visceral mesoderm (CVM) migrate along the entire length of the gut. Here we review our studies, which have focused on the role of fibroblast growth factor (FGF) signaling, and compare and contrast these two different cell migration processes: mesoderm spreading and CVM migration. In both cases, FGF acts as a chemoattractant to guide cells’ directional movement but is likely not the only signal that serves this role. Furthermore, FGF likely modulates cell adhesion properties since FGF mutant phenotypes share similarities with those of cell adhesion molecules. Our working hypothesis is that levels of FGF signaling differentially influence cells’ response to result in either directional movement or changes in adhesive properties.
Collapse
Affiliation(s)
- Young-Kyung Bae
- Division of Biology; California Institute of Technology; Pasadena, CA, USA
| | | | | | | |
Collapse
|
33
|
Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer CA, Baker CVH. Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Development 2012; 139:3142-6. [PMID: 22833123 DOI: 10.1242/dev.084046] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ampullary organ electroreceptors excited by weak cathodal electric fields are used for hunting by both cartilaginous and non-teleost bony fishes. Despite similarities of neurophysiology and innervation, their embryonic origins remain controversial: bony fish ampullary organs are derived from lateral line placodes, whereas a neural crest origin has been proposed for cartilaginous fish electroreceptors. This calls into question the homology of electroreceptors and ampullary organs in the two lineages of jawed vertebrates. Here, we test the hypothesis that lateral line placodes form electroreceptors in cartilaginous fishes by undertaking the first long-term in vivo fate-mapping study in any cartilaginous fish. Using DiI tracing for up to 70 days in the little skate, Leucoraja erinacea, we show that lateral line placodes form both ampullary electroreceptors and mechanosensory neuromasts. These data confirm the homology of electroreceptors and ampullary organs in cartilaginous and non-teleost bony fishes, and indicate that jawed vertebrates primitively possessed a lateral line placode-derived system of electrosensory ampullary organs and mechanosensory neuromasts.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge CB2 3DY, UK
| | | | | | | | | | | |
Collapse
|