1
|
Kim HJ, Chang HK, Lee YM, Heo K. Catecholamines Promote Ovarian Cancer Progression through Secretion of CXC-Chemokines. Int J Mol Sci 2023; 24:14104. [PMID: 37762405 PMCID: PMC10532075 DOI: 10.3390/ijms241814104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Considerable evidence has accumulated in the last decade supporting the notion that chronic stress is closely related to the growth, metastasis, and angiogenesis of ovarian cancer. In this study, we analyzed the conditioned media in SKOV3 ovarian cancer cell lines treated with catecholamines to identify secreted proteins responding to chronic stress. Here, we observed that epinephrine and norepinephrine enhanced the secretion and mRNA expression of CXC-chemokines (CXCL1, 2, 3, and 8). Neutralizing antibodies to CXCL8 and CXCL8 receptor (CXCR2) inhibitors significantly reduced catecholamine-mediated invasion of SKOV3 cells. Finally, we found that the concentration of CXCL1 and CXCL8 in the plasma of ovarian cancer patients increased with stage progression. Taken together, these findings suggest that stress-related catecholamines may influence ovarian cancer progression through the secretion of CXC-chemokines.
Collapse
Affiliation(s)
- Hyun Jung Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.J.K.); (Y.M.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| | - Ha Kyun Chang
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Republic of Korea;
| | - Yul Min Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.J.K.); (Y.M.L.)
| | - Kyun Heo
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.J.K.); (Y.M.L.)
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
2
|
Li G, Qian Y, Chen Y, Cao M, Yang X, Kong D, Wang G, An H, Yang N, Huang W, Liu Y. Wip1 contributes to the adaptation of HepG2 human liver cancer cells to stress hormone-induced DNA damage. Oncol Lett 2022; 25:31. [PMID: 36589663 PMCID: PMC9773319 DOI: 10.3892/ol.2022.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Numerous studies have shown that the release of stress hormones resulting from repeated exposure to chronic psychological stress increases DNA damage and promotes tumorigenesis. However, the mechanisms that enable cancerous cells adapt to stress hormone-induced DNA damage and survive remain unclear. The present study aimed to investigate the impact of stress hormones on the survival of liver cancer cells and the underlying mechanism. HepG2 human liver cancer cells were treated with dexamethasone (DEX), epinephrine (EPI) and norepinephrine (NE) and subjected to the testing of DNA damage, cell survival and cell apoptosis by alkaline comet assay, CCK-8 viability assay and flow cytometry, respectively. The protein expression levels of DNA damage response factors were determined by western blotting analysis. The results revealed that treatment of HepG2 cells with DEX, EPI and NE induced DNA damage without affecting cell survival or inducing apoptosis. The protein levels of wild-type p53-induced phosphatase 1 (Wip1), a type 2C family serine/threonine phosphatase, were increased, and the dephosphorylation of DNA damage response factors, including phosphorylated (p-)ataxia-telangiectasia mutated and p-checkpoint kinase 2, occurred following treatment with DEX, EPI and NE. In addition, a cycloheximide chase assay was performed to explore the protein stability under treatment with stress hormones. Compared with vehicle-treated cells, Wip1 exhibited increased protein stability in stress hormone-treated HepG2 cells. Eventually, the depletion of Wip1 using small interfering RNA verified the role of Wip1 in the modulation of stress hormone-induced DNA damage. These findings suggest that cancerous cells likely adapt to stress hormone-induced DNA damage via Wip1 upregulation. The present study provides an insight into the underlying mechanism that links chronic psychological stress with tumor growth and progression.
Collapse
Affiliation(s)
- Gaoxiang Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Yazhi Qian
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yuzhu Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Mingyue Cao
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xiaozhou Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Dexin Kong
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Guiping Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China
| | - Haiyan An
- Department of Anesthesiology, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Nan Yang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Huang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| | - Yanyong Liu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China,Medical College, Tibet University, Lhasa, Tibet Autonomous Region 850000, P.R. China,Correspondence to: Dr Yanyong Liu or Dr Wei Huang, Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, 5 Dong Dan San Tiao, Dong-Cheng, Beijing 100005, P.R. China, E-mail: , E-mail:
| |
Collapse
|
3
|
Eroglu EC, Tunug S, Geckil OF, Gulec UK, Vardar MA, Paydas S. Discovery of metabolomic biomarkers for discriminating platinum-sensitive and platinum-resistant ovarian cancer by using GC-MS. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2021; 27:235-248. [PMID: 34806450 DOI: 10.1177/14690667211057996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study aims to determine ovarian cancer (OC) patients with platinum resistance for alternative treatment protocols by using metabolomic methodologies. Urine and serum samples of platinum-resistant and platinum-sensitive OC were analyzed using GC-MS. After data processing of GC-MS raw data, multivariate analyses were performed to interpret complex data for biologically meaningful information and to identify the biomarkers that cause differences between two groups. The biomarkers were verified after univariate, multivariate, and ROC analysis. Finally, metabolomic pathways related to group separations were specified. The results of biomarker analysis showed that 3,4-dihydroxyphenylacetic acid, 4-hydroxybutyric acid, L-threonine, D- mannose, and sorbitol metabolites were potential biomarkers in urine samples. In serum samples, L-arginine, linoleic acid, L-glutamine, and hypoxanthine were identified as important biomarkers. R2Y, Q2, AUC, sensitivity and specificity values of platinum-resistant and sensitive OC patients' urine and serum samples were 0.85, 0.545, 0.844, 91.30%, 81.08 and 0.570, 0.206, 0.743, 77.78%, 74.28%, respectively. In metabolic pathway analysis of urine samples, tyrosine metabolism and fructose and mannose metabolism were found to be statistically significant (p < 0.05) for the discrimination of the two groups. While 3,4-dihydroxyphenylacetic acid, L-tyrosine, and fumaric acid metabolites were effective in tyrosine metabolism. D-sorbitol and D-mannose metabolites were significantly important in fructose and mannose metabolism. However, seven metabolomic pathways were significant (p < 0.05) in serum samples. In terms of p-value, L-glutamine in the nitrogen metabolic pathway from the first three pathways; L-glutamine and pyroglutamic acid metabolites in D-glutamine and D-glutamate metabolism. In the arginine and proline metabolic pathway, L-arginine, L-proline, and L-ornithine metabolites differed significantly between the two groups.
Collapse
Affiliation(s)
- Evren C Eroglu
- Department of Biotechnology, 37506Cukurova University, Adana, Turkey
- Alata Horticultural Research Institute, Mersin, Turkey
| | - Sule Tunug
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Omer Faruk Geckil
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | | | - Mehmet Ali Vardar
- Department of Gynecological Oncology, 37506Cukurova University, Adana, Turkey
| | - Semra Paydas
- Department of Oncology, 37506Cukurova University, Adana, Turkey
| |
Collapse
|
4
|
Jennings MR, Munn D, Blazeck J. Immunosuppressive metabolites in tumoral immune evasion: redundancies, clinical efforts, and pathways forward. J Immunother Cancer 2021; 9:e003013. [PMID: 34667078 PMCID: PMC8527165 DOI: 10.1136/jitc-2021-003013] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 01/04/2023] Open
Abstract
Tumors accumulate metabolites that deactivate infiltrating immune cells and polarize them toward anti-inflammatory phenotypes. We provide a comprehensive review of the complex networks orchestrated by several of the most potent immunosuppressive metabolites, highlighting the impact of adenosine, kynurenines, prostaglandin E2, and norepinephrine and epinephrine, while discussing completed and ongoing clinical efforts to curtail their impact. Retrospective analyses of clinical data have elucidated that their activity is negatively associated with prognosis in diverse cancer indications, though there is a current paucity of approved therapies that disrupt their synthesis or downstream signaling axes. We hypothesize that prior lukewarm results may be attributed to redundancies in each metabolites' synthesis or signaling pathway and highlight routes for how therapeutic development and patient stratification might proceed in the future.
Collapse
Affiliation(s)
- Maria Rain Jennings
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - David Munn
- Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - John Blazeck
- Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
5
|
Scheau C, Draghici C, Ilie MA, Lupu M, Solomon I, Tampa M, Georgescu SR, Caruntu A, Constantin C, Neagu M, Caruntu C. Neuroendocrine Factors in Melanoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13092277. [PMID: 34068618 PMCID: PMC8126040 DOI: 10.3390/cancers13092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Melanoma is a very aggressive and fatal malignant tumor. While curable if diagnosed in its early stages, advanced melanoma, despite the complex therapeutic approaches, is associated with one of the highest mortality rates. Hence, more and more studies have focused on mechanisms that may contribute to melanoma development and progression. Various studies suggest a role played by neuroendocrine factors which can act directly on tumor cells, modulating their proliferation and metastasis capability, or indirectly through immune or inflammatory processes that impact disease progression. However, there are still multiple areas to explore and numerous unknown features to uncover. A detailed exploration of the mechanisms by which neuroendocrine factors can influence the clinical course of the disease could open up new areas of biomedical research and may lead to the development of new therapeutic approaches in melanoma. Abstract Melanoma is one of the most aggressive skin cancers with a sharp rise in incidence in the last decades, especially in young people. Recognized as a significant public health issue, melanoma is studied with increasing interest as new discoveries in molecular signaling and receptor modulation unlock innovative treatment options. Stress exposure is recognized as an important component in the immune-inflammatory interplay that can alter the progression of melanoma by regulating the release of neuroendocrine factors. Various neurotransmitters, such as catecholamines, glutamate, serotonin, or cannabinoids have also been assessed in experimental studies for their involvement in the biology of melanoma. Alpha-MSH and other neurohormones, as well as neuropeptides including substance P, CGRP, enkephalin, beta-endorphin, and even cellular and molecular agents (mast cells and nitric oxide, respectively), have all been implicated as potential factors in the development, growth, invasion, and dissemination of melanoma in a variety of in vitro and in vivo studies. In this review, we provide an overview of current evidence regarding the intricate effects of neuroendocrine factors in melanoma, including data reported in recent clinical trials, exploring the mechanisms involved, signaling pathways, and the recorded range of effects.
Collapse
Affiliation(s)
- Cristian Scheau
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
| | - Carmen Draghici
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihaela Adriana Ilie
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mihai Lupu
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Iulia Solomon
- Dermatology Research Laboratory, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.D.); (M.A.I.); (M.L.); (I.S.)
| | - Mircea Tampa
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Simona Roxana Georgescu
- Department of Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.T.); (S.R.G.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
- Correspondence:
| | - Carolina Constantin
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
| | - Monica Neagu
- Immunology Department, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.C.); (M.N.)
- Department of Pathology, Colentina University Hospital, 020125 Bucharest, Romania
- Faculty of Biology, University of Bucharest, 076201 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.S.); (C.C.)
- Department of Dermatology, “Prof. N. Paulescu” National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
6
|
Alves JQ, Pernomian L, Silva CD, Gomes MS, de Oliveira AM, da Silva RS. Vascular tone and angiogenesis modulation by catecholamine coordinated to ruthenium. RSC Med Chem 2020; 11:497-510. [PMID: 33479651 DOI: 10.1039/c9md00573k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Catecholamines participate in angiogenesis, an important tumor development process. However, the way catecholamines interact with their receptors has not been completely elucidated, and doubts still remain as to whether these interactions occur between catechol and/or amine sites and particular amino acid residues on the catecholamine receptors. To evaluate how catechol and amine groups contribute to angiogenesis, we immobilized the catechol site through ruthenium ion (Ru) coordination, to obtain species with the general formula [Ru(NH3)4(catecholamine-R)]Cl. We then assessed the angiogenic activity of the complexes in a chorioallantoic membrane model (CAM) and examined vascular reactivity and calcium mobilization in rat aortas and vascular cells. [Ru(NH3)4(catecholamine-R)]Cl acted as partial agonists and/or antagonists of their respective receptors and induced calcium mobilization. [Ru(NH3)4(isoproterenol)]+ [Ru(NH3)4(noradrenaline)]+, and [Ru(NH3)4(adrenaline)]+ behaved as antiangiogenic complexes, whereas [Ru(NH3)4(dopamine)]+ proved to be a proangiogenic complex. In conclusion, catecholamines and [Ru(NH3)4(catecholamine-R)]Cl can modulate angiogenesis, and catechol group availability can modify the way these complexes impact the vascular tone, suggesting that catecholamines and their receptors interact differently after catecholamine coordination to ruthenium.
Collapse
Affiliation(s)
- Jacqueline Querino Alves
- Faculty of Philosophy , Sciences and Letters of Ribeirão Preto - University of São Paulo (USP) , Department of Chemistry , Avenida Bandeirantes, 3900 , postal code 14.040-901 , Ribeirão Preto , São Paulo , Brazil
| | - Laena Pernomian
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP) - University of São Paulo (USP) , Department of Physics and Chemistry , Avenida do Café, s/n , postal code 14.040-903 , Ribeirão Preto , São Paulo , Brazil .
| | - Cássia Dias Silva
- Faculty of Philosophy , Sciences and Letters of Ribeirão Preto - University of São Paulo (USP) , Department of Chemistry , Avenida Bandeirantes, 3900 , postal code 14.040-901 , Ribeirão Preto , São Paulo , Brazil
| | - Mayara Santos Gomes
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP) - University of São Paulo (USP) , Department of Physics and Chemistry , Avenida do Café, s/n , postal code 14.040-903 , Ribeirão Preto , São Paulo , Brazil .
| | - Ana Maria de Oliveira
- Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP) - University of São Paulo (USP) , Department of Physics and Chemistry , Avenida do Café, s/n , postal code 14.040-903 , Ribeirão Preto , São Paulo , Brazil .
| | - Roberto Santana da Silva
- Faculty of Philosophy , Sciences and Letters of Ribeirão Preto - University of São Paulo (USP) , Department of Chemistry , Avenida Bandeirantes, 3900 , postal code 14.040-901 , Ribeirão Preto , São Paulo , Brazil.,Faculty of Pharmaceutical Sciences of Ribeirão Preto (FCFRP) - University of São Paulo (USP) , Department of Physics and Chemistry , Avenida do Café, s/n , postal code 14.040-903 , Ribeirão Preto , São Paulo , Brazil .
| |
Collapse
|
7
|
Beyond the boundaries of cardiology: Still untapped anticancer properties of the cardiovascular system-related drugs. Pharmacol Res 2019; 147:104326. [DOI: 10.1016/j.phrs.2019.104326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/07/2023]
|
8
|
Guo Q, Huang F, Goncalves C, Del Rincón SV, Miller WH. Translation of cancer immunotherapy from the bench to the bedside. Adv Cancer Res 2019; 143:1-62. [PMID: 31202357 DOI: 10.1016/bs.acr.2019.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The tremendous success of immune checkpoint blockades has revolutionized cancer management. Our increased understanding of the cell types that compose the tumor microenvironment (TME), including those of the innate and adaptive immune system, has helped to shape additional immune modulatory strategies in cancer care. Pre-clinical and clinical investigations targeting novel checkpoint interactions and key pathways that regulate cancer immunity continue to increase rapidly. Various combinatorial drug regimens are being tested in attempt to achieve durable response and survival rates of patients with cancer. This review provides an overview of specific components of the TME, an introduction to novel immune checkpoints, followed by a survey of present day and future combination immune modulatory therapies. The idea that the immune system can recognize and destroy tumor cells was first described in the cancer immunosurveillance hypothesis of Burnet and Thomas. However, early experimental evidence failed to support the concept. It was not until the late 1990s when seminal papers clearly showed the existence of cancer immunosurveillance, leading to the cancer immunoediting hypothesis. In this century, progress in the understanding of negative regulators of the immune response led to the discovery that inhibition of these regulators in patients with cancer could lead to dramatic and durable remissions. Drs. Tasuku Honjo and James P. Allison were awarded the Nobel Prize in 2018 for their pioneering work in this field. We now see rapid advances in cancer immunology and emerging effective therapies revolutionizing cancer care across tumor types in the clinic, while pre-clinical research is moving from a focus on the malignant cells themselves to dissect the highly heterogenic and complex multi-cellular tumor microenvironment (TME).
Collapse
Affiliation(s)
- Qianyu Guo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Christophe Goncalves
- Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Sonia V Del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada
| | - Wilson H Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada; Jewish General Hospital, Segal Cancer Centre, Department of Oncology, Montreal, QC, Canada; Rossy Cancer Network, Montreal, QC, Canada.
| |
Collapse
|
9
|
Hall KT, Loscalzo J, Kaptchuk TJ. Systems pharmacogenomics - gene, disease, drug and placebo interactions: a case study in COMT. Pharmacogenomics 2019; 20:529-551. [PMID: 31124409 PMCID: PMC6563236 DOI: 10.2217/pgs-2019-0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023] Open
Abstract
Disease, drugs and the placebos used as comparators are inextricably linked in the methodology of the double-blind, randomized controlled trial. Nonetheless, pharmacogenomics, the study of how individuals respond to drugs based on genetic substrate, focuses primarily on the link between genes and drugs, while the link between genes and disease is often overlooked and the link between genes and placebos is largely ignored. Herein, we use the example of the enzyme catechol-O-methyltransferase to examine the hypothesis that genes can function as pharmacogenomic hubs across system-wide regulatory processes that, if perturbed in andomized controlled trials, can have primary and combinatorial effects on drug and placebo responses.
Collapse
Affiliation(s)
- Kathryn T Hall
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Division of Preventive Medicine, Brigham & Women’s Hospital, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Department of Medicine, Brigham & Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ted J Kaptchuk
- Harvard Medical School, Boston, MA 02115, USA
- Program in Placebo Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
10
|
Li Y, Pan Y, Liu Z. Multiclass Nonnegative Matrix Factorization for Comprehensive Feature Pattern Discovery. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2019; 30:615-629. [PMID: 30010601 DOI: 10.1109/tnnls.2018.2849932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this big data era, interpretable machine learning models are strongly demanded for the comprehensive analytics of large-scale multiclass data. Characterizing all features from such data is a key but challenging step to understand the complexity. However, existing feature selection methods do not meet this need. In this paper, to address this problem, we propose a Bayesian multiclass nonnegative matrix factorization (MC-NMF) model with structured sparsity that is able to discover ubiquitous and class-specific features. Variational update rules were derived for efficient decomposition. In order to relieve the need of model selection and stably describe feature patterns, we further propose MC-NMF with stability selection, an ensemble method that collectively detects feature patterns from many runs of MC-NMF using different hyperparameter values and training subsets. We assessed our models on both simulated count data and multitumor ribonucleic acid-seq data. The experiments revealed that our models were able to recover predefined feature patterns from the simulated data and identify biologically meaningful patterns from the pan-cancer data.
Collapse
|
11
|
Ando H, Kawaai K, Bonneau B, Mikoshiba K. Remodeling of Ca 2+ signaling in cancer: Regulation of inositol 1,4,5-trisphosphate receptors through oncogenes and tumor suppressors. Adv Biol Regul 2017; 68:64-76. [PMID: 29287955 DOI: 10.1016/j.jbior.2017.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 12/22/2022]
Abstract
The calcium ion (Ca2+) is a ubiquitous intracellular signaling molecule that regulates diverse physiological and pathological processes, including cancer. Increasing evidence indicates that oncogenes and tumor suppressors regulate the Ca2+ transport systems. Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) are IP3-activated Ca2+ release channels located on the endoplasmic reticulum (ER). They play pivotal roles in the regulation of cell death and survival by controlling Ca2+ transfer from the ER to mitochondria through mitochondria-associated ER membranes (MAMs). Optimal levels of Ca2+ mobilization to mitochondria are necessary for mitochondrial bioenergetics, whereas excessive Ca2+ flux into mitochondria causes loss of mitochondrial membrane integrity and apoptotic cell death. In addition to well-known functions on outer mitochondrial membranes, B-cell lymphoma 2 (Bcl-2) family proteins are localized on the ER and regulate IP3Rs to control Ca2+ transfer into mitochondria. Another regulatory protein of IP3R, IP3R-binding protein released with IP3 (IRBIT), cooperates with or counteracts the Bcl-2 family member depending on cellular states. Furthermore, several oncogenes and tumor suppressors, including Akt, K-Ras, phosphatase and tensin homolog (PTEN), promyelocytic leukemia protein (PML), BRCA1, and BRCA1 associated protein 1 (BAP1), are localized on the ER or at MAMs and negatively or positively regulate apoptotic cell death through interactions with IP3Rs and regulation of Ca2+ dynamics. The remodeling of Ca2+ signaling by oncogenes and tumor suppressors that interact with IP3Rs has fundamental roles in the pathology of cancers.
Collapse
Affiliation(s)
- Hideaki Ando
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Katsuhiro Kawaai
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Benjamin Bonneau
- Institute NeuroMyoGene (INMG), CNRS UMR 5310, INSERM U1217, Gregor Mendel building, 16, rue Raphaël Dubois, 69100 Villeurbanne, France
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
12
|
Horvathova L, Tillinger A, Padova A, Mravec B. Sympathectomized tumor-bearing mice survive longer but develop bigger melanomas. Endocr Regul 2017; 50:207-214. [PMID: 27941180 DOI: 10.1515/enr-2016-0022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Previously we have shown that 20 days after the tumor cells injection smaller melanomas have been developed in chemically sympathectomized mice in comparison with animals having intact sympathetic nervous system. However, it is known that chemical sympathectomy reduces the sympathetic neurotransmission only temporarily. In the present study, we monitored the survival of the sympathectomized mice with melanoma with an attempt to find out how long the suppressing effect of sympathectomy on the melanoma growth may endure. METHODS The chemical sympathectomy was performed by intraperitoneal injection of neurotoxin 6-hydroxydopamine in male C57BL/6J mice. Seven days later, the animals were injected subcutaneously with B16-F10 melanoma cells. Then, melanoma development, survival of the tumor-bearing mice and weight of the developed tumor mass were analyzed. RESULTS Sympathectomy delayed the development of the palpable tumors (18th day vs.14th day) and significantly prolonged the survival of the tumor-bearing mice (median 34 days vs. 29 days). However, the weight of the developed melanoma was significantly increased in the sympathectomized mice in comparison with the animals having intact sympathetic nervous system. CONCLUSIONS The data of the present study showed that effect of the chemical sympathectomy, performed before the tumor growth induction, persisted even at the time when sympathetic nerves started to regenerate that resulted in a prolonged survival of the mice with melanoma. However, comparing to our previous study, in which we have shown a reduced tumor mass in earlier stages of the tumor growth, specifically 20 days after melanoma cells injection, now we indicate that in later stages of the melanoma progression, the tumor mass was significantly increased in sympathectomized animals. These contra-intuitive findings may indicate that interventions affecting the sympathetic nervous system may exert complex effect on the tumor progression. Based on these data we may suggest that the potential therapeutic interventions affecting the sympathetic signaling in the tumor tissue and its microenvironment should attenuate the sympathetic neurotransmission not only temporarily but till the complete regression of the tumor tissue.
Collapse
|
13
|
Akbar S, Alsharidah MS. Are Beta Blockers New Potential Anticancer Agents? Asian Pac J Cancer Prev 2014; 15:9567-74. [DOI: 10.7314/apjcp.2014.15.22.9567] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Grytli HH, Fagerland MW, Fosså SD, Taskén KA. Association between use of β-blockers and prostate cancer-specific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Urol 2013; 65:635-41. [PMID: 23351721 DOI: 10.1016/j.eururo.2013.01.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/06/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND We recently reported reduced prostate cancer (PCa)-specific mortality for β-blocker users among patients receiving androgen-deprivation therapy in a health survey cohort including 655 PCa patients. Information on clinical characteristics was limited. OBJECTIVE To assess the association between β-blockers and PCa-specific mortality in a cohort of 3561 prostate cancer patients with high-risk or metastatic disease, and to address potential confounding from the use of statins or acetylsalicylic acid (ASA). DESIGN, SETTING, AND PARTICIPANTS Clinical information from all men reported to the Cancer Registry of Norway with a PCa diagnosis between 2004 and 2009 (n=24 571) was coupled with information on filled prescriptions between 2004 and 2011 from the Norwegian Prescription Database. Exclusion criteria were low- or intermediate-risk disease; planned radiotherapy or radical prostatectomy; initiation of β-blocker, ASA, or statin use after diagnosis where applicable; missing information on baseline Gleason score, prostate-specific antigen level, T stage or performance status; and missing follow-up. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Cox proportional hazards modelling and competing risk regression modelling were used to analyse the effects of β-blocker use on all-cause and PCa-specific mortality, respectively. Differences between β-blocker users and nonusers regarding baseline clinical characteristics were assessed by the Wilcoxon-Mann-Whitney U test, Pearson chi-square test, and Student t test. RESULTS AND LIMITATIONS Median follow-up was 39 mo. β-Blocker use was associated with reduced PCa mortality (adjusted subhazard ratio: 0.79; 95% confidence interval [CI], 0.68-0.91; p value: 0.001). The observed reduction in PCa mortality was independent of the use of statins or ASA. We observed no association with all-cause mortality (adjusted hazard ratio: 0.92; 95% CI, 0.83-1.02). The main limitations of the study were the observational study design and short follow-up. CONCLUSIONS β-Blocker use was associated with reduced PCa-specific mortality in patients with high-risk or metastatic disease at the time of diagnosis. Our findings need validation from further observational studies.
Collapse
Affiliation(s)
- Helene Hartvedt Grytli
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Sophie D Fosså
- Department of Oncology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kristin Austlid Taskén
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|