1
|
Higgins TA, Patton DJ, Shimko-Lofano IM, Eller TL, Molinari R, Sandey M, Ismail A, Smith BF, Agarwal P. The Development and Characterization of a Next-Generation Oncolytic Virus Armed with an Anti-PD-1 sdAb for Osteosarcoma Treatment In Vitro. Cells 2024; 13:351. [PMID: 38391964 PMCID: PMC10886739 DOI: 10.3390/cells13040351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Osteosarcoma (OS) is a primary bone malignancy characterized by an aggressive nature, limited treatment options, low survival rate, and poor patient prognosis. Conditionally replicative adenoviruses (CRAds) armed with immune checkpoint inhibitors hold great potential for enhanced therapeutic efficacy. The present study aims to investigate the anti-tumor efficacy of CAV2-AU-M2, a CAV2-based CRAd armed with an anti-PD-1 single-domain antibody (sdAb), against OS cell lines in vitro. The infection, conditional replication, cytopathic effects, and cytotoxicity of CAV2-AU-M2 were tested in four different OS cell lines in two-dimensional (2D) and three-dimensional (3D) cell cultures. CAV2-AU-M2 showed selective replication in the OS cells and induced efficient tumor cell lysis and death. Moreover, CAV2-AU-M2 produced an anti-PD-1 sdAb that demonstrated effective binding to the PD-1 receptors. This study demonstrated the first CRAd armed with an anti-PD-1 sdAb. This combined approach of two distinct immunotherapies is intended to enhance the anti-tumor immune response in the tumor microenvironment.
Collapse
Affiliation(s)
- Theresa A. Higgins
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
| | - Daniel J. Patton
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
| | - Isabella M. Shimko-Lofano
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
| | - Timothy L. Eller
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
| | - Roberto Molinari
- Department of Mathematics and Statistics, College of Sciences and Mathematics, Auburn University, Auburn, AL 36849, USA;
| | - Maninder Sandey
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Aliaa Ismail
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
- Department of Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 8366004, Egypt
| | - Bruce F. Smith
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Payal Agarwal
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (T.A.H.); (D.J.P.); (I.M.S.-L.); (T.L.E.); (M.S.); (A.I.); (B.F.S.)
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
2
|
Characterization of Canine Adenovirus Type 2 Virus Infection Pattern in Canine and Human Cell Lines. Adv Virol 2022; 2022:3658970. [PMID: 36591003 PMCID: PMC9800077 DOI: 10.1155/2022/3658970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Canine adenovirus type 2 (CAV2) is a nonhuman adenovirus with a known ability to infect human and canine cells. The cell surface receptors involved in CAV2 transduction are still unknown. Identification of these would provide valuable information to develop enhanced gene delivery tools and better understand CAV2 biology. CAV2 is erroneously grouped with Ad5 based on the knowledge that CAV2 may transduce using CAR. Therefore, we have evaluated CAV2 and Ad5 (CAV2GFP, Ad5G/L) infection patterns in various canine and human cell lines to determine their different tropisms. Our research demonstrates that CAV2 can successfully infect cells that Ad5 does not infect, and CAV2 infections do not correlate with CAR expression. CAV2 can infect cells that have a low or minimal expression of CAR. Our data suggest that CAV2 transduction is not dependent on the CAR receptor, and thus, it is crucial to find novel CAV2 receptors.
Collapse
|
3
|
Agarwal P, Gammon EA, Sajib AM, Sandey M, Smith BF. Cell-Surface Integrins and CAR Are Both Essential for Adenovirus Type 5 Transduction of Canine Cells of Lymphocytic Origin. PLoS One 2017; 12:e0169532. [PMID: 28068367 PMCID: PMC5222425 DOI: 10.1371/journal.pone.0169532] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 12/19/2016] [Indexed: 11/19/2022] Open
Abstract
Adenoviruses are the most widely used vectors in cancer gene therapy. Adenoviruses vectors are well characterized and are easily manipulated. Adenovirus serotype 5 (Ad5) is the most commonly used human serotype. Ad5 internalization into host cells is a combined effect of binding of Ad5 fiber knob with the coxsackie virus and adenovirus receptor (CAR) and binding of RGD motifs in viral penton to cell surface integrins (αvβ3, αvβ5). Ad5’s wide range of host-cell transduction and lack of integration into the host genome have made it an excellent choice for cancer therapeutics. However, Ad5 has limited ability to transduce cells of hematopoietic origin. It has been previously reported that low or no expression of CAR is a potential obstacle to Ad5 infection in hematopoietic origin cells. In addition, we have previously reported that low levels of cell surface integrins (αvβ3, αvβ5) may inhibit Ad5 infection in canine lymphoma cell lines. In the current report we have examined the ability of an Ad5 vector to infect human (HEK293) and canine non-cancerous (NCF and PBMC), canine non-hematopoietic origin cancer (CMT28, CML7, and CML10), and canine hematopoietic origin cancer (DH82, 17–71, OSW, MPT-1, and BR) cells. In addition, we have quantified CAR, αvβ3 and αvβ5 integrin transcript expression in these cells by using quantitative reverse transcriptase PCR (q-RT-PCR). Low levels of integrins were present in MPT1, 17–71, OSW, and PBMC cells in comparison to CMT28, DH82, and BR cells. CAR mRNA levels were comparatively higher in MPT1, 17–71, OSW, and PBMC cells. This report confirms and expands the finding that low or absent expression of cell surface integrins may be the primary reason for the inability of Ad5-based vectors to transduce cells of lymphocytic origin and some myeloid cells but this is not true for all hematopoietic origin cells. For efficient use of Ad5-based therapeutic vectors in cancers of lymphocytic origin, it is important to address the defects in cell surface integrins.
Collapse
Affiliation(s)
- Payal Agarwal
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Elizabeth A. Gammon
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Abdul Mohin Sajib
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Maninder Sandey
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
| | - Bruce F. Smith
- Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
4
|
WANG YIHONG, YANG JICHENG, SHENG WEIHUA, XIE YUFENG, LIU JISHENG. Adenovirus-mediated ING4/PTEN double tumor suppressor gene co-transfer modified by RGD enhances antitumor activity in human nasopharyngeal carcinoma cells. Int J Oncol 2015; 46:1295-303. [DOI: 10.3892/ijo.2015.2822] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 12/17/2014] [Indexed: 11/06/2022] Open
|
5
|
Hwang CC, Umeki S, Igase M, Coffey M, Noguchi S, Okuda M, Mizuno T. The effects of oncolytic reovirus in canine lymphoma cell lines. Vet Comp Oncol 2014; 14 Suppl 1:61-73. [DOI: 10.1111/vco.12124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/18/2014] [Indexed: 12/19/2022]
Affiliation(s)
- C. C. Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - S. Umeki
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - M. Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
| | - M. Coffey
- Oncolytics Biotech Inc.; Calgary Alberta Canada
| | - S. Noguchi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
| | - M. Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
- Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| | - T. Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine; Yamaguchi University; Yamaguchi Japan
- Biomedical Science Center for Translational Research, The United Graduate School of Veterinary Science; Yamaguchi University; Yamaguchi Japan
| |
Collapse
|
6
|
Recombinant adenovirus snake venom cystatin inhibits the growth, invasion, and metastasis of B16F10 cells in vitro and in vivo. Melanoma Res 2014; 23:444-51. [PMID: 24128788 DOI: 10.1097/cmr.0000000000000031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Previous studies have shown that transfection of the snake venom cystatin (sv-cystatin) gene can inhibit the invasion and metastasis of tumor cells. The aim of this study was to investigate the pharmaceutical applications of sv-cystatin in melanoma gene therapy. We constructed a recombinant adenovirus carrying sv-cystatin (Ad/sv-cystatin) and a control virus (Ad/null). Matrigel assays were used to assess melanoma cell migration and invasiveness in vitro. The antimelanoma effects of Ad/sv-cystatin were assessed in a syngeneic mouse model with an experimental lung colonization assay. Ad/sv-cystatin significantly inhibited the invasion and growth of B16F10 cells in vitro compared with control and Ad/null. Ad/sv-cystatin significantly inhibited experimental lung colonization in C57BL/6 mice as compared with that in control (P<0.001) and Ad/null-treated mice (P<0.001), with an inhibition rate of 51 and 46%, respectively. Ad/sv-cystatin slowed the increase in lung weight in C57BL/6 mice as compared with that in control mice (P<0.001) and Ad/null-treated mice (P<0.001), with an inhibition rate of 40 and 35%, respectively. Our results indicate that Ad/sv-cystatin suppresses mouse melanoma invasion, metastasis, and growth in vitro and in vivo. Our findings provide support for the further examination of the pharmaceutical applications of Ad/sv-cystatin.
Collapse
|
7
|
Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 2014; 6:1540-63. [PMID: 24699364 PMCID: PMC4014709 DOI: 10.3390/v6041540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors.
Collapse
|
8
|
XING HAIBO, PAN HONGMING, FANG YONG, ZHOU XIAOYUN, PAN QIN, LI DA. Construction of a tumor cell-targeting non-viral gene delivery vector with polyethylenimine modified with RGD sequence-containing peptide. Oncol Lett 2014; 7:487-492. [PMID: 24396475 PMCID: PMC3881936 DOI: 10.3892/ol.2013.1717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/07/2013] [Indexed: 02/07/2023] Open
Abstract
The objective of the present study was to construct a novel type of non-viral gene delivery vector with high delivery efficiency and specific tumor cell-targeting ability. The CP9 peptide (CYGGRGDTP) containing Arg-Gly-Asp sequence was employed to be conjugated onto polyethylenimine (PEI) to act as the role of the targeting moiety. The chemical linker, N-succinimidyl-3-(2-pyridyldithio) propionate, was applied during the synthesis of the vector (CP9-PEI). The physicochemical characteristics of the vector were evaluated by the methods of 1H-nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel retardation assay, electron microscope observation and particle size detection. HepG2 cells were used to verify the gene delivery efficiency and targeting ability by gene delivery procedure and free CP9 peptide inhibition tests. The results showed that the successful synthesis of CP9-PEI and the synthesized vector may efficiently condense plasmid DNA into round particles with diameters of ~200 nm at a polymer/pDNA ratio of 10. CP9-PEI may deliver the reporter gene into HepG2 cells with higher efficiency and the efficiency may be inhibited by the free CP9 peptide. The present study suggested that the modification of PEI with the CP9 peptide is an effective method to construct a novel tumor cell-targeting non-viral vector, and that the novel vector exhibits great prospect in the field of cancer gene therapy.
Collapse
Affiliation(s)
- HAI-BO XING
- Department of Intensive Care Unit, Xiasha Hospital, Hangzhou, Zhejiang 310019, P.R. China
| | - HONG-MING PAN
- Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - YONG FANG
- Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - XIAO-YUN ZHOU
- Department of Intensive Care Unit, Xiasha Hospital, Hangzhou, Zhejiang 310019, P.R. China
| | - QIN PAN
- Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - DA LI
- Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
- Correspondence to: Dr Da Li, Department of Medical Oncology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, 3 Qingchundong Road, Hangzhou, Zhejiang 310016, P.R. China, E-mail:
| |
Collapse
|