1
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
2
|
Hu Z, Zhang D, Wang D, Sun B, Safoor A, Young CYF, Lou H, Yuan H. Bisbibenzyls, novel proteasome inhibitors, suppress androgen receptor transcriptional activity and expression accompanied by activation of autophagy in prostate cancer LNCaP cells. PHARMACEUTICAL BIOLOGY 2015; 54:364-374. [PMID: 26017567 DOI: 10.3109/13880209.2015.1049278] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Bisbibenzyl compounds have gained our interests for their potential antitumor activity in malignant cell-types. OBJECTIVE The objective of this study is to investigate the effect of bisbibenzyl compounds riccardin C (RC), marchantin M (MM), and riccardin D (RD) on androgen receptor (AR) in prostate cancer (PCa) cells. MATERIALS AND METHODS After exposure to 10 μM of the compounds for 24 h, cell cycle and cell survival analyses were performed using FACS and MTT assay to confirm the effect of these bisbibenzyls on PCa LNCaP cells. Changes in the AR expression and function, as the result of exposure to the compounds, were investigated using real-time PCR, ELISA, transient transfection, western blotting (WB), immunoprecipitation, and immunofluorescence staining (IF). Chemical-induced autophagy was examined by WB, IF, and RNAi. RESULTS RC, MM, and RD reduced the viability of LNCaP cells accompanied with arrested cell cycle in the G0/G1 phase and induction of apoptosis. Further investigation revealed that these compounds significantly inhibited AR expression at mRNA and protein levels, leading to the suppression of AR transcriptional activity. Moreover, inhibition of proteasome activity by bisbibenzyls, which in turn caused the induction of autophagy, as noted by induction of LC3B expression, conversion, and accumulation of punctate dots in treated cells. Co-localization of AR/LC3B and AR/Ub suggested that autophagy contributed to the degradation of polyubiquitinated-AR when proteasome activity was suppressed by the bisbibenzyls. DISCUSSION AND CONCLUSION Suppression of proteasome activity and induction of autophagy were involved in bisbibenzyl-mediated modulation of AR activities and apoptosis, suggesting their potential in treating PCa.
Collapse
Affiliation(s)
- Zhongyi Hu
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Denglu Zhang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Dawei Wang
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Bin Sun
- b Department of Natural Product Chemistry , Shandong University School of Pharmaceutical Sciences , Jinan , China , and
| | - Ayesha Safoor
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| | - Charles Y F Young
- c Department of Urology , Mayo Clinic College of Medicine, Mayo Clinic , Rochester , MN , USA
| | - Hongxiang Lou
- b Department of Natural Product Chemistry , Shandong University School of Pharmaceutical Sciences , Jinan , China , and
| | - Huiqing Yuan
- a Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , Jinan , China
| |
Collapse
|
3
|
Katsogiannou M, Ziouziou H, Karaki S, Andrieu C, Henry de Villeneuve M, Rocchi P. The hallmarks of castration-resistant prostate cancers. Cancer Treat Rev 2015; 41:588-97. [PMID: 25981454 DOI: 10.1016/j.ctrv.2015.05.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/30/2015] [Accepted: 05/04/2015] [Indexed: 12/17/2022]
Abstract
Prostate cancer has become a real public health issue in industrialized countries, mainly due to patients' relapse by castration-refractory disease after androgen ablation. Castration-resistant prostate cancer is an incurable and highly aggressive terminal stage of prostate cancer, seriously jeopardizing the patient's quality of life and lifespan. The management of castration-resistant prostate cancer is complex and has opened new fields of research during the last decade leading to an improved understanding of the biology of the disease and the development of new therapies. Most advanced tumors resistant to therapy still maintain the androgen receptor-pathway, which plays a central role for survival and growth of most castration-resistant prostate cancers. Many mechanisms induce the emergence of the castration resistant phenotype through this pathway. However some non-related AR pathways like neuroendocrine cells or overexpression of anti-apoptotic proteins like Hsp27 are described to be involved in CRPC progression. More recently, loss of expression of tumor suppressor gene, post-transcriptional modification using miRNA, epigenetic alterations, alternatif splicing and gene fusion became also hallmarks of castration-resistant prostate cancer. This review presents an up-to-date overview of the androgen receptor-related mechanisms as well as the latest evidence of the non-AR-related mechanisms underlying castration-resistant prostate cancer progression.
Collapse
Affiliation(s)
- Maria Katsogiannou
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France.
| | - Hajer Ziouziou
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Sara Karaki
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Claudia Andrieu
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Marie Henry de Villeneuve
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France
| | - Palma Rocchi
- Inserm, UMR1068, CRCM, Marseille F-13009, France; Institut Paoli-Calmettes, Marseille F-13009, France; Aix-Marseille Université, F-13284 Marseille, France; CNRS, UMR7258, CRCM, Marseille F-13009, France.
| |
Collapse
|
4
|
Goodwin JF, Schiewer MJ, Dean JL, Schrecengost RS, de Leeuw R, Han S, Ma T, Den RB, Dicker AP, Feng FY, Knudsen KE. A hormone-DNA repair circuit governs the response to genotoxic insult. Cancer Discov 2013; 3:1254-71. [PMID: 24027197 PMCID: PMC3823813 DOI: 10.1158/2159-8290.cd-13-0108] [Citation(s) in RCA: 282] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Alterations in DNA repair promote tumor development, but the impact on tumor progression is poorly understood. Here, discovery of a biochemical circuit linking hormone signaling to DNA repair and therapeutic resistance is reported. Findings show that androgen receptor (AR) activity is induced by DNA damage and promotes expression and activation of a gene expression program governing DNA repair. Subsequent investigation revealed that activated AR promotes resolution of double-strand breaks and resistance to DNA damage both in vitro and in vivo. Mechanistically, DNA-dependent protein kinase catalytic subunit (DNAPKcs) was identified as a key target of AR after damage, controlling AR-mediated DNA repair and cell survival after genotoxic insult. Finally, DNAPKcs was shown to potentiate AR function, consistent with a dual role in both DNA repair and transcriptional regulation. Combined, these studies identify the AR-DNAPKcs circuit as a major effector of DNA repair and therapeutic resistance and establish a new node for therapeutic intervention in advanced disease. SIGNIFICANCE The present study identifies for the fi rst time a positive feedback circuit linking hormone action to the DNA damage response and shows the significant impact of this process on tumor progression and therapeutic response. These provocative findings provide the foundation for development of novel nodes of therapeutic intervention for advanced disease.
Collapse
Affiliation(s)
- Jonathan F. Goodwin
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Matthew J. Schiewer
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jeffry L. Dean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Randy S. Schrecengost
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Renee de Leeuw
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sumin Han
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Teng Ma
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Robert B. Den
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Adam P. Dicker
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Felix Y. Feng
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, Michigan*
| | - Karen E. Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Urology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|