1
|
Majidzadeh H, Araj-Khodaei M, Aghanejad A, Ghaffari M, Jafari A, Jenanifard F, Ezzati Nazhad Dolatabadi J, Andishmand H, Hamblin MR. PAMAM dendrimers based co-delivery of methotrexate and berberine for targeting of Hela cancer cells. Toxicol Rep 2024; 13:101765. [PMID: 39484635 PMCID: PMC11525225 DOI: 10.1016/j.toxrep.2024.101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Polyamidoamine dendrimer (PAMAM) is a class of synthetic macromolecular polymers for targeted drug delivery. PAMAM dendrimers are characterized by a pure defined structure, adjustable nanoscale dimensions, mono-dispersity, and versatile surface modification. The objective of this study was to study the covalent coupling of methotrexate (MTX) to PAMAM dendrimer, which was loaded with the natural product anticancer agent, berberine (BER) for the targeting of HeLa cells. The successful preparation of MTX-conjugated PAMAM loaded with BER (MTX-PAMAM-BER) was confirmed by Fourier transform infrared spectroscopy and particle size was evaluated using dynamic light scattering. The biological assays, MTT, flow cytometry, ROS levels evaluation and DAPI staining were used to assess the cytotoxicity effect of the prepared nanosystem. The findings indicated that MTX-PAMAM-BER exhibited greater suppression of tumor cell growth in comparison to BER, MTX, PAMAM-BER, and MTX-PAMAM. Besides, the noteworthy ROS level has been seen in the treated cells with MTX-PAMAM-BER. Finally, it should be stated that the fabricated MTX-PAMAM-BER co-delivery nanosystem could be a promising agent for cancer therapy and targeting.
Collapse
Affiliation(s)
- Hossein Majidzadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Araj-Khodaei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayuob Aghanejad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ghaffari
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Jafari
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Jenanifard
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Hashem Andishmand
- Research Center for Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| |
Collapse
|
2
|
Ali GF, Hassanein EHM, Mohamed WR. Molecular mechanisms underlying methotrexate-induced intestinal injury and protective strategies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8165-8188. [PMID: 38822868 PMCID: PMC11522073 DOI: 10.1007/s00210-024-03164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
Methotrexate (MTX) is a folic acid reductase inhibitor that manages various malignancies as well as immune-mediated inflammatory chronic diseases. Despite being frequently prescribed, MTX's severe multiple toxicities can occasionally limit its therapeutic potential. Intestinal toxicity is a severe adverse effect associated with the administration of MTX, and patients are significantly burdened by MTX-provoked intestinal mucositis. However, the mechanism of such intestinal toxicity is not entirely understood, mechanistic studies demonstrated oxidative stress and inflammatory reactions as key factors that lead to the development of MTX-induced intestinal injury. Besides, MTX causes intestinal cells to express pro-inflammatory cytokines like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), which activate nuclear factor-kappa B (NF-κB). This is followed by the activation of the Janus kinase/signal transducer and activator of the transcription3 (JAK/STAT3) signaling pathway. Moreover, because of its dual anti-inflammatory and antioxidative properties, nuclear factor erythroid-2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) has been considered a critical signaling pathway that counteracts oxidative stress in MTX-induced intestinal injury. Several agents have potential protective effects in counteracting MTX-provoked intestinal injury such as omega-3 polyunsaturated fatty acids, taurine, umbelliferone, vinpocetine, perindopril, rutin, hesperidin, lycopene, quercetin, apocynin, lactobacillus, berberine, zinc, and nifuroxazide. This review aims to summarize the potential redox molecular mechanisms of MTX-induced intestinal injury and how they can be alleviated. In conclusion, studying these molecular pathways might open the way for early alleviation of the intestinal damage and the development of various agent plans to attenuate MTX-mediated intestinal injury.
Collapse
Affiliation(s)
- Gaber F Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Assiut Branch, Al-Azhar University, Assiut, 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, 62514, Egypt.
| |
Collapse
|
3
|
Marin JJG, Serrano MA, Herraez E, Lozano E, Ortiz-Rivero S, Perez-Silva L, Reviejo M, Briz O. Impact of genetic variants in the solute carrier ( SLC) genes encoding drug uptake transporters on the response to anticancer chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:27. [PMID: 39143954 PMCID: PMC11322974 DOI: 10.20517/cdr.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024]
Abstract
Cancer drug resistance constitutes a severe limitation for the satisfactory outcome of these patients. This is a complex problem due to the co-existence in cancer cells of multiple and synergistic mechanisms of chemoresistance (MOC). These mechanisms are accounted for by the expression of a set of genes included in the so-called resistome, whose effectiveness often leads to a lack of response to pharmacological treatment. Additionally, genetic variants affecting these genes further increase the complexity of the question. This review focuses on a set of genes encoding members of the transportome involved in drug uptake, which have been classified into the MOC-1A subgroup of the resistome. These proteins belong to the solute carrier (SLC) superfamily. More precisely, we have considered here several members of families SLC2, SLC7, SLC19, SLC22, SLCO, SLC28, SLC29, SLC31, SLC46, and SLC47 due to the impact of their expression and genetic variants in anticancer drug uptake by tumor cells or, in some cases, general bioavailability. Changes in their expression levels and the appearance of genetic variants can contribute to the Darwinian selection of more resistant clones and, hence, to the development of a more malignant phenotype. Accordingly, to address this issue in future personalized medicine, it is necessary to characterize both changes in resistome genes that can affect their function. It is also essential to consider the time-dependent dimension of these features, as the genetic expression and the appearance of genetic variants can change during tumor progression and in response to treatment.
Collapse
Affiliation(s)
- Jose J. G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Herraez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Elisa Lozano
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Sara Ortiz-Rivero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Laura Perez-Silva
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, Institute for Biomedical Research of Salamanca (IBSAL), Salamanca 37007, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBEREHD), Carlos III National Institute of Health, Madrid 28029, Spain
| |
Collapse
|
4
|
Wallace-Povirk A, O'Connor C, Dekhne AS, Bao X, Nayeen MJ, Schneider M, Katinas JM, Wong-Roushar J, Kim S, Polin L, Li J, Back JB, Dann CE, Gangjee A, Hou Z, Matherly LH. Mitochondrial and Cytosolic One-Carbon Metabolism Is a Targetable Metabolic Vulnerability in Cisplatin-Resistant Ovarian Cancer. Mol Cancer Ther 2024; 23:809-822. [PMID: 38377173 PMCID: PMC11150100 DOI: 10.1158/1535-7163.mct-23-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/16/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
One-carbon (C1) metabolism is compartmentalized between the cytosol and mitochondria with the mitochondrial C1 pathway as the major source of glycine and C1 units for cellular biosynthesis. Expression of mitochondrial C1 genes including SLC25A32, serine hydroxymethyl transferase (SHMT) 2, 5,10-methylene tetrahydrofolate dehydrogenase 2, and 5,10-methylene tetrahydrofolate dehydrogenase 1-like was significantly elevated in primary epithelial ovarian cancer (EOC) specimens compared with normal ovaries. 5-Substituted pyrrolo[3,2-d]pyrimidine antifolates (AGF347, AGF359, AGF362) inhibited proliferation of cisplatin-sensitive (A2780, CaOV3, IGROV1) and cisplatin-resistant (A2780-E80, SKOV3) EOC cells. In SKOV3 and A2780-E80 cells, colony formation was inhibited. AGF347 induced apoptosis in SKOV3 cells. In IGROV1 cells, AGF347 was transported by folate receptor (FR) α. AGF347 was also transported into IGROV1 and SKOV3 cells by the proton-coupled folate transporter (SLC46A1) and the reduced folate carrier (SLC19A1). AGF347 accumulated to high levels in the cytosol and mitochondria of SKOV3 cells. By targeted metabolomics with [2,3,3-2H]L-serine, AGF347, AGF359, and AGF362 inhibited SHMT2 in the mitochondria. In the cytosol, SHMT1 and de novo purine biosynthesis (i.e., glycinamide ribonucleotide formyltransferase, 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase) were targeted; AGF359 also inhibited thymidylate synthase. Antifolate treatments of SKOV3 cells depleted cellular glycine, mitochondrial NADH and glutathione, and showed synergistic in vitro inhibition toward SKOV3 and A2780-E80 cells when combined with cisplatin. In vivo studies with subcutaneous SKOV3 EOC xenografts in SCID mice confirmed significant antitumor efficacy of AGF347. Collectively, our studies demonstrate a unique metabolic vulnerability in EOC involving mitochondrial and cytosolic C1 metabolism, which offers a promising new platform for therapy.
Collapse
Affiliation(s)
- Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Aamod S. Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Md. Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jade M. Katinas
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Jessica B. Back
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Charles E. Dann
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| | - Larry H. Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201
| |
Collapse
|
5
|
Mazrad ZAI, Refaat A, Morrow JP, Voelcker NH, Nicolazzo JA, Leiske MN, Kempe K. Folic Acid-Conjugated Brush Polymers Show Enhanced Blood-Brain Barrier Crossing in Static and Dynamic In Vitro Models Toward Brain Cancer Targeting Therapy. ACS Biomater Sci Eng 2024; 10:2894-2910. [PMID: 38556768 DOI: 10.1021/acsbiomaterials.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Over the past decades, evidence has consistently shown that treatment of central nervous system (CNS)-related disorders, including Alzheimer's disease, Parkinson's disease, stroke, multiple sclerosis, and brain cancer, is limited due to the presence of the blood-brain barrier (BBB). To assist with the development of new therapeutics, it is crucial to engineer a drug delivery system that can cross the BBB efficiently and reach target cells within the brain. In this study, we present a potentially efficient strategy for targeted brain delivery through utilization of folic acid (FA)-conjugated brush polymers, that specifically target the reduced folate carrier (RFC, SLC19A1) expressed on brain endothelial cells. Here, azide (N3)-decorated brush polymers were prepared in a straightforward manner coupling a heterotelechelic α-NH2, ω-N3-poly(2-ethyl-2-oxazoline) (NH2-PEtOx-N3) to N-acylated poly(amino ester) (NPAE)-based brushes. Strain-promoted azide-alkyne cycloaddition (SPAAC) 'click chemistry' with DBCO-folic acid (FA) yielded FA-brush polymers. Interestingly, while azide functionalization of the brush polymers dramatically reduced their association to brain microvascular endothelial cells (hCMEC/D3), the introduction of FA to azide led to a substantial accumulation of the brush polymers in hCMEC/D3 cells. The ability of the polymeric brush polymers to traverse the BBB was quantitatively assessed using different in vitro BBB models including static Transwell and microfluidic platforms. FA-brush polymers showed efficient transport across hCMEC/D3 cells in a manner dependent on FA composition, whereas nonfunctionalized brush polymers exhibited limited trafficking under the same conditions. Further, cellular uptake inhibition studies suggested that the interaction and transport pathway of FA-brush polymers across BBB relies on the RFC-mediated pathways. The potential application of the developed FA-brush polymers in brain cancer delivery was also investigated in a microfluidic model of BBB-glioblastoma. Brush polymers with more FA units successfully presented an enhanced accumulation into U-87 MG glioma cells following its BBB crossing, compared to controls. These results demonstrate that FA-modified brush polymers hold a great potential for more efficient delivery of future brain therapeutics.
Collapse
Affiliation(s)
- Zihnil A I Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ahmed Refaat
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Pharmacy, Alexandria University, Azarita 21521, Egypt
| | - Joshua P Morrow
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Meike N Leiske
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biology, Chemistry & Earth Sciences, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
6
|
Chang CY, Chen CC. 5-aminolevulinic enhanced brain lesions mimic glioblastoma: A case report and literature review. Medicine (Baltimore) 2024; 103:e34518. [PMID: 38181251 PMCID: PMC10766299 DOI: 10.1097/md.0000000000034518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 01/07/2024] Open
Abstract
RATIONALE Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor for which maximal tumor resection plays an important role in the treatment strategy. 5-aminolevulinic (5-ALA) is a powerful tool in fluorescence-guided surgery for GBM. However, 5-ALA- enhancing lesion can also be observed with different etiologies. PATIENTS CONCERNS Three cases of 5-ALA-enhancing lesions with etiologies different from glioma. DIAGNOSES The final diagnosis was abscess in 1 patient and diffuse large B-cell in the other 2 patients. INTERVENTIONS Three patients received 5-aminolevulinic acid-guided tumor resection under microscope with intraoperative neuromonitoring. OUTCOMES All of our patients showed improvement or stable neurological function outcomes. The final pathology revealed etiologies different from GBM. LESSONS The 5-aminolevulinic acid fluorescence-guided surgery has demonstrated its maximal extent of resection and safety profile in patients with high-grade glioma. Non-glioma etiologies may also mimic GBM in 5-ALA-guided surgeries. Therefore, patient history taking and consideration of brain images are necessary for the interpretation of 5-ALA-enhanced lesions.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
7
|
Kaku K, Ravindra MP, Tong N, Choudhary S, Li X, Yu J, Karim M, Brzezinski M, O’Connor C, Hou Z, Matherly LH, Gangjee A. Discovery of Tumor-Targeted 6-Methyl Substituted Pemetrexed and Related Antifolates with Selective Loss of RFC Transport. ACS Med Chem Lett 2023; 14:1682-1691. [PMID: 38116433 PMCID: PMC10726441 DOI: 10.1021/acsmedchemlett.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
Pemetrexed and related 5-substituted pyrrolo[2,3-d]pyrimidine antifolates are substrates for the ubiquitously expressed reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT) and folate receptors (FRs) which are more tumor-selective. A long-standing goal has been to discover tumor-targeted therapeutics that draw from one-carbon metabolic vulnerabilities of cancer cells and are selective for transport by FRs and PCFT over RFC. We discovered that a methyl group at the 6-position of the pyrrole ring in the bicyclic scaffold of 5-substituted 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidine antifolates 1-4 (including pemetrexed) abolished transport by RFC with modest impacts on FRs or PCFT. From molecular modeling, loss of RFC transport involves steric repulsion in the scaffold binding site due to the 6-methyl moiety. 6-Methyl substitution preserved antiproliferative activities toward human tumor cells (KB, IGROV3) with selectivity over IOSE 7576 normal ovary cells and inhibition of de novo purine biosynthesis. Thus, adding a 6-methyl moiety to 5-substituted pyrrolo[2,3-d]pyrimidine antifolates affords tumor transport selectivity while preserving antitumor efficacy.
Collapse
Affiliation(s)
- Krishna Kaku
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Manasa P. Ravindra
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Shruti Choudhary
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Xinxin Li
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Jianming Yu
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Mohammad Karim
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Madelyn Brzezinski
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
8
|
Nayeen MJ, Katinas JM, Magdum T, Shah K, Wong JE, O’Connor CE, Fifer AN, Wallace-Povirk A, Hou Z, Matherly LH, Dann CE, Gangjee A. Structure-Based Design of Transport-Specific Multitargeted One-Carbon Metabolism Inhibitors in Cytosol and Mitochondria. J Med Chem 2023; 66:11294-11323. [PMID: 37582241 PMCID: PMC10461232 DOI: 10.1021/acs.jmedchem.3c00763] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 08/17/2023]
Abstract
Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and β afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.
Collapse
Affiliation(s)
- Md. Junayed Nayeen
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Tejashree Magdum
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Khushbu Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer E. Wong
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Carrie E. O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Alexandra N. Fifer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Molecular
Therapeutics Program, Barbara Ann Karmanos
Cancer Institute, 4100 John R, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47408, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
9
|
Adams C, Nair N, Plant D, Verstappen SMM, Quach HL, Quach DL, Carvidi A, Nititham J, Nakamura M, Graf J, Barton A, Criswell LA, Barcellos LF. Identification of Cell-Specific Differential DNA Methylation Associated With Methotrexate Treatment Response in Rheumatoid Arthritis. Arthritis Rheumatol 2023; 75:1088-1097. [PMID: 36716083 PMCID: PMC10313739 DOI: 10.1002/art.42464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We undertook this study to estimate changes in cell-specific DNA methylation (DNAm) associated with methotrexate (MTX) response using whole blood samples collected from rheumatoid arthritis (RA) patients before and after initiation of MTX treatment. METHODS Patients included in this study were from the Rheumatoid Arthritis Medication Study (n = 66) and the University of California San Francisco Rheumatoid Arthritis study (n = 11). All patients met the American College of Rheumatology RA classification criteria. Blood samples were collected at baseline and following treatment. Disease Activity Scores in 28 joints using the C-reactive protein level were collected at baseline and after 3-6 months of treatment with MTX. Methylation profiles were generated using the Illumina Infinium HumanMethylation450 and MethylationEPIC v1.0 BeadChip arrays using DNA from whole blood. MTX response was defined using the EULAR response criteria (responders showed good/moderate response; nonresponders showed no response). Differentially methylated positions were identified using the Limma software package and Tensor Composition Analysis, which is a method for identifying cell-specific differential DNAm at the CpG level from tissue-level ("bulk") data. Differentially methylated regions were identified using Comb-p software. RESULTS We found evidence of differential global methylation between treatment response groups. Further, we found patterns of cell-specific differential global methylation associated with MTX response. After correction for multiple testing, 1 differentially methylated position was associated with differential DNAm between responders and nonresponders at baseline in CD4+ T cells, CD8+ T cells, and natural killer cells. Thirty-nine cell-specific differentially methylated regions associated with MTX treatment response were identified. There were no significant findings in analyses of whole blood samples. CONCLUSION We identified cell-specific changes in DNAm that were associated with MTX treatment response in RA patients. Future studies of DNAm and MTX treatment response should include measurements of DNAm from sorted cells.
Collapse
Affiliation(s)
- Cameron Adams
- School of Public Health, University of CaliforniaBerkeley
| | - Nisha Nair
- Centre of Genetics and Genomics Versus Arthritis, Manchester Academic Health Sciences Centre, The University of ManchesterManchesterUK
| | - Darren Plant
- Centre of Genetics and Genomics Versus Arthritis, Manchester Academic Health Sciences Centre, NIHR Manchester BRC, Manchester University Foundation Trust, The University of ManchesterManchesterUK
| | - Suzanne M. M. Verstappen
- NIHR Manchester BRC, Manchester University Foundation Trust, and Centre for Epidemiology Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK, Institute of Cellular Medicine, Newcastle University, and NIHR Newcastle BRC, Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Hong L. Quach
- School of Public Health, University of CaliforniaBerkeley
| | - Diana L. Quach
- School of Public Health, University of CaliforniaBerkeley
| | | | - Joanne Nititham
- National Human Genome Research Institute, NIHBethesdaMaryland
| | - Mary Nakamura
- University of California and San Francisco Veterans Administration Health SystemSan FranciscoCalifornia
| | | | - Anne Barton
- Centre of Genetics and Genomics Versus Arthritis, Manchester Academic Health Sciences Centre, NIHR Manchester BRC, Manchester University Foundation Trust, The University of ManchesterManchesterUK
| | | | - Lisa F. Barcellos
- School of Public Health, University of California, Berkeley, and National Human Genome Research Institute, NIHBethesdaMaryland
| |
Collapse
|
10
|
Tong N, Wong-Roushar J, Wallace-Povirk A, Shah Y, Nyman MC, Katinas JM, Schneider M, O’Connor C, Bao X, Kim S, Li J, Hou Z, Matherly LH, Dann CE, Gangjee A. Multitargeted 6-Substituted Thieno[2,3- d]pyrimidines as Folate Receptor-Selective Anticancer Agents that Inhibit Cytosolic and Mitochondrial One-Carbon Metabolism. ACS Pharmacol Transl Sci 2023; 6:748-770. [PMID: 37200803 PMCID: PMC10186366 DOI: 10.1021/acsptsci.3c00020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Indexed: 05/20/2023]
Abstract
Multitargeted agents with tumor selectivity result in reduced drug resistance and dose-limiting toxicities. We report 6-substituted thieno[2,3-d]pyrimidine compounds (3-9) with pyridine (3, 4), fluorine-substituted pyridine (5), phenyl (6, 7), and thiophene side chains (8, 9), for comparison with unsubstituted phenyl (1, 2) and thiophene side chain (10, 11) containing thieno[2,3-d]pyrimidine compounds. Compounds 3-9 inhibited proliferation of Chinese hamster ovary cells (CHO) expressing folate receptors (FRs) α or β but not the reduced folate carrier (RFC); modest inhibition of CHO cells expressing the proton-coupled folate transporter (PCFT) by 4, 5, 6, and 9 was observed. Replacement of the side-chain 1',4'-phenyl ring with 2',5'-pyridyl, or 2',5'-pyridyl with a fluorine insertion ortho to l-glutamate resulted in increased potency toward FR-expressing CHO cells. Toward KB tumor cells, 4-9 were highly active (IC50's from 2.11 to 7.19 nM). By metabolite rescue in KB cells and in vitro enzyme assays, de novo purine biosynthesis was identified as a targeted pathway (at 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase) and glycinamide ribonucleotide formyltransferase (GARFTase)). Compound 9 was 17- to 882-fold more potent than previously reported compounds 2, 10, and 11 against GARFTase. By targeted metabolomics and metabolite rescue, 1, 2, and 6 also inhibited mitochondrial serine hydroxymethyl transferase 2 (SHMT2); enzyme assays confirmed inhibition of SHMT2. X-ray crystallographic structures were obtained for 4, 5, 9, and 10 with human GARFTase. This series affords an exciting new structural platform for potent multitargeted antitumor agents with FR transport selectivity.
Collapse
Affiliation(s)
- Nian Tong
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Wong-Roushar
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adrianne Wallace-Povirk
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Yesha Shah
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Morgan C. Nyman
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Jade M. Katinas
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Mathew Schneider
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Carrie O’Connor
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
| | - Xun Bao
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Seongho Kim
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Jing Li
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Zhanjun Hou
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Barbara
Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Larry H. Matherly
- Department
of Oncology, Wayne State University School
of Medicine, Detroit, Michigan 48201, United States
- Department
of Pharmacology, Wayne State University
School of Medicine, Detroit, Michigan 48201, United States
| | - Charles E. Dann
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Aleem Gangjee
- Division
of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
11
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
12
|
Gök V, Erdem Ş, Haliloğlu Y, Bişgin A, Belkaya S, Başaran KE, Canatan MF, Özcan A, Yılmaz E, Acıpayam C, Karakükcü M, Canatan H, Per H, Patıroğlu T, Eken A, Ünal E. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun 2023; 24:12-20. [PMID: 36517554 DOI: 10.1038/s41435-022-00191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Collapse
Affiliation(s)
- Veysel Gök
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Şerife Erdem
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeşim Haliloğlu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Atıl Bişgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Türkiye
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Alper Özcan
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ebru Yılmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Can Acıpayam
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Musa Karakükcü
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.,Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
13
|
Puris E, Fricker G, Gynther M. The Role of Solute Carrier Transporters in Efficient Anticancer Drug Delivery and Therapy. Pharmaceutics 2023; 15:pharmaceutics15020364. [PMID: 36839686 PMCID: PMC9966068 DOI: 10.3390/pharmaceutics15020364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Transporter-mediated drug resistance is a major obstacle in anticancer drug delivery and a key reason for cancer drug therapy failure. Membrane solute carrier (SLC) transporters play a crucial role in the cellular uptake of drugs. The expression and function of the SLC transporters can be down-regulated in cancer cells, which limits the uptake of drugs into the tumor cells, resulting in the inefficiency of the drug therapy. In this review, we summarize the current understanding of low-SLC-transporter-expression-mediated drug resistance in different types of cancers. Recent advances in SLC-transporter-targeting strategies include the development of transporter-utilizing prodrugs and nanocarriers and the modulation of SLC transporter expression in cancer cells. These strategies will play an important role in the future development of anticancer drug therapies by enabling the efficient delivery of drugs into cancer cells.
Collapse
|
14
|
Chang J, Wang K, Chen J, Chang Y. Binding behavior and in vitro cytotoxicity of inclusion complexes between aminopterin and cucurbit[7]uril. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Choy C, Lim LY, Chan LW, Cui Z, Mao S, Wong TW. Exploring Intestinal Surface Receptors in Oral Nanoinsulin Delivery. Pharmacol Rev 2022; 74:962-983. [PMID: 36779351 DOI: 10.1124/pharmrev.122.000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/01/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022] Open
Abstract
Subcutaneous and inhaled insulins are associated with needle phobia, lipohypertrophy, lipodystrophy, and cough in diabetes treatment. Oral nanoinsulin has been developed, reaping the physiologic benefits of peroral administration. This review profiles intestinal receptors exploitable in targeted delivery of oral nanoinsulin. Intestinal receptor targeting improves oral insulin bioavailability and sustains blood glucose-lowering response. Nonetheless, these studies are conducted in small animal models with no optimization of insulin dose, targeting ligand type and content, and physicochemical and molecular biologic characteristics of nanoparticles against the in vivo/clinical diabetes responses as a function of the intestinal receptor population characteristics with diabetes progression. The interactive effects between nanoinsulin and antidiabetic drugs on intestinal receptors, including their up-/downregulation, are uncertain. Sweet taste receptors upregulate SGLT-1, and both have an undefined role as new intestinal targets of nanoinsulin. Receptor targeting of oral nanoinsulin represents a viable approach that is relatively green, requiring an in-depth development of the relationship between receptors and their pathophysiological profiles with physicochemical attributes of the oral nanoinsulin. SIGNIFICANCE STATEMENT: Intestinal receptor targeting of oral nanoinsulin improves its bioavailability with sustained blood glucose-lowering response. Exploring new intestinal receptor and tailoring the design of oral nanoinsulin to the pathophysiological state of diabetic patients is imperative to raise the insulin performance to a comparable level as the injection products.
Collapse
Affiliation(s)
- Carlynne Choy
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Lee Yong Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Lai Wah Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Zhixiang Cui
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Shirui Mao
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| | - Tin Wui Wong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Republic of Singapore (C.C., L.W.C., T.W.W.); Pharmacy, School of Allied Health, The University of Western Australia, 35 Stirling Highway, Crawley WA, Australia (L.Y.L.); School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China (Z.C., S.M.); Non-Destructive Biomedical and Pharmaceutical Research Centre, Smart Manufacturing Research Institute, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.); and Particle Design Research Group, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam, Selangor, Malaysia (T.W.W.)
| |
Collapse
|
16
|
Matherly LH, Schneider M, Gangjee A, Hou Z. Biology and therapeutic applications of the proton-coupled folate transporter. Expert Opin Drug Metab Toxicol 2022; 18:695-706. [PMID: 36239195 PMCID: PMC9637735 DOI: 10.1080/17425255.2022.2136071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The proton-coupled folate transporter (PCFT; SLC46A1) was discovered in 2006 as the principal mechanism by which folates are absorbed in the intestine and the causal basis for hereditary folate malabsorption (HFM). In 2011, it was found that PCFT is highly expressed in many tumors. This stimulated interest in using PCFT for cytotoxic drug targeting, taking advantage of the substantial levels of PCFT transport and acidic pH conditions commonly associated with tumors. AREAS COVERED We summarize the literature from 2006 to 2022 that explores the role of PCFT in the intestinal absorption of dietary folates and its role in HFM and as a transporter of folates and antifolates such as pemetrexed (Alimta) in relation to cancer. We provide the rationale for the discovery of a new generation of targeted pyrrolo[2,3-d]pyrimidine antifolates with selective PCFT transport and inhibitory activity toward de novo purine biosynthesis in solid tumors. We summarize the benefits of this approach to cancer therapy and exciting new developments in the structural biology of PCFT and its potential to foster refinement of active structures of PCFT-targeted anti-cancer drugs. EXPERT OPINION We summarize the promising future and potential challenges of implementing PCFT-targeted therapeutics for HFM and a variety of cancers.
Collapse
Affiliation(s)
- Larry H. Matherly
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Zhanjun Hou
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| |
Collapse
|
17
|
Gao J, Xiao N, Wang Q, Xu Z, Xiao F, Yang Z, Wei W, Wang C. OAT3 mediates methotrexate resistance in the treatment of rheumatoid arthritis. Biomed Pharmacother 2022; 153:113558. [DOI: 10.1016/j.biopha.2022.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022] Open
|
18
|
Wright NJ, Fedor JG, Zhang H, Jeong P, Suo Y, Yoo J, Hong J, Im W, Lee SY. Methotrexate recognition by the human reduced folate carrier SLC19A1. Nature 2022; 609:1056-1062. [PMID: 36071163 DOI: 10.1038/s41586-022-05168-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.
Collapse
Affiliation(s)
- Nicholas J Wright
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Justin G Fedor
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Han Zhang
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | | | - Yang Suo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Jiho Yoo
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.,College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry and Bioengineering, Lehigh University, Bethlehem, PA, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
19
|
Wallace-Povirk A, Rubinsak L, Malysa A, Dzinic SH, Ravindra M, Schneider M, Glassbrook J, O'Connor C, Hou Z, Kim S, Back J, Polin L, Morris RT, Gangjee A, Gibson H, Matherly LH. Targeted therapy of pyrrolo[2,3-d]pyrimidine antifolates in a syngeneic mouse model of high grade serous ovarian cancer and the impact on the tumor microenvironment. Sci Rep 2022; 12:11346. [PMID: 35790779 PMCID: PMC9256750 DOI: 10.1038/s41598-022-14788-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/13/2022] [Indexed: 01/30/2023] Open
Abstract
Novel therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. In addition, therapies that target unique vulnerabilities in the tumor microenvironment (TME) of EOC have largely been unrealized. One strategy to achieve selective drug delivery for EOC therapy involves use of targeted antifolates via their uptake by folate receptor (FR) proteins, resulting in inhibition of essential one-carbon (C1) metabolic pathways. FRα is highly expressed in EOCs, along with the proton-coupled folate transporter (PCFT); FRβ is expressed on activated macrophages, a major infiltrating immune population in EOC. Thus, there is great potential for targeting both the tumor and the TME with agents delivered via selective transport by FRs and PCFT. In this report, we investigated the therapeutic potential of a novel cytosolic C1 6-substituted pyrrolo[2,3-d]pyrimidine inhibitor AGF94, with selectivity for uptake by FRs and PCFT and inhibition of de novo purine nucleotide biosynthesis, against a syngeneic model of ovarian cancer (BR-Luc) which recapitulates high-grade serous ovarian cancer in patients. In vitro activity of AGF94 was extended in vivo against orthotopic BR-Luc tumors. With late-stage subcutaneous BR-Luc xenografts, AGF94 treatment resulted in substantial anti-tumor efficacy, accompanied by significantly decreased M2-like FRβ-expressing macrophages and increased CD3+ T cells, whereas CD4+ and CD8+ T cells were unaffected. Our studies demonstrate potent anti-tumor efficacy of AGF94 in the therapy of EOC in the context of an intact immune system, and provide a framework for targeting the immunosuppressive TME as an essential component of therapy.
Collapse
Affiliation(s)
| | - Lisa Rubinsak
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Agnes Malysa
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Manasa Ravindra
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA
| | - Mathew Schneider
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - James Glassbrook
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Jessica Back
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Robert T Morris
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA, 15282, USA.
| | - Heather Gibson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA.
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Barbara Ann Karmanos Cancer Institute, 4100 John R, Detroit, MI, 48201, USA.
| |
Collapse
|
20
|
Newstead S. Structural basis for recognition and transport of folic acid in mammalian cells. Curr Opin Struct Biol 2022; 74:102353. [PMID: 35303537 PMCID: PMC7612623 DOI: 10.1016/j.sbi.2022.102353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022]
Abstract
Structural studies on mammalian vitamin transport lag behind other metabolites. Folates, also known as B9 vitamins, are essential cofactors in one-carbon transfer reactions in biology. Three different systems control folate uptake in the human body; folate receptors function to capture and internalise extracellular folates via endocytosis, whereas two major facilitator superfamily transporters, the reduced folate carrier (RFC; SLC19A1) and proton-coupled folate transporter (PCFT; SLC46A1) control the transport of folates across cellular membranes. Targeting specific folate transporters is being pursued as a route to developing new antifolates with improved pharmacology. Recent structures of the proton-coupled folate transporter, PCFT, revealed key insights into antifolate recognition and the mechanism of proton-coupled transport. Combined with previously determined structures of folate receptors and new predictions for the structure of the RFC, we are now able to develop a structure-based understanding of folate and antifolate recognition to accelerate efforts in antifolate drug development.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
21
|
Methaneethorn J, AlEjielat R, Leelakanok N. Factors influencing methotrexate and methotrexate polyglutamate in patients with rheumatoid arthritis: a systematic review of population pharmacokinetics. Drug Metab Pers Ther 2022; 37:229-240. [PMID: 35218177 DOI: 10.1515/dmpt-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 12/18/2021] [Indexed: 11/15/2022]
Abstract
Low dose methotrexate (MTX) is commonly used in the treatment of rheumatoid arthritis. The clinical effect is mediated by its metabolite, methotrexate polyglutamate (MTX-PGn). The drug exhibits high interindividual pharmacokinetic variability and the optimal MTX dose is different among individuals. Thus, several MTX population pharmacokinetic (PopPK) models were developed to characterize factors affecting MTX pharmacokinetic variability. This review summarizes significant predictors for MTX pharmacokinetics and identifies knowledge gaps to be further examined. A total of 359 articles were identified from a systematic search of four databases: PubMed, Science Direct, and CINAHL Complete. Of these eight studies were included. Most studies investigated influential factors on MTX pharmacokinetics, but information on MTX-PGn is limited, with only one study performing a parent-metabolite (MTX-PG3) model. MTX pharmacokinetics was described using a two-compartment model with first-order elimination in most studies, with the MTX clearance ranging from 6.94 to 12.39 L/h. Significant predictors influencing MTX clearance included weight, creatinine clearance, sex, OATP1B3 polymorphism, and MTX multiple dosing. While body mass index and red blood cell counts were significant predictors for MTX-PG3 clearance. Providing that MTX-PGn plays a crucial role in clinical effect, further studies should determine other factors affecting MTX-PGn as well as its relationship with clinical response.
Collapse
Affiliation(s)
- Janthima Methaneethorn
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.,Center of Excellence for Environmental Health and Toxicology, Naresuan University, Phitsanulok, Thailand
| | - Rowan AlEjielat
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nattawut Leelakanok
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
22
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
23
|
Folate Transport and One-Carbon Metabolism in Targeted Therapies of Epithelial Ovarian Cancer. Cancers (Basel) 2021; 14:cancers14010191. [PMID: 35008360 PMCID: PMC8750473 DOI: 10.3390/cancers14010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022] Open
Abstract
New therapies are urgently needed for epithelial ovarian cancer (EOC), the most lethal gynecologic malignancy. To identify new approaches for targeting EOC, metabolic vulnerabilities must be discovered and strategies for the selective delivery of therapeutic agents must be established. Folate receptor (FR) α and the proton-coupled folate transporter (PCFT) are expressed in the majority of EOCs. FRβ is expressed on tumor-associated macrophages, a major infiltrating immune population in EOC. One-carbon (C1) metabolism is partitioned between the cytosol and mitochondria and is important for the synthesis of nucleotides, amino acids, glutathione, and other critical metabolites. Novel inhibitors are being developed with the potential for therapeutic targeting of tumors via FRs and the PCFT, as well as for inhibiting C1 metabolism. In this review, we summarize these exciting new developments in targeted therapies for both tumors and the tumor microenvironment in EOC.
Collapse
|
24
|
Do HQ, Bassil CM, Andersen EI, Jansen M. Impact of nanodisc lipid composition on cell-free expression of proton-coupled folate transporter. PLoS One 2021; 16:e0253184. [PMID: 34793461 PMCID: PMC8601550 DOI: 10.1371/journal.pone.0253184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/31/2021] [Indexed: 01/19/2023] Open
Abstract
The Proton-Coupled Folate Transporter (PCFT) is a transmembrane transport protein that controls the absorption of dietary folates in the small intestine. PCFT also mediates uptake of chemotherapeutically used antifolates into tumor cells. PCFT has been identified within lipid rafts observed in phospholipid bilayers of plasma membranes, a micro environment that is altered in tumor cells. The present study aimed at investigating the impact of different lipids within Lipid-protein nanodiscs (LPNs), discoidal lipid structures stabilized by membrane scaffold proteins, to yield soluble PCFT expression in an E. coli lysate-based cell-free transcription/translation system. In the absence of detergents or lipids, we observed PCFT quantitatively as precipitate in this system. We then explored the ability of LPNs to support solubilized PCFT expression when present during in-vitro translation. LPNs consisted of either dimyristoyl phosphatidylcholine (DMPC), palmitoyl-oleoyl phosphatidylcholine (POPC), or dimyristoyl phosphatidylglycerol (DMPG). While POPC did not lead to soluble PCFT expression, both DMPG and DMPC supported PCFT translation directly into LPNs, the latter in a concentration dependent manner. The results obtained through this study provide insights into the lipid preferences of PCFT. Membrane-embedded or solubilized PCFT will enable further studies with diverse biophysical approaches to enhance the understanding of the structure and molecular mechanism of folate transport through PCFT.
Collapse
Affiliation(s)
- Hoa Quynh Do
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Carla M. Bassil
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- The Clark Scholar Program, Texas Tech University, Lubbock, TX, United States of America
| | - Elizabeth I. Andersen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Michaela Jansen
- Department of Cell Physiology and Molecular Biophysics and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| |
Collapse
|
25
|
Narawa T, Narita Y, Hosokawa S, Itoh T. Functional role of serine 318 of the proton-coupled folate transporter in methotrexate transport. Drug Metab Pharmacokinet 2021; 41:100421. [PMID: 34619546 DOI: 10.1016/j.dmpk.2021.100421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/08/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
This study revealed the importance of serine 318 (S318) residue for proton-coupled folate transporter (PCFT, SLC46A1) functioning. Substitution of S318 with arginine or lysine impaired transport of methotrexate (MTX), but substitution with alanine (has a simple side chain structure), or cysteine (structurally similar to serine), had no significant effect on MTX transport. The initial uptake rate of MTX by S318A and S318C mutant at pH 5.0, followed by Michaelis-Menten kinetics with a Km value of approximately 2.3 μM (for S318A) and 2.9 μM (for S318C), was similar to that of the wild-type. The normalized Vmax value of the S318A mutant, calculated by dividing the Vmax value by the Western blot protein band's relative intensity, was approximately 2-fold greater than that of the wild-type. The normalized Vmax value of the S318C mutant was approximately 0.8-fold smaller than the wild-type. Results obtained showed that the substitution of S318 with basic amino acid residues results in the loss of transport activity, even though PCFT mutants are expressed at the cell membrane. Alternatively, the substitution of S318 with neutral amino acids did not significantly affect the transport function of PCFT.
Collapse
Affiliation(s)
- Tomoya Narawa
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Tokyo, 108-8641, Japan.
| | - Yuuki Narita
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Tokyo, 108-8641, Japan
| | - Sayuri Hosokawa
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Tokyo, 108-8641, Japan
| | - Tomoo Itoh
- Laboratory of Pharmaceutics, School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Tokyo, 108-8641, Japan
| |
Collapse
|
26
|
Abdelaal AM, Kasinski AL. Ligand-mediated delivery of RNAi-based therapeutics for the treatment of oncological diseases. NAR Cancer 2021; 3:zcab030. [PMID: 34316717 PMCID: PMC8291076 DOI: 10.1093/narcan/zcab030] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/21/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi)-based therapeutics (miRNAs, siRNAs) have great potential for treating various human diseases through their ability to downregulate proteins associated with disease progression. However, the development of RNAi-based therapeutics is limited by lack of safe and specific delivery strategies. A great effort has been made to overcome some of these challenges resulting in development of N-acetylgalactosamine (GalNAc) ligands that are being used for delivery of siRNAs for the treatment of diseases that affect the liver. The successes achieved using GalNAc-siRNAs have paved the way for developing RNAi-based delivery strategies that can target extrahepatic diseases including cancer. This includes targeting survival signals directly in the cancer cells and indirectly through targeting cancer-associated immunosuppressive cells. To achieve targeting specificity, RNAi molecules are being directly conjugated to a targeting ligand or being packaged into a delivery vehicle engineered to overexpress a targeting ligand on its surface. In both cases, the ligand binds to a cell surface receptor that is highly upregulated by the target cells, while not expressed, or expressed at low levels on normal cells. In this review, we summarize the most recent RNAi delivery strategies, including extracellular vesicles, that use a ligand-mediated approach for targeting various oncological diseases.
Collapse
Affiliation(s)
- Ahmed M Abdelaal
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
27
|
Parker JL, Deme JC, Kuteyi G, Wu Z, Huo J, Goldman ID, Owens RJ, Biggin PC, Lea SM, Newstead S. Structural basis of antifolate recognition and transport by PCFT. Nature 2021; 595:130-134. [PMID: 34040256 PMCID: PMC9990147 DOI: 10.1038/s41586-021-03579-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Folates (also known as vitamin B9) have a critical role in cellular metabolism as the starting point in the synthesis of nucleic acids, amino acids and the universal methylating agent S-adenylsmethionine1,2. Folate deficiency is associated with a number of developmental, immune and neurological disorders3-5. Mammals cannot synthesize folates de novo; several systems have therefore evolved to take up folates from the diet and distribute them within the body3,6. The proton-coupled folate transporter (PCFT) (also known as SLC46A1) mediates folate uptake across the intestinal brush border membrane and the choroid plexus4,7, and is an important route for the delivery of antifolate drugs in cancer chemotherapy8-10. How PCFT recognizes folates or antifolate agents is currently unclear. Here we present cryo-electron microscopy structures of PCFT in a substrate-free state and in complex with a new-generation antifolate drug (pemetrexed). Our results provide a structural basis for understanding antifolate recognition and provide insights into the pH-regulated mechanism of folate transport mediated by PCFT.
Collapse
Affiliation(s)
- Joanne L Parker
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Justin C Deme
- Dunn School of Pathology, University of Oxford, Oxford, UK
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Gabriel Kuteyi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Zhiyi Wu
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jiandong Huo
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - I David Goldman
- Departments of Molecular Pharmacology and Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Didcot, UK
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Protein Production UK, The Research Complex at Harwell, Didcot, UK
| | - Philip C Biggin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Susan M Lea
- Dunn School of Pathology, University of Oxford, Oxford, UK.
- Central Oxford Structural Molecular Imaging Centre, University of Oxford, Oxford, UK.
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| | - Simon Newstead
- Department of Biochemistry, University of Oxford, Oxford, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Shulpekova Y, Nechaev V, Kardasheva S, Sedova A, Kurbatova A, Bueverova E, Kopylov A, Malsagova K, Dlamini JC, Ivashkin V. The Concept of Folic Acid in Health and Disease. Molecules 2021; 26:molecules26123731. [PMID: 34207319 PMCID: PMC8235569 DOI: 10.3390/molecules26123731] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Folates have a pterine core structure and high metabolic activity due to their ability to accept electrons and react with O-, S-, N-, C-bounds. Folates play a role as cofactors in essential one-carbon pathways donating methyl-groups to choline phospholipids, creatine, epinephrine, DNA. Compounds similar to folates are ubiquitous and have been found in different animals, plants, and microorganisms. Folates enter the body from the diet and are also synthesized by intestinal bacteria with consequent adsorption from the colon. Three types of folate and antifolate cellular transporters have been found, differing in tissue localization, substrate affinity, type of transferring, and optimal pH for function. Laboratory criteria of folate deficiency are accepted by WHO. Severe folate deficiencies, manifesting in early life, are seen in hereditary folate malabsorption and cerebral folate deficiency. Acquired folate deficiency is quite common and is associated with poor diet and malabsorption, alcohol consumption, obesity, and kidney failure. Given the observational data that folates have a protective effect against neural tube defects, ischemic events, and cancer, food folic acid fortification was introduced in many countries. However, high physiological folate concentrations and folate overload may increase the risk of impaired brain development in embryogenesis and possess a growth advantage for precancerous altered cells.
Collapse
Affiliation(s)
- Yulia Shulpekova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Vladimir Nechaev
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Svetlana Kardasheva
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Alla Sedova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Anastasia Kurbatova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Elena Bueverova
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| | - Arthur Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
| | - Kristina Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 119121 Moscow, Russia;
- Correspondence: ; Tel.: +7-499-764-9878
| | | | - Vladimir Ivashkin
- Department of Internal Diseases Propedeutics, Sechenov University, 119121 Moscow, Russia; (Y.S.); (V.N.); (S.K.); (A.S.); (A.K.); (E.B.); (V.I.)
| |
Collapse
|
29
|
Asghar M, Shoaib H, Kang W, Tariq I, Chatterjee T. Methotrexate Toxicity: A Simple Solution to a Complex Problem. Cureus 2021; 13:e14364. [PMID: 33972915 PMCID: PMC8106237 DOI: 10.7759/cureus.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Methotrexate is a highly effective medication that is the mainstay of treatment for numerous complex dermatological and rheumatological disorders. However, its use requires close monitoring as it has serious side effects that could be fatal if not recognized promptly. Herein, we present an interesting case of methotrexate toxicity leading to a prolonged hospital stay with resultant increase in health care cost and patient dissatisfaction. It remains of pivotal importance for primary care physicians and hospitalists to be aware of its side effect profile. As such, early recognition of methotrexate toxicity can result in earlier initiation of goal-directed therapies, leading to improved outcomes and shorter hospital stay. Patient education and effective communication between health care providers and the patient are of utmost importance in ensuring patient safety.
Collapse
Affiliation(s)
- Muhammad Asghar
- Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, USA
| | - Hasan Shoaib
- Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, USA
| | - Woosun Kang
- Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, USA
| | - Irfa Tariq
- Internal Medicine, Sir Ganga Ram Hospital, Lahore, PAK
| | - Tulika Chatterjee
- Internal Medicine, University of Illinois College of Medicine Peoria, Peoria, USA
| |
Collapse
|
30
|
O'Connor C, Wallace-Povirk A, Ning C, Frühauf J, Tong N, Gangjee A, Matherly LH, Hou Z. Folate transporter dynamics and therapy with classic and tumor-targeted antifolates. Sci Rep 2021; 11:6389. [PMID: 33737637 PMCID: PMC7973545 DOI: 10.1038/s41598-021-85818-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/05/2021] [Indexed: 01/03/2023] Open
Abstract
There are three major folate uptake systems in human tissues and tumors, including the reduced folate carrier (RFC), folate receptors (FRs) and proton-coupled folate transporter (PCFT). We studied the functional interrelationships among these systems for the novel tumor-targeted antifolates AGF94 (transported by PCFT and FRs but not RFC) and AGF102 (selective for FRs) versus the classic antifolates pemetrexed, methotrexate and PT523 (variously transported by FRs, PCFT and RFC). We engineered HeLa cell models to express FRα or RFC under control of a tetracycline-inducible promoter with or without constitutive PCFT. We showed that cellular accumulations of extracellular folates were determined by the type and levels of the major folate transporters, with PCFT and RFC prevailing over FRα, depending on expression levels and pH. Based on patterns of cell proliferation in the presence of the inhibitors, we established transport redundancy for RFC and PCFT in pemetrexed uptake, and for PCFT and FRα in AGF94 uptake; uptake by PCFT predominated for pemetrexed and FRα for AGF94. For methotrexate and PT523, uptake by RFC predominated even in the presence of PCFT or FRα. For both classic (methotrexate, PT523) and FRα-targeted (AGF102) antifolates, anti-proliferative activities were antagonized by PCFT, likely due to its robust activity in mediating folate accumulation. Collectively, our findings describe a previously unrecognized interplay among the major folate transport systems that depends on transporter levels and extracellular pH, and that determines their contributions to the uptake and anti-tumor efficacies of targeted and untargeted antifolates.
Collapse
Affiliation(s)
- Carrie O'Connor
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Adrianne Wallace-Povirk
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Changwen Ning
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Josephine Frühauf
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA
| | - Nian Tong
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Duquesne University, Pittsburgh, PA, USA
| | - Larry H Matherly
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| | - Zhanjun Hou
- Departments of Oncology, Wayne State University School of Medicine, 421 E. Canfield, Detroit, MI, 48201, USA.
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
31
|
Gao J, Wang C, Wei W. The effects of drug transporters on the efficacy of methotrexate in the treatment of rheumatoid arthritis. Life Sci 2021; 268:118907. [PMID: 33428880 DOI: 10.1016/j.lfs.2020.118907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022]
Abstract
The ATP-binding cassette (ABC) and solute carrier (SLC) transporter families consist of common drug transporters that mediate the efflux and uptake of drugs, respectively, and play an important role in the absorption, distribution, metabolism and excretion of drugs in vivo. Rheumatoid arthritis (RA) is an autoimmune disease characterized by erosive arthritis, and there are many RA patients worldwide. Methotrexate (MTX), the first-choice treatment for RA, can reduce the level of inflammation, prevent joint erosion and functional damage, and greatly reduce pain in RA patients. However, many patients show resistance to MTX, greatly affecting the efficacy of MTX. Many factors, such as irrational drug use and heredity, are associated with drug resistance. Considering the effect of drug transporters on drugs, many studies have compared the expression of drug transporters in drug-resistant and drug-sensitive patients, and abnormal transporter expression and transport activity have been found in patients with MTX resistance. Thus, drug transporters are involved in drug resistance. This article reviews the effects of transporters on the efficacy of MTX in the treatment of RA.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China.
| |
Collapse
|
32
|
Zhan HQ, Najmi M, Lin K, Aluri S, Fiser A, Goldman ID, Zhao R. A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the protein in an inward-open conformation. J Biol Chem 2020; 295:15650-15661. [PMID: 32893190 DOI: 10.1074/jbc.ra120.014757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/26/2020] [Indexed: 11/06/2022] Open
Abstract
The proton-coupled folate transporter (PCFT, SLC46A1) is required for folate intestinal absorption and transport across the choroid plexus. Recent work has identified a F392V mutation causing hereditary folate malabsorption. However, the residue properties responsible for this loss of function remains unknown. Using site-directed mutagenesis, we observed complete loss of function with charged (Lys, Asp, and Glu) and polar (Thr, Ser, and Gln) Phe-392 substitutions and minimal function with some neutral substitutions; however, F392M retained full function. Using the substituted-cysteine accessibility method (with N-biotinyl aminoethyl methanethiosulfonate labeling), Phe-392 mutations causing loss of function, although preserving membrane expression and trafficking, also resulted in loss of accessibility of the substituted cysteine in P314C-PCFT located within the aqueous translocation pathway. F392V function and accessibility of the P314C cysteine were restored by insertion of a G305L (suppressor) mutation. A S196L mutation localized in proximity to Gly-305 by homology modeling was inactive. However, when inserted into the inactive F392V scaffold, function was restored (mutually compensatory mutations), as was accessibility of the P314C cysteine residue. Reduced function, documented with F392H PCFT, was due to a 15-fold decrease in methotrexate influx V max, accompanied by a decreased influx Kt (4.5-fold) and Ki (3-fold). The data indicate that Phe-392 is required for rapid oscillation of the carrier among its conformational states and suggest that this is achieved by dampening affinity of the protein for its folate substrates. F392V and other inactivating Phe-392 PCFT mutations lock the protein in its inward-open conformation. Reach (length) and hydrophobicity of Phe-392 appear to be features required for full activity.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Mitra Najmi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Kai Lin
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Air Force Medical Center, People's Liberation Army, Beijing, China
| | - Srinivas Aluri
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andras Fiser
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - I David Goldman
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Rongbao Zhao
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
33
|
Dekhne AS, Hou Z, Gangjee A, Matherly LH. Therapeutic Targeting of Mitochondrial One-Carbon Metabolism in Cancer. Mol Cancer Ther 2020; 19:2245-2255. [PMID: 32879053 DOI: 10.1158/1535-7163.mct-20-0423] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
One-carbon (1C) metabolism encompasses folate-mediated 1C transfer reactions and related processes, including nucleotide and amino acid biosynthesis, antioxidant regeneration, and epigenetic regulation. 1C pathways are compartmentalized in the cytosol, mitochondria, and nucleus. 1C metabolism in the cytosol has been an important therapeutic target for cancer since the inception of modern chemotherapy, and "antifolates" targeting cytosolic 1C pathways continue to be a mainstay of the chemotherapy armamentarium for cancer. Recent insights into the complexities of 1C metabolism in cancer cells, including the critical role of the mitochondrial 1C pathway as a source of 1C units, glycine, reducing equivalents, and ATP, have spurred the discovery of novel compounds that target these reactions, with particular focus on 5,10-methylene tetrahydrofolate dehydrogenase 2 and serine hydroxymethyltransferase 2. In this review, we discuss key aspects of 1C metabolism, with emphasis on the importance of mitochondrial 1C metabolism to metabolic homeostasis, its relationship with the oncogenic phenotype, and its therapeutic potential for cancer.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
34
|
BASIC FIBROBLAST GROWTH FACTOR AND ADIPONECTIN IN ADOLESCENCE WITH JUVENILE IDIOPATHIC ARTHRITIS TREATED WITH METHOTREXATE. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methotrexate has been applied clinically for juvenile idiopathic arthritis (JIA) treatment for decades. It is recommended for use globally, according all modern guidelines. Despite the fact that fibrosis molecular mechanisms as well as methotrexate (MTX) elimination and fibrosis indexes were studied a lot there is still not enough information for adolescence. Adiponectin, fibroblast growth factor and fibrosis indexes in adolescents with JIA treated with methotrexate were studied in this work.
The aim was to study dynamics of molecular-cellular mechanisms activation of fibrotic processes development in the liver in adolescents with juvenile idiopathic arthritis treated with methotrexate.
Materials and methods: A total of 68 children with juvenile idiopathic arthritis, were enrolled in the study. 25 boys (36.8 %) and 43 girls (63.2 %) were examined. Children were divided into three groups in accordance with the methotrexate dose. The following data were analyzed: ESR (mm/hour), C-reactive protein (mg/l), Hemolytic activity (CU), circulating immune complexes, (g/l), ALT (U/l), AST (U/l), Adiponectin (mcg/ml), BFGF (pg/ml), APRI index, FIB-4 Score.
Results: According to our results when patients start using MTX they have significantly positive effect. Therefore, when analyzing all parameters liver pathologies may occur before MTX use. When MTX used, its proinflammation and antifibrotic effects lead to normalization of all organs and systems, as well as joints and liver. Also, long-term MTX use can lead to adverse effects.
Conclusions: So, it is important to control possible liver disorders in adolescence treated with MTX. According to our study results we find out that there are decreasing of liver damage parameters in patients which started using MTX.
Collapse
|
35
|
Boss SD, Ametamey SM. Development of Folate Receptor-Targeted PET Radiopharmaceuticals for Tumor Imaging-A Bench-to-Bedside Journey. Cancers (Basel) 2020; 12:cancers12061508. [PMID: 32527010 PMCID: PMC7352234 DOI: 10.3390/cancers12061508] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 01/05/2023] Open
Abstract
The folate receptor-α (FR-α) is overexpressed in many epithelial cancers, including ovary, uterus, kidneys, breast, lung, colon and prostate carcinomas, but shows limited expression in normal tissues such as kidneys, salivary glands, choroid plexus and placenta. FR-α has therefore emerged as a promising target for the delivery of therapeutic and imaging agents to FR-positive tumors. A series of folate-based PET (positron emission tomography) radiopharmaceuticals have been developed for the selective targeting of FR-positive malignancies. This review provides an overview on the research progress made so far regarding the design, radiosynthesis and the utility of the folate-derived PET radioconjugates for targeting FR-positive tumors. For the most part, results from folate radioconjugates labeled with fluorine-18 (t1/2 = 109.8 min) and gallium-68 (t1/2 = 67.7 min) have been presented but folates labeled with "exotic" and new PET radionuclides such as copper-64 (t1/2 = 12.7 h), terbium-152 (t1/2 = 17.5 h), scandium-44 (t1/2 = 3.97 h), cobalt-55 (t1/2 = 17.5 h) and zirconium-89 (t1/2 = 78.4 h) are also discussed. For tumor imaging, none of the reported PET radiolabeled folates reported to date has made the complete bench-to-bedside journey except [18F]AzaFol, which made it to patients with metastatic ovarian and lung cancers in a multicenter first-in-human trial. In the near future, however, we expect more clinical trials with folate-based PET radiopharmaceuticals given the increasing clinical interest in imaging and the treatment of FR-related malignancies.
Collapse
Affiliation(s)
- Silvan D. Boss
- SWAN Isotopen AG, University Hospital Bern, 3010 Bern, Switzerland;
| | - Simon Mensah Ametamey
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
36
|
Scaranti M, Cojocaru E, Banerjee S, Banerji U. Exploiting the folate receptor α in oncology. Nat Rev Clin Oncol 2020; 17:349-359. [PMID: 32152484 DOI: 10.1038/s41571-020-0339-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 12/24/2022]
Abstract
Folate receptor α (FRα) came into focus as an anticancer target many decades after the successful development of drugs targeting intracellular folate metabolism, such as methotrexate and pemetrexed. Binding to FRα is one of several methods by which folate is taken up by cells; however, this receptor is an attractive anticancer drug target owing to the overexpression of FRα in a range of solid tumours, including ovarian, lung and breast cancers. Furthermore, using FRα to better localize effective anticancer therapies to their target tumours using platforms such as antibody-drug conjugates, small-molecule drug conjugates, radioimmunoconjugates and, more recently, chimeric antigen receptor T cells could further improve the outcomes of patients with FRα-overexpressing cancers. FRα can also be harnessed for predictive biomarker research. Moreover, imaging FRα radiologically or in real time during surgery can lead to improved functional imaging and surgical outcomes, respectively. In this Review, we describe the current status of research into FRα in cancer, including data from several late-phase clinical trials involving FRα-targeted therapies, and the use of new technologies to develop FRα-targeted agents with improved therapeutic indices.
Collapse
Affiliation(s)
- Mariana Scaranti
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Elena Cojocaru
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Susana Banerjee
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Udai Banerji
- The Institute of Cancer Research, London, UK.
- The Royal Marsden NHS Foundation Trust, London, UK.
| |
Collapse
|
37
|
Golani LK, Islam F, O'Connor C, Dekhne AS, Hou Z, Matherly LH, Gangjee A. Design, synthesis and biological evaluation of novel pyrrolo[2,3-d]pyrimidine as tumor-targeting agents with selectivity for tumor uptake by high affinity folate receptors over the reduced folate carrier. Bioorg Med Chem 2020; 28:115544. [PMID: 32503687 DOI: 10.1016/j.bmc.2020.115544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
Tumor-targeted 6-substituted pyrrolo[2,3-d]pyrimidine benzoyl compounds based on 2 were isosterically modified at the 4-carbon bridge by replacing the vicinal (C11) carbon by heteroatoms N (4), O (5) or S (6), or with an N-substituted formyl (7), trifluoroacetyl (8) or acetyl (9). Replacement with sulfur (6) afforded the most potent KB tumor cell inhibitor, ~6-fold better than the parent 2. In addition, 6 retained tumor transport selectivity via folate receptor (FR) α and -β over the ubiquitous reduced folate carrier (RFC). FRα-mediated cell inhibition for 6 was generally equivalent to 2, while the FRβ-mediated activity was improved by 16-fold over 2. N (4) and O (5) substitutions afforded similar tumor cell inhibitions as 2, with selectivity for FRα and -β over RFC. The N-substituted analogs 7-9 also preserved transport selectivity for FRα and -β over RFC. For FRα-expressing CHO cells, potencies were in the order of 8 > 7 > 9. Whereas 8 and 9 showed similar results with FRβ-expressing CHO cells, 7 was ~16-fold more active than 2. By nucleoside rescue experiments, all the compounds inhibited de novo purine biosynthesis, likely at the step catalyzed by glycinamide ribonucleotide formyltransferase. Thus, heteroatom replacements of the CH2 in the bridge of 2 afford analogs with increased tumor cell inhibition that could provide advantages over 2, as well as tumor transport selectivity over clinically used antifolates including methotrexate and pemetrexed.
Collapse
Affiliation(s)
- Lalit K Golani
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| | - Farhana Islam
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, 421 East Canfield, Detroit, MI 48201, United States.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, United States.
| |
Collapse
|
38
|
Saito S, Koya Y, Kajiyama H, Yamashita M, Kikkawa F, Nawa A. Folate-appended cyclodextrin carrier targets ovarian cancer cells expressing the proton-coupled folate transporter. Cancer Sci 2020; 111:1794-1804. [PMID: 32154964 PMCID: PMC7226238 DOI: 10.1111/cas.14379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Folate receptor alpha (FRα) is overexpressed in >80% of epithelial ovarian cancer (EOC). Accordingly, folate is attracting attention as a targeting ligand for EOC. For EOC patients, paclitaxel (PTX) is generally used as a first‐line chemotherapeutic agent in combination with platinum‐based drugs. Cyclodextrin (CyD) is a potential new formulation vehicle for PTX that could replace Cremophor‐EL, a traditional formulation vehicle that causes significant side effects, including neutropenia. Several years ago, folate‐appended β‐CyD (Fol‐c1‐β‐CyD) was developed as an FRα‐targeting drug carrier, but its efficacy as a treatment for EOC remains to be determined. In this study, we assessed the antitumor activity of PTX in Fol‐c1‐β‐CyD (PTX/Fol‐c1‐β‐CyD) in EOC‐derived cell lines. We found that PTX/Fol‐c1‐β‐CyD killed not only FRα‐expressing cells but also FRα‐negative cells. In the FRα‐negative A2780 cells, knockdown of proton‐coupled folate transporter (PCFT) significantly decreased the cytotoxicity of PTX/Fol‐c1‐β‐CyD, whereas knockdown of FRα did not. By contrast, knockdown of either FRα or proton‐coupled folate transporter (PCFT) decreased the cytotoxicity of PTX/Fol‐c1‐β‐CyD in FRα‐expressing SK‐OV‐3 cells. Furthermore, the cytotoxicity of PTX/Fol‐c1‐β‐CyD in A2780 cells was increased at acidic pH, and this increase was suppressed by PCFT inhibitor. In mice intraperitoneally inoculated with FRα‐expressing or PCFT‐expressing EOC cells, intraperitoneal administration of PTX/Fol‐c1‐β‐CyD significantly suppressed the growth of both types of EOC cells relative to PTX alone, without inducing a significant change in the neutrophil/white blood cell ratio. Our data suggest that Fol‐c1‐β‐CyD targets not only FRα but also PCFT, and can efficiently deliver anticancer drugs to EOC cells in the peritoneal cavity.
Collapse
Affiliation(s)
- Shinichi Saito
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Yoshihiro Koya
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mamoru Yamashita
- Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akihiro Nawa
- Department of Obstetrics and Gynecology Collaborative Research, Bell Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Medical Corporation Kishokai, Aichi, Japan
| |
Collapse
|
39
|
Friedman B, Cronstein B. Mécanisme d'action du méthotrexate dans le traitement de la polyarthrite rhumatoïde. REVUE DU RHUMATISME (ED. FRANCAISE : 1993) 2020; 87:92-98. [PMID: 35068924 PMCID: PMC8782276 DOI: 10.1016/j.rhum.2020.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Le méthotrexate est utilisé dans le traitement de la polyarthrite rhumatoïde (PR) depuis les années 1980 et est souvent à ce jour le médicament de première intention pour le traitement de la PR. Dans cette revue, nous examinons plusieurs hypothèses pour expliquer le mécanisme à l'origine de l'efficacité du méthotrexate dans la PR. Celles-ci comprennent l'antagonisme du folate, la signalisation par l'adénosine, la génération d'espèces réactives de l'oxygène (ROS), la diminution des molécules d'adhérence, la modification des profils cytokiniques et l'inhibition des polyamines, entre autres. Actuellement, la signalisation par l'adénosine est probablement l'explication la plus largement acceptée du mécanisme du méthotrexate dans la PR, car le méthotrexate augmente les taux d'adénosine et suite à l'engagement de l'adénosine avec ses récepteurs extracellulaires, une cascade intracellulaire est activée et favorise un état antiinflammatoire global. Outre ces hypothèses, nous examinons le mécanisme du méthotrexate dans la PR sous l'angle de ses effets indésirables et considérons certains des nouveaux marqueurs génétiques de l'efficacité et de la toxicité du méthotrexate dans la PR. Enfin, nous discutons brièvement du mécanisme du méthotrexate en association avec un traitement de la PR par un inhibiteur du TNF-. En fin de compte, en trouvant une explication claire de la voie et du mécanisme conduisant à l'efficacité du méthotrexate dans la PR, il pourrait exister un moyen de formuler des thérapies plus puissantes avec moins d'effets secondaires.
Collapse
|
40
|
Lu X. The Role of Large Neutral Amino Acid Transporter (LAT1) in Cancer. Curr Cancer Drug Targets 2019; 19:863-876. [DOI: 10.2174/1568009619666190802135714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/24/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Background:
The solute carrier family 7 (SLC7) can be categorically divided into two
subfamilies, the L-type amino acid transporters (LATs) including SLC7A5-13, and SLC7A15, and
the cationic amino acid transporters (CATs) including SLC7A1-4 and SLC7A14. Members of the
CAT family transport predominantly cationic amino acids by facilitating diffusion with intracellular
substrates. LAT1 (also known as SLC7A5), is defined as a heteromeric amino acid transporter
(HAT) interacting with the glycoprotein CD98 (SLC3A2) through a conserved disulfide to uptake
not only large neutral amino acids, but also several pharmaceutical drugs to cells.
Methods:
In this review, we provide an overview of the interaction of the structure-function of
LAT1 and its essential role in cancer, specifically, its role at the blood-brain barrier (BBB) to facilitate
the transport of thyroid hormones, pharmaceuticals (e.g., I-DOPA, gabapentin), and metabolites
into the brain.
Results:
LAT1 expression increases as cancers progress, leading to higher expression levels in highgrade
tumors and metastases. In addition, LAT1 plays a crucial role in cancer-associated
reprogrammed metabolic networks by supplying tumor cells with essential amino acids.
Conclusion:
The increasing understanding of the role of LAT1 in cancer has led to an increase in
interest surrounding its potential as a drug target for cancer treatment.
Collapse
Affiliation(s)
- Xinjie Lu
- The Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, SW3 6LR, United Kingdom
| |
Collapse
|
41
|
Dekhne AS, Ning C, Nayeen MJ, Shah K, Kalpage H, Frühauf J, Wallace-Povirk A, O'Connor C, Hou Z, Kim S, Hüttemann M, Gangjee A, Matherly LH. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2- d]pyrimidine Inhibitor Targeting Mitochondrial and Cytosolic One-Carbon Metabolism. Mol Pharmacol 2019; 97:9-22. [PMID: 31707355 DOI: 10.1124/mol.119.117937] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Folate-dependent one-carbon (C1) metabolism is compartmentalized in the mitochondria and cytosol and is a source of critical metabolites for proliferating tumors. Mitochondrial C1 metabolism including serine hydroxymethyltransferase 2 (SHMT2) generates glycine for de novo purine nucleotide and glutathione biosynthesis and is an important source of NADPH, ATP, and formate, which affords C1 units as 10-formyl-tetrahydrofolate and 5,10-methylene-tetrahydrofolate for nucleotide biosynthesis in the cytosol. We previously discovered novel first-in-class multitargeted pyrrolo[3,2-d]pyrimidine inhibitors of SHMT2 and de novo purine biosynthesis at glycinamide ribonucleotide formyltransferase and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase with potent in vitro and in vivo antitumor efficacy toward pancreatic adenocarcinoma cells. In this report, we extend our findings to an expanded panel of pancreatic cancer models. We used our lead analog AGF347 [(4-(4-(2-amino-4-oxo-3,4-dihydro-5H-pyrrolo[3,2-d]pyrimidin-5-yl)butyl)-2-fluorobenzoyl)-l-glutamic acid] to characterize pharmacodynamic determinants of antitumor efficacy for this series and demonstrated plasma membrane transport into the cytosol, uptake from cytosol into mitochondria, and metabolism to AGF347 polyglutamates in both cytosol and mitochondria. Antitumor effects of AGF347 downstream of SHMT2 and purine biosynthesis included suppression of mammalian target of rapamycin signaling, and glutathione depletion with increased levels of reactive oxygen species. Our results provide important insights into the cellular pharmacology of novel pyrrolo[3,2-d]pyrimidine inhibitors as antitumor compounds and establish AGF347 as a unique agent for potential clinical application for pancreatic cancer, as well as other malignancies. SIGNIFICANCE STATEMENT: This study establishes the antitumor efficacies of novel inhibitors of serine hydroxymethyltransferase 2 and of cytosolic targets toward a panel of clinically relevant pancreatic cancer cells and demonstrates the important roles of plasma membrane transport, mitochondrial accumulation, and metabolism to polyglutamates of the lead compound AGF347 to drug activity. We also establish that loss of serine catabolism and purine biosynthesis resulting from AGF347 treatment impacts mammalian target of rapamycin signaling, glutathione pools, and reactive oxygen species, contributing to antitumor efficacy.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Changwen Ning
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Md Junayed Nayeen
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Khushbu Shah
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Hasini Kalpage
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Josephine Frühauf
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Maik Hüttemann
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Aleem Gangjee
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine/Karmanos Cancer Institute, Detroit, Michigan (A.S.D., J.F., A.W.-P., C.O., Z.H., S.K., L.H.M.); Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania (M.J.N., K.S., A.G.); Center for Molecular Medicine and Genetics (H.K., M.H.) and Department of Pharmacology (L.H.M.), Wayne State University School of Medicine, Detroit, Michigan; Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China (C.N.); and Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan (Z.H., S.K., M.H., L.H.M.)
| |
Collapse
|
42
|
Jekic B, Maksimovic N, Damnjanovic T. Methotrexate pharmacogenetics in the treatment of rheumatoid arthritis. Pharmacogenomics 2019; 20:1235-1245. [DOI: 10.2217/pgs-2019-0121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For many decades, methotrexate (MXT) has remained the drug of choice in the treatment of rheumatoid arthritis (RA). Unfortunately, a considerable number of patients do not achieve an appropriate therapeutic response. Pharmacogenetics studies do not give usable results regarding differences in MTX response among RA patients. The mechanism of MTX action in RA is not completely understood. We present and discuss data regarding the molecular basis of folate and adenosine pathways, the most obvious MTX targets, to explain possible causes of therapy failure. The molecular basis of the disease could also have an impact on therapy outcomes and in this review we explore this. Finally, we make a short review of available pharmacogenetics study results.
Collapse
Affiliation(s)
- Biljana Jekic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Nela Maksimovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| | - Tatjana Damnjanovic
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade,11000 Belgrade, Serbia
| |
Collapse
|
43
|
Farran B, Montenegro RC, Kasa P, Pavitra E, Huh YS, Han YK, Kamal MA, Nagaraju GP, Rama Raju GS. Folate-conjugated nanovehicles: Strategies for cancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 107:110341. [PMID: 31761235 DOI: 10.1016/j.msec.2019.110341] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/02/2019] [Accepted: 10/19/2019] [Indexed: 02/06/2023]
Abstract
Cancer theranostics represents a strategy that aims at combining diagnosis with therapy through the simultaneous imaging and targeted delivery of therapeutics to cancer cells. Recently, the folate receptor alpha has emerged as an attractive theranostic target due to its overexpression in multiple solid tumors and its great functional versatility. In fact, it can be incorporated into folate-conjugated nano-systems for imaging and drug delivery. Hence, it can be used along the line of personalized clinical strategies as both an imaging tool and a delivery method ensuring the selective transport of treatments to tumor cells, thus highlighting its theranostic qualities. In this review, we will explore these theranostic characteristics in detail and assess their clinical potential. We will also discuss the technological advances that have allowed the design of sophisticated folate-based nanocarriers harboring various chemical properties and suited for the transport of various therapeutic agents.
Collapse
Affiliation(s)
- Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Raquel Carvalho Montenegro
- Biological Science Institute, Federal University of Para, Augusto Correa Avenue, 01 Guamá, Belém, Pará, Brazil
| | - Prameswari Kasa
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP, 500004, India
| | - Eluri Pavitra
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100, Inha-ro, Incheon, 22212, Republic of Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah, 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
44
|
Discovery of amide-bridged pyrrolo[2,3-d]pyrimidines as tumor targeted classical antifolates with selective uptake by folate receptor α and inhibition of de novo purine nucleotide biosynthesis. Bioorg Med Chem 2019; 27:115125. [PMID: 31679978 DOI: 10.1016/j.bmc.2019.115125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/17/2019] [Indexed: 11/20/2022]
Abstract
We previously showed that classical 6-substituted pyrrolo[2,3-d]pyrimidine antifolates bind to folate receptor (FR) α and the target purine biosynthetic enzyme glycinamide ribonucleotide formyltransferase (GARFTase) with different cis and trans conformations. In this study, we designed novel analogs of this series with an amide moiety in the bridge region that can adopt both the cis and trans lowest energy conformations. This provides entropic benefit, by restricting the number of side-chain conformations of the unbound ligand to those most likely to promote binding to FRα and the target enzyme required for antitumor activity. NMR of the most active compound 7 showed both cis and trans amide bridge conformations in ~1:1 ratio. The bridge amide group in the best docked poses of 7 in the crystal structures of FRα and GARFTase adopted both cis and trans conformations, with the lowest energy conformations predicted by Maestro and evidenced by NMR within 1 kcal/mol. Compound 7 showed ~3-fold increased inhibition of FRα-expressing cells over its non-restricted parent analog 1 and was selectively internalized by FRα over the reduced folate carrier (RFC), resulting in significant in vitro antitumor activity toward FRα-expressing KB human tumor cells. Antitumor activity of 7 was abolished by treating cells with adenosine but was incompletely protected by 5-aminoimidazole-4-carboxamide (AICA) at higher drug concentrations, suggesting GARFTase and AICA ribonucleotide formyltransferase (AICARFTase) in de novo purine biosynthesis as the likely intracellular targets. GARFTase inhibition by compound 7 was confirmed by an in situ cell-based activity assay. Our results identify a "first-in-class" classical antifolate with a novel amide linkage between the scaffold and the side chain aryl L-glutamate that affords exclusive selectivity for transport via FRα over RFC and antitumor activity resulting from inhibition of GARFTase and likely AICARFTase. Compound 7 offers significant advantages over clinically used inhibitors of this class that are transported by the ubiquitous RFC, resulting in dose-limiting toxicities.
Collapse
|
45
|
Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, Ralandison S, Gasque P. Methotrexate an Old Drug with New Tricks. Int J Mol Sci 2019; 20:E5023. [PMID: 31658782 PMCID: PMC6834162 DOI: 10.3390/ijms20205023] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/16/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022] Open
Abstract
Methotrexate (MTX) is the first line drug for the treatment of a number of rheumatic and non-rheumatic disorders. It is currently used as an anchor disease, modifying anti-rheumatic drug in the treatment of rheumatoid arthritis (RA). Despite the development of numerous new targeted therapies, MTX remains the backbone of RA therapy due to its potent efficacy and tolerability. There has been also a growing interest in the use of MTX in the treatment of chronic viral mediated arthritis. Many viruses-including old world alphaviruses, Parvovirus B19, hepatitis B/C virus, and human immunodeficiency virus-have been associated with arthritogenic diseases and reminiscent of RA. MTX may provide benefits although with the potential risk of attenuating patients' immune surveillance capacities. In this review, we describe the emerging mechanisms of action of MTX as an anti-inflammatory drug and complementing its well-established immunomodulatory activity. The mechanisms involve adenosine signaling modulation, alteration of cytokine networks, generation of reactive oxygen species and HMGB1 alarmin suppression. We also provide a comprehensive understanding of the mechanisms of MTX toxic effects. Lastly, we discussed the efficacy, as well as the safety, of MTX used in the management of viral-related rheumatic syndromes.
Collapse
Affiliation(s)
- Yosra Bedoui
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Xavier Guillot
- Service de Rhumatologie, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Jimmy Sélambarom
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Pascale Guiraud
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
| | - Claude Giry
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Marie Christine Jaffar-Bandjee
- Laboratoire de biologie, CNR associé des arbovirus, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| | - Stéphane Ralandison
- Service de Rhumatologie-Médecine Interne, CHU Morafeno, Route d'Ivoloina 501, Toamasina, Madagascar.
| | - Philippe Gasque
- Unité Mixte de Recherche Processus Infectieux en Milieu Insulaire Tropical (PIMIT), INSERM U1187, CNRS 9192, IRD 249, Université de La Réunion-Plateforme Technologique CYROI-2, rue Maxime Rivière, 97490 Sainte-Clotilde, France.
- Pôle de Biologie, secteur Laboratoire d'Immunologie Clinique et Expérimentale de la zone de l'Océan Indien (LICE-OI), CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France.
| |
Collapse
|
46
|
Dekhne AS, Shah K, Ducker GS, Katinas JM, Wong-Roushar J, Nayeen MJ, Doshi A, Ning C, Bao X, Frühauf J, Liu J, Wallace-Povirk A, O'Connor C, Dzinic SH, White K, Kushner J, Kim S, Hüttemann M, Polin L, Rabinowitz JD, Li J, Hou Z, Dann CE, Gangjee A, Matherly LH. Novel Pyrrolo[3,2- d]pyrimidine Compounds Target Mitochondrial and Cytosolic One-carbon Metabolism with Broad-spectrum Antitumor Efficacy. Mol Cancer Ther 2019; 18:1787-1799. [PMID: 31289137 PMCID: PMC6774887 DOI: 10.1158/1535-7163.mct-19-0037] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2019] [Accepted: 07/03/2019] [Indexed: 01/06/2023]
Abstract
Folate-dependent one-carbon (C1) metabolism is compartmentalized into the mitochondria and cytosol and supports cell growth through nucleotide and amino acid biosynthesis. Mitochondrial C1 metabolism, including serine hydroxymethyltransferase (SHMT) 2, provides glycine, NAD(P)H, ATP, and C1 units for cytosolic biosynthetic reactions, and is implicated in the oncogenic phenotype across a wide range of cancers. Whereas multitargeted inhibitors of cytosolic C1 metabolism, such as pemetrexed, are used clinically, there are currently no anticancer drugs that specifically target mitochondrial C1 metabolism. We used molecular modeling to design novel small-molecule pyrrolo[3,2-d]pyrimidine inhibitors targeting mitochondrial C1 metabolism at SHMT2. In vitro antitumor efficacy was established with the lead compounds (AGF291, AGF320, AGF347) toward lung, colon, and pancreatic cancer cells. Intracellular targets were identified by metabolic rescue with glycine and nucleosides, and by targeted metabolomics using a stable isotope tracer, with confirmation by in vitro assays with purified enzymes. In addition to targeting SHMT2, inhibition of the cytosolic purine biosynthetic enzymes, β-glycinamide ribonucleotide formyltransferase and/or 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase, and SHMT1 was also established. AGF347 generated significant in vivo antitumor efficacy with potential for complete responses against both early-stage and upstage MIA PaCa-2 pancreatic tumor xenografts, providing compelling proof-of-concept for therapeutic targeting of SHMT2 and cytosolic C1 enzymes by this series. Our results establish structure-activity relationships and identify exciting new drug prototypes for further development as multitargeted antitumor agents.
Collapse
Affiliation(s)
- Aamod S Dekhne
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Khushbu Shah
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Gregory S Ducker
- Department of Chemistry/Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Jade M Katinas
- Department of Chemistry, Indiana University, Bloomington, Indiana
| | | | - Md Junayed Nayeen
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Arpit Doshi
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Changwen Ning
- Biochemistry and Molecular Biology, Jilin University, Changchun, Jilin Province, China
| | - Xun Bao
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Josephine Frühauf
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Jenney Liu
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Adrianne Wallace-Povirk
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Carrie O'Connor
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Sijana H Dzinic
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Kathryn White
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Juiwanna Kushner
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Seongho Kim
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Lisa Polin
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Joshua D Rabinowitz
- Department of Chemistry/Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Jing Li
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Zhanjun Hou
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan
| | - Charles E Dann
- Department of Chemistry, Indiana University, Bloomington, Indiana.
| | - Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, Pennsylvania.
| | - Larry H Matherly
- Department of Oncology, Wayne State University School of Medicine, and the Barbara Ann Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
47
|
Fasolato C, Giantulli S, Capocefalo A, Toumia Y, Notariello D, Mazzarda F, Silvestri I, Postorino P, Domenici F. Antifolate SERS-active nanovectors: quantitative drug nanostructuring and selective cell targeting for effective theranostics. NANOSCALE 2019; 11:15224-15233. [PMID: 31385577 DOI: 10.1039/c9nr01075k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the frontiers of nanomedicine is the rational design of theranostic nanovectors. These are nanosized materials combining diagnostic and therapeutic capabilities, i.e. capable of tracking cancer cells and tissues in complex environments, and of selectively acting against them. We herein report on the preparation and application of antifolate plasmonic nanovectors, made of functionalized gold nanoparticles conjugated with the folic acid competitors aminopterin and methotrexate. Due to the overexpression of folate binding proteins on many types of cancer cells, these nanosystems can be exploited for selective cancer cell targeting. The strong surface enhanced Raman scattering (SERS) signature of these nanovectors acts as a diagnostic tool, not only for tracing their presence in biological samples, but also, through a careful spectral analysis, to precisely quantify the amount of drug loaded on a single nanoparticle, and therefore delivered to the cells. Meanwhile, the therapeutic action is implemented based on the strong toxicity of antifolate drugs. Remarkably, supplying the drug in the nanostructured form, rather than as a free molecule, enhances its specific toxicity. The selectivity of the antifolate nanovectors can be optimized by the design of a hybrid folate/antifolate coloaded nanovector for the specific targeting of folate receptor α, which is overexpressed on numerous cancer cell types.
Collapse
Affiliation(s)
- Claudia Fasolato
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Geersing A, de Vries RH, Jansen G, Rots MG, Roelfes G. Folic acid conjugates of a bleomycin mimic for selective targeting of folate receptor positive cancer cells. Bioorg Med Chem Lett 2019; 29:1922-1927. [DOI: 10.1016/j.bmcl.2019.05.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
49
|
Ni J, Xu L, Li W, Zheng C, Wu L. Targeted metabolomics for serum amino acids and acylcarnitines in patients with lung cancer. Exp Ther Med 2019; 18:188-198. [PMID: 31258653 PMCID: PMC6566041 DOI: 10.3892/etm.2019.7533] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the most prevalent types of cancer, but accurate diagnosis remains a challenge. The aim of the present study was to create a model using amino acids and acylcarnitines for lung cancer screening. Serum samples were obtained from two groups of patients with lung cancer recruited in 2015 (including 40 patients and 100 matched controls) and 2017 (including 17 patients and 30 matched controls). Using a metabolomics method, 21 metabolites (13 types of amino acids and 8 types of acylcarnitines) were measured using liquid chromatography-tandem mass spectrometry. Data (from the 2015 and 2017 data sets) were analysed using a Mann-Whitney U test, Student's t-test, Welch's F test, receiver-operator characteristic curve or logistic regression in order to investigate the potential biomarkers. Six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) were indicated to be involved in distinguishing patients with lung cancer from healthy controls. The six discriminating metabolites from the 2017 data set were further analysed using Partial least squares-discriminant analysis (PLS-DA). The PLS-DA model was verified using Spearman's correlation analysis and receiver operating characteristic curve analysis. These results demonstrated that the PLS-DA model using the six metabolites (glycine, valine, methionine, citrulline, arginine and C16-carnitine) had a strong ability to identify lung cancer. Therefore, the PLS-DA model using glycine, valine, methionine, citrulline, arginine and C16-carnitine may become a novel screening tool in patients with lung cancer.
Collapse
Affiliation(s)
- Junjun Ni
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China.,Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Li Xu
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Wei Li
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Chunmei Zheng
- Beijing Harmony Health Medical Diagnostics Co., Ltd., Beijing 101111, P.R. China
| | - Lijun Wu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
50
|
Regulation of differential proton-coupled folate transporter gene expression in human tumors: transactivation by KLF15 with NRF-1 and the role of Sp1. Biochem J 2019; 476:1247-1266. [PMID: 30914440 DOI: 10.1042/bcj20180394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 03/07/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Abstract
Tumors can be therapeutically targeted with novel antifolates (e.g. AGF94) that are selectively transported by the human proton-coupled folate transporter (hPCFT). Studies were performed to determine the transcription regulation of hPCFT in tumors and identify possible mechanisms that contribute to the highly disparate levels of hPCFT in HepG2 versus HT1080 tumor cells. Transfection of hPCFT-null HT1080 cells with hPCFT restored transport and sensitivity to AGF94 Progressive deletions of the hPCFT promoter construct (-2005 to +96) and reporter gene assays in HepG2 and HT1080 cells confirmed differences in hPCFT transactivation and localized a minimal promoter to between positions -50 and +96. The minimal promoter included KLF15, GC-Box and NRF-1 cis-binding elements whose functional importance was confirmed by promoter deletions and mutations of core consensus sequences and reporter gene assays. In HepG2 cells, NRF-1, KLF15 and Sp1 transcripts were increased over HT1080 cells by ∼5.1-, ∼44-, and ∼2.4-fold, respectively. In Drosophila SL2 cells, transfection with KLF15 and NRF-1 synergistically activated the hPCFT promoter; Sp1 was modestly activating or inhibitory. Chromatin immunoprecipitation and electrophoretic mobility shift assay (EMSA) and supershifts confirmed differential binding of KLF15, Sp1, and NRF-1 to the hPCFT promoter in HepG2 and HT1080 cells that paralleled hPCFT levels. Treatment of HT1080 nuclear extracts (NE) with protein kinase A increased Sp1 binding to its consensus sequence by EMSA, suggesting a role for Sp1 phosphorylation in regulating hPCFT transcription. A better understanding of determinants of hPCFT transcriptional control may identify new therapeutic strategies for cancer by modulating hPCFT levels in combination with hPCFT-targeted antifolates.
Collapse
|