1
|
Feng T, Zhang H, Zhou Y, Zhu Y, Shi S, Li K, Lin P, Chen J. Roles of posttranslational modifications in lipid metabolism and cancer progression. Biomark Res 2024; 12:141. [PMID: 39551780 PMCID: PMC11571667 DOI: 10.1186/s40364-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Lipid metabolism reprogramming has emerged as a hallmark of malignant tumors. Lipids represent a complex group of biomolecules that not only compose the essential components of biological membranes and act as an energy source, but also function as messengers to integrate various signaling pathways. In tumor cells, de novo lipogenesis plays a crucial role in acquiring lipids to meet the demands of rapid growth. Increasing evidence has suggested that dysregulated lipid metabolism serves as a driver of cancer progression. Posttranslational modifications (PTMs), which occurs in most eukaryotic proteins throughout their lifetimes, affect the activity, abundance, function, localization, and interactions of target proteins. PTMs of crucial molecules are potential intervention sites and are emerging as promising strategies for the cancer treatment. However, there is limited information available regarding the PTMs that occur in cancer lipid metabolism and the potential treatment strategies associated with these PTMs. Herein, we summarize current knowledge of the roles and regulatory mechanisms of PTMs in lipid metabolism. Understanding the roles of PTMs in lipid metabolism in cancer could provide valuable insights into tumorigenesis and progression. Moreover, targeting PTMs in cancer lipid metabolism might represent a promising novel therapeutic strategy.
Collapse
Affiliation(s)
- Tianyu Feng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - He Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yanjie Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Yalan Zhu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Shiya Shi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China
| | - Kai Li
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Ping Lin
- Cancer Center and Lab of Experimental Oncology, State Key Laboratory of Biotherapy, and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, Sichuan Province, 610041, China.
- Clinical Laboratory Medicine Research Center of West China Hospital, #37, Guo Xue Lane, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
2
|
Xu F, Xu X, Deng H, Yu Z, Huang J, Deng L, Chao H. The role of deubiquitinase USP2 in driving bladder cancer progression by stabilizing EZH2 to epigenetically silence SOX1 expression. Transl Oncol 2024; 49:102104. [PMID: 39197387 PMCID: PMC11399563 DOI: 10.1016/j.tranon.2024.102104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND The Ubiquitin-proteasome system (UPS) is known to participate in multiple cellular events. The deubiquitinating enzyme USP2 (ubiquitin-specific protease 2) is involved in the vasculature remodeling process associated with bladder cancer (BLCA). However, the role of USP2 in BLCA progression has not been clearly defined and whether its regulatory mechanism involving EZH2 (Enhancer of Zeste Homolog 2) remains elusive yet. METHODS Differential expression patterns of USP2 and EZH2 were examined in 46 pairs of BLCA and adjacent normal tissues. USP2 knockdown plasmids were transfected into 5637 and J82 cells to detect its impact on cell proliferation, migration and invasion using CCK-8, EdU, wound healing and transwell assays. The USP2-EZH2-SOX1 cascade was confirmed through Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays. An in vivo verification was conducted using a xenograft model of nude mice. RESULTS USP2 was significantly upregulated in BLCA tissues and cells, which was associated with poor clinical prognosis in BLCA patients. USP2 depletion resulted in decreased cell proliferation, migration and invasion in BLCA cells. USP2 stabilized the EZH2 protein by directly binding to it, thereby reducing its ubiquitination. Ectopic introduction of EZH2 restored cell growth and invasion of BLCA cells, which had been inhibited by USP2 silencing. USP2-mediated stabilization of EZH2 promoted the enrichment of histone H3K27me3 and repression of SOX1. Involvement of the USP2-EZH2-SOX1 axis in tumor formation was ultimately verified in vivo. CONCLUSION Our findings reveal that a USP2-EZH2-SOX1 axis orchestrates the interplay between dysregulated USP2 and EZH2-mediated gene epigenetic silencing in BLCA progression.
Collapse
Affiliation(s)
- Fanghua Xu
- Department of Pathology, Ping Xiang People's Hospital, Pingxiang Economic and Technological Development District, Ping Xiang, Jiangxi 337000, China
| | - Xiangda Xu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huanhuan Deng
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhaojun Yu
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jianbiao Huang
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Leihong Deng
- Department of Ultrasonic medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Haichao Chao
- Department of Urology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
3
|
Lu Y, Sun Y, Zhang J, Kong M, Zhao Z, Sun B, Wang Y, Jiang Y, Chen S, Wang C, Tong Y, Wen L, Huang M, Wu F, Zhang L. The deubiquitinase USP2a promotes tumor immunosuppression by stabilizing immune checkpoint B7-H4 in lung adenocarcinoma harboring EGFR-activating mutants. Cancer Lett 2024; 596:217020. [PMID: 38849009 DOI: 10.1016/j.canlet.2024.217020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
B7-H4 is an immune checkpoint crucial for inhibiting CD8+ T-cell activity. A clinical trial is underway to investigate B7-H4 as a potential immunotherapeutic agent. However, the regulatory mechanism of B7-H4 degradation via the ubiquitin-proteasome pathway (UPP) remains poorly understood. In this study, we discovered that proteasome inhibitors effectively increased B7-H4 expression, while EGFR-activating mutants promoted B7-H4 expression through the UPP. We screened B7-H4 binding proteins by co-immunoprecipitation and mass spectrometry and found that USP2a acted as a deubiquitinase of B7-H4 by removing K48- and K63-linked ubiquitin chains from B7-H4, leading to a reduction in B7-H4 degradation. EGFR mutants enhanced B7-H4 stability by upregulating USP2a expression. We further investigated the role of USP2a in tumor growth in vivo. Depletion of USP2a in L858R/LLC cells inhibited tumor cell proliferation, consequently suppressing tumor growth in immune-deficient nude mice by destabilizing downstream molecules such as Cyclin D1. In an immune-competent C57BL/6 mouse tumor model, USP2a abrogation facilitated infiltration of CD95+CD8+ effector T cells and hindered infiltration of Tim-3+CD8+ and LAG-3+CD8+ exhausted T cells by destabilizing B7-H4. Clinical lung adenocarcinoma samples showed a significant correlation between B7-H4 abundance and USP2a expression, indicating the contribution of the EGFR/USP2a/B7-H4 axis to tumor immunosuppression. In summary, this study elucidates the dual effects of USP2a in tumor growth by stabilizing Cyclin D1, promoting tumor cell proliferation, and stabilizing B7-H4, contributing to tumor immunosuppression. Therefore, USP2a represents a potential target for tumor therapy.
Collapse
Affiliation(s)
- Youwei Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Jie Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Miao Kong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Zhiming Zhao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Boshu Sun
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yuan Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ying Jiang
- Department of Hematology, Shanghai Zhaxin Traditional Chinese and Western Medicine Hospital, Shanghai, China
| | - Shaomu Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chao Wang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, Jiangsu, China
| | - Yin Tong
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangzhu Wen
- He Cheng Biotechnology Suzhou Co.Ltd, Suzhou, Jiangsu, China
| | - Moli Huang
- Department of Bioinformatics, School of Biology & Basic Medical Sciences, Soochow University, Suzhou, China
| | - Fengying Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Liang Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
4
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
5
|
Son Y, Su Yang J, Chul Shin S, Kyoung Park S, Kim Y, Park J, Yu J. Structural optimization and biological evaluation of ML364 based derivatives as USP2a inhibitors. Bioorg Chem 2024; 145:107222. [PMID: 38401359 DOI: 10.1016/j.bioorg.2024.107222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ubiquitination is a representative post-translational modification that tags target proteins with ubiquitin to induce protein degradation or modify their functions. Deubiquitinating enzymes (DUBs) play a crucial role in reversing this process by removing ubiquitin from target proteins. Among them, USP2a has emerged as a promising target for cancer therapy due to its oncogenic properties in various cancer types, but its inhibitors have been limited. In this study, our aim was to optimize the structure of ML364, a USP2a inhibitor, and synthesize a series of its derivatives to develop potent USP2a inhibitors. Compound 8v emerged as a potential USP2a inhibitor with lower cytotoxicity compared to ML364. Cellular assays demonstrated that compound 8v effectively reduced the levels of USP2a substrates and attenuated cancer cell growth. We confirmed its direct interaction with the catalytic domain of USP2a and its selective inhibitory activity against USP2a over other USP subfamily proteins (USP7, 8, or 15). In conclusion, compound 8v has been identified as a potent USP2a inhibitor with substantial potential for cancer therapy.
Collapse
Affiliation(s)
- Youngchai Son
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Su Yang
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sang Chul Shin
- Research Resources Division, Technological Convergence Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Seo Kyoung Park
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeojin Kim
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jinyoung Park
- Biomedical Research Division, Center for Advanced Biomolecular Recognition, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio‑Medical Science and Technology, KIST‑School, University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| | - Jinha Yu
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Zhou Q, Wang R, Su Y, Wang B, Zhang Y, Qin X. The molecular circadian rhythms regulating the cell cycle. J Cell Biochem 2024; 125:e30539. [PMID: 38372014 DOI: 10.1002/jcb.30539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/20/2024]
Abstract
The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.
Collapse
Affiliation(s)
- Qin Zhou
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ruohan Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunxia Su
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Bowen Wang
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Yunfei Zhang
- Modern Experiment Technology Center, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| | - Ximing Qin
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui Province, China
| |
Collapse
|
7
|
Zheng LL, Wang LT, Pang YW, Sun LP, Shi L. Recent advances in the development of deubiquitinases inhibitors as antitumor agents. Eur J Med Chem 2024; 266:116161. [PMID: 38262120 DOI: 10.1016/j.ejmech.2024.116161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Ubiquitination is a type of post-translational modification that covalently links ubiquitin to a target protein, which plays a critical role in modulating protein activity, stability, and localization. In contrast, this process is reversed by deubiquitinases (DUBs), which remove ubiquitin from ubiquitinated substrates. Dysregulation of DUBs is associated with several human diseases, such as cancer, inflammation, neurodegenerative disorders, and autoimmune diseases. Thus, DUBs have become promising targets for drug development. Although the physiological and pathological effects of DUBs are increasingly well understood, the clinical drug discovery of selective DUB inhibitors has been challenging. Herein, we summarize the structures and functions of main classes of DUBs and discuss the recent progress in developing selective small-molecule DUB inhibitors as antitumor agents.
Collapse
Affiliation(s)
- Li-Li Zheng
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ting Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye-Wei Pang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Li-Ping Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lei Shi
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
8
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
9
|
Zhang S, Guo Y, Zhang S, Wang Z, Zhang Y, Zuo S. Targeting the deubiquitinase USP2 for malignant tumor therapy (Review). Oncol Rep 2023; 50:176. [PMID: 37594087 PMCID: PMC10463009 DOI: 10.3892/or.2023.8613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
The ubiquitin‑proteasome system is a major degradation pathway for >80% of proteins in vivo. Deubiquitylases, which remove ubiquitinated tags to stabilize substrate proteins, are important components involved in regulating the degradation of ubiquitinated proteins. In addition, they serve multiple roles in tumor development by participating in physiological processes such as protein metabolism, cell cycle regulation, DNA damage repair and gene transcription. The present review systematically summarized the role of ubiquitin‑specific protease 2 (USP2) in malignant tumors and the specific molecular mechanisms underlying the involvement of USP2 in tumor‑associated pathways. USP2 reverses ubiquitin‑mediated degradation of proteins and is involved in aberrant proliferation, migration, invasion, apoptosis and drug resistance of tumors. Additionally, the present review summarized studies reporting on the use of USP2 as a therapeutic target for malignancies such as breast, liver, ovarian, colorectal, bladder and prostate cancers and glioblastoma and highlights the current status of pharmacological research on USP2. The clinical significance of USP2 as a therapeutic target for malignant tumors warrants further investigation.
Collapse
Affiliation(s)
- Shilong Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yi Guo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Zhi Wang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yewei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
- Precision Medicine Research Institute of Guizhou, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
10
|
Zhang X, Nadolny C, Chen Q, Ali W, Hashmi SF, Deng R. Dysregulation and oncogenic activities of ubiquitin specific peptidase 2a in the pathogenesis of hepatocellular carcinoma. Am J Cancer Res 2023; 13:2392-2409. [PMID: 37424823 PMCID: PMC10326592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Ubiquitin specific peptidase 2a (USP2a) plays critical roles in protein degradation and other cellular activities. Currently, our understanding on USP2a dysregulation in subjects with hepatocellular carcinoma (HCC) and its roles in HCC pathogenesis is limited. In this study, we found that USP2a mRNA and protein levels were significantly upregulated in HCC tumors from both human and mice. USP2a overexpression in HepG2 and Huh 7 cells significantly increased cell proliferation while inhibition of USP2a activity by chemical inhibitor or stable knockout of USP2 by CRISPR markedly reduced cell proliferation. In addition, USP2a overexpression significantly augmented the resistance while knockout of USP2a markedly increased the susceptibility of HepG2 cells to bile acid-induced apoptosis and necrosis. Consistent with the oncogenic activities detected in vitro, overexpression of USP2a promoted de novo HCC development in mice with significantly increased tumor occurrence rates, tumor sizes and liver/body ratios. Further investigations with unbiased co-immunoprecipitation (Co-IP)-coupled proteomic analysis and Western blot identified novel USP2a target proteins involved in cell proliferation, apoptosis, and tumorigenesis. Analysis of those USP2a target proteins revealed that USP2a's oncogenic activities are mediated through multiple pathways, including modulating protein folding and assembling through regulating protein chaperones/co-chaperones HSPA1A, DNAJA1 and TCP1, promoting DNA replication and transcription through regulating RUVBL1, PCNA and TARDBP, and altering mitochondrial apoptotic pathway through regulating VDAC2. Indeed, those newly identified USP2a target proteins were markedly dysregulated in HCC tumors. In summary, USP2a was upregulated in HCC subjects and acted as an oncogene in the pathogenesis of HCC through multiple downstream pathways. The findings provided molecular and pathogenesis bases for developing interventions to treat HCC by targeting USP2a or its downstream pathways.
Collapse
Affiliation(s)
- Xinmu Zhang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Qiwen Chen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Winifer Ali
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Syed F Hashmi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island 7 Greenhouse Road, Kingston, RI 02881, USA
| |
Collapse
|
11
|
Wang X, Zhang Y, Wu Y, Cheng H, Wang X. The role of E3 ubiquitin ligases and deubiquitinases in bladder cancer development and immunotherapy. Front Immunol 2023; 14:1202633. [PMID: 37215134 PMCID: PMC10196180 DOI: 10.3389/fimmu.2023.1202633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Bladder cancer is one of the common malignant urothelial tumors. Post-translational modification (PTMs), including ubiquitination, acetylation, methylation, and phosphorylation, have been revealed to participate in bladder cancer initiation and progression. Ubiquitination is the common PTM, which is conducted by E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin-protein ligase. E3 ubiquitin ligases play a key role in bladder oncogenesis and progression and drug resistance in bladder cancer. Therefore, in this review, we summarize current knowledge regarding the functions of E3 ubiquitin ligases in bladder cancer development. Moreover, we provide the evidence of E3 ubiquitin ligases in regulation of immunotherapy in bladder cancer. Furthermore, we mention the multiple compounds that target E3 ubiquitin ligases to improve the therapy efficacy of bladder cancer. We hope our review can stimulate researchers and clinicians to investigate whether and how targeting E3 ubiquitin ligases acts a novel strategy for bladder cancer therapy.
Collapse
|
12
|
Zhu H, Zhang H, Guo J, Zhang C, Zhang Q, Gao F. Up-regulated oxidized USP2a can increase Mdm2-p60-p53 to promote cell apoptosis. Exp Cell Res 2023; 427:113597. [PMID: 37044314 DOI: 10.1016/j.yexcr.2023.113597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/17/2023] [Accepted: 04/08/2023] [Indexed: 04/14/2023]
Abstract
Mdm2 promotes the ubiquitination and degradation of p53, while Mdm2-p60 can bind to p53 and reduce the Mdm2-induced p53 ubiquitination to improve its stability. USP2a can deubiquitinate and stabilize Mdm2, whether USP2a can regulate Mdm2-p60 needs to be further confirmed and elucidated. We found that oxidative stress can up-regulate USP2a at the post-transcriptional level and induce USP2a to be oxidized by forming inter-subunit disulfide bonds. The oxidized USP2a is closely related with cell apoptosis. In apoptotic cells, oxidized USP2a has enhanced protein stability and further stabilizes Mdm2-p60 through deubiquitination, and the USP2a-Mdm2-p60-p53 axis plays a role in cell apoptosis. Altogether USP2a is oxygen sensitive, oxidized USP2a exerts apoptotic effects through the Mdm2-p60-p53 axis, which provides an experimental basis for regulating p53 apoptotic signaling by targeting USP2a.
Collapse
Affiliation(s)
- Hanqing Zhu
- Department of Pulmonary Function Test, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Hongliang Zhang
- Department of Blood Transfusion, Henan Provincial People's Hospital, Department of Blood Transfusion of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450053, China.
| | - Jiahui Guo
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Chao Zhang
- Department of Geriatrics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China.
| | - Quanwu Zhang
- Department of Pathology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, China.
| | - Fenghou Gao
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201999, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, China.
| |
Collapse
|
13
|
Jin S, Kudo Y, Horiguchi T. The Role of Deubiquitinating Enzyme in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 24:ijms24010552. [PMID: 36613989 PMCID: PMC9820089 DOI: 10.3390/ijms24010552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 12/30/2022] Open
Abstract
Ubiquitination and deubiquitination are two popular ways for the post-translational modification of proteins. These two modifications affect intracellular localization, stability, and function of target proteins. The process of deubiquitination is involved in histone modification, cell cycle regulation, cell differentiation, apoptosis, endocytosis, autophagy, and DNA repair after damage. Moreover, it is involved in the processes of carcinogenesis and cancer development. In this review, we discuss these issues in understanding deubiquitinating enzyme (DUB) function in head and neck squamous cell carcinoma (HNSCC), and their potential therapeutic strategies for HNSCC patients are also discussed.
Collapse
|
14
|
Kim H, Kim D, Choi H, Shin G, Lee JK. Deubiquitinase USP2 stabilizes the MRE11-RAD50-NBS1 complex at DNA double-strand break sites by counteracting the ubiquitination of NBS1. J Biol Chem 2022; 299:102752. [PMID: 36436562 PMCID: PMC9758435 DOI: 10.1016/j.jbc.2022.102752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/26/2022] Open
Abstract
The MRE11-RAD50-NBS1 (MRN) complex plays essential roles in the cellular response to DNA double-strand breaks (DSBs), which are the most cytotoxic DNA lesions, and is a target of various modifications and controls. Recently, lysine 48-linked ubiquitination of NBS1, resulting in premature disassembly of the MRN complex from DSB sites, was observed in cells lacking RECQL4 helicase activity. However, the role and control of this ubiquitination during the DSB response in cells with intact RECQL4 remain unknown. Here, we showed that USP2 counteracts this ubiquitination and stabilizes the MRN complex during the DSB response. By screening deubiquitinases that increase the stability of the MRN complex in RECQL4-deficient cells, USP2 was identified as a new deubiquitinase that acts at DSB sites to counteract NBS1 ubiquitination. We determined that USP2 is recruited to DSB sites in a manner dependent on ATM, a major checkpoint kinase against DSBs, and stably interacts with NBS1 and RECQL4 in immunoprecipitation experiments. Phosphorylation of two critical residues in the N terminus of USP2 by ATM is required for its recruitment to DSBs and its interaction with RECQL4. While inactivation of USP2 alone does not substantially influence the DSB response, we found that inactivation of USP2 and USP28, another deubiquitinase influencing NBS1 ubiquitination, results in premature disassembly of the MRN complex from DSB sites as well as defects in ATM activation and homologous recombination repair abilities. These results suggest that deubiquitinases counteracting NBS1 ubiquitination are essential for the stable maintenance of the MRN complex and proper cellular response to DSBs.
Collapse
Affiliation(s)
- Hyunsup Kim
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Dongmin Kim
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Hyemin Choi
- Department of Biology Education, Seoul National University, Seoul, Korea
| | - Gwangsu Shin
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Joon-Kyu Lee
- Interdisciplinary Graduate Program in Genetic Engineering, Seoul National University, Seoul, Korea; Department of Biology Education, Seoul National University, Seoul, Korea.
| |
Collapse
|
15
|
Xiao W, Wang J, Wang X, Cai S, Guo Y, Ye L, Li D, Hu A, Jin S, Yuan B, Zhou Y, Li Q, Tong Q, Zheng L. Therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression. Autophagy 2022; 18:2615-2635. [PMID: 35253629 PMCID: PMC9629121 DOI: 10.1080/15548627.2022.2044651] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy/autophagy is a conserved cellular process associated with tumorigenesis and aggressiveness, while mechanisms regulating expression of autophagic machinery genes in cancers still remain elusive. Herein, we identified E2F4 (E2F transcription factor 4) as a novel transcriptional activator of cytoprotective autophagy crucial for zinc homeostasis in cancer cells. Gain- and loss-of-function studies showed that E2F4 promoted autophagy in a cell cycle-dependent manner, resulting in facilitated degradation of MT (metallothionein) proteins, elevated distribution of Zn2+ within autophagosomes, decreased labile intracellular zinc ions, and increased growth, invasion, and metastasis of gastric cancer cells. Mechanistically, E2F4 directly regulated the transcription of ATG2A (autophagy related 2A) and ULK2 (unc-51 like autophagy activating kinase 2), leading to autophagic degradation of MT1E, MT1M, and MT1X, while USP2 (ubiquitin specific peptidase 2) stabilized E2F4 protein to induce its transactivation via physical interaction and deubiquitination in cancer cells. Rescue experiments revealed that USP2 harbored oncogenic properties via E2F4-facilitated autophagy and zinc homeostasis. Emetine, a small chemical inhibitor of autophagy, was able to block interaction between UPS2 and E2F4, increase labile intracellular zinc ions, and suppress tumorigenesis and aggressiveness. In clinical gastric cancer specimens, both USP2 and E2F4 were upregulated and associated with poor outcome of patients. These findings indicate that therapeutic targeting of the USP2-E2F4 axis inhibits autophagic machinery essential for zinc homeostasis in cancer progression.Abbreviations: 3-MA: 3-methyladenine; ANOVA: analysis of variance; ATG2A: autophagy related 2A; ATG5: autophagy related 5; ATP: adenosine triphosphate; BECN1: beclin 1; BiFC: bimolecular fluorescence complementation; CCND1: cyclin D1; CDK: cyclin dependent kinase; ChIP: chromatin immunoprecipitation; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; E2F4: E2F transcription factor 4; eATP: extracellular adenosine triphosphate; EBSS: Earle's balanced salt solution; FP: first progression; FRET: fluorescence resonance energy transfer; FUCCI: fluorescent ubiquitination-based cell cycle indicator; GFP: green fluorescent protein; GST: glutathione S-transferase; HA: hemagglutinin; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MDM2: MDM2 proto-oncogene; MKI67/Ki-67: marker of proliferation Ki-67; MT: metallothionein; MT1E: metallothionein 1E; MT1M: metallothionein 1M; MT1X: metallothionein 1X; MTT: 3-(4,5-dimethyltriazol-2-yl)-2,5-diphenyl tetrazolium bromide; OS: overall survival; PECAM1/CD31: platelet and endothelial cell adhesion molecule 1; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; qPCR: quantitative PCR; RFP: red fluorescent protein; SQSTM1/p62: sequestosome 1; UBXN1: UBX domain protein 1; Ub: ubiquitin; ULK2: unc-51 like autophagy activating kinase 2; USP14: ubiquitin specific peptidase 14; USP2: ubiquitin specific peptidase 2; USP5: ubiquitin specific peptidase 5; USP7: ubiquitin specific peptidase 7; ZnCl2: zinc chloride.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shuang Cai
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yanhua Guo
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Anpei Hu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shikai Jin
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Boling Yuan
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yi Zhou
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qilan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
An R, Wang P, Guo H, Liuyu T, Zhong B, Zhang ZD. USP2 promotes experimental colitis and bacterial infections by inhibiting the proliferation of myeloid cells and remodeling the extracellular matrix network. CELL INSIGHT 2022; 1:100047. [PMID: 37192862 PMCID: PMC10120320 DOI: 10.1016/j.cellin.2022.100047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 05/18/2023]
Abstract
Inflammatory bowel disease (IBD) is closely associated with dysregulation of genetic factors and microbial environment. Here, we report a susceptible role of ubiquitin-specific protease 2 (USP2) in experimental colitis and bacterial infections. USP2 is upregulated in the inflamed mucosa of IBD patients and in the colon of mice treated with dextran sulfate sodium salt (DSS). Knockout or pharmacologic inhibition of USP2 promotes the proliferation of myeloid cells to activate IL-22 and IFNγ production of T cells. In addition, knockout of USP2 in myeloid cells inhibits the production of pro-inflammatory cytokines to relieve the dysregulation of extracellular matrix (ECM) network and promote the gut epithelial integrity after DSS treatment. Consistently, Lyz2-Cre;Usp2fl/fl mice exhibit hyper-resistance to DSS-induced colitis and Citrobacter rodentium infections compared to Usp2fl/fl mice. These findings highlight an indispensable role of USP2 in myeloid cells to modulate T cell activation and epithelial ECM network and repair, indicating USP2 as a potential target for therapeutic intervention of IBD and bacterial infections in the gastrointestinal system.
Collapse
Affiliation(s)
- Ran An
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hao Guo
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Tianzi Liuyu
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Bo Zhong
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| | - Zhi-Dong Zhang
- Department of Gastrointestinal Surgery, College of Life Sciences, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Immunology, Medical Research Institute and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430071, China
| |
Collapse
|
17
|
High Ubiquitin-Specific Protease 2a Expression Level Predicts Poor Prognosis in Upper Tract Urothelial Carcinoma. Appl Immunohistochem Mol Morphol 2022; 30:304-310. [PMID: 35384881 DOI: 10.1097/pai.0000000000001014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ubiquitin-mediated protein degradation has been reported to be involved in regulating the activity of oncoproteins and tumor suppressors. Dysfunction or dysregulation of the ubiquitin-proteasome system may induce tumorigenesis. Deubiquitinase ubiquitin-specific protease 2a (USP2a) has been reported to regulate cell growth or death and is involved in the pathogenesis of various diseases, including cancers. However, the role of USP2a in upper tract urothelial carcinoma (UTUC) has not been investigated yet. The goal of this study was to evaluate the clinical significance of USP2a expression in UTUC. MATERIALS AND METHODS A total of 110 UTUC cases were included in this study. USP2a expression level was evaluated through immunohistochemistry staining, and the correlation of USP2a expression level with both clinical and pathologic variables was analyzed. RESULTS High USP2a expression level was observed in 48 (43.6%) cancer specimens. USP2a expression level was significantly correlated with tumor stage (P=0.001), grade (P=0.033), and tumor recurrence (P=0.008). High USP2a expression level was correlated with poor disease-free survival (P=0.005) and cancer-specific survival (P<0.001). In addition, high USP2a expression level was an independent predictor of poor disease-free survival (hazard ratio=2.31; P=0.007) and cancer-specific survival (hazard ratio=5.49; P=0.009). CONCLUSIONS This study indicated that USP2a protein expression level may be a potential biomarker for predicting UTUC patient survival. Further prospective studies are needed to investigate the role of USP2a in UTUC progression.
Collapse
|
18
|
Cheng CP, Liu ST, Chiu YL, Huang SM, Ho CL. The Inhibitory Effects of 6-Thioguanine and 6-Mercaptopurine on the USP2a Target Fatty Acid Synthase in Human Submaxillary Carcinoma Cells. Front Oncol 2021; 11:749661. [PMID: 34956872 PMCID: PMC8702617 DOI: 10.3389/fonc.2021.749661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 11/15/2022] Open
Abstract
Overexpression of the deubiquitinase USP2a leads to stabilization of fatty acid synthase (FAS), the levels of which are often elevated in aggressive human cancers. Consequently, there is an urgent need for inhibitors to suppress the deubiquitination activity of USP2a so as to upregulate FAS protein degradation. We first analyzed the relationship between the expression level of USP2a and survival using The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (HNSC) data collection. Our results suggested survival rates were lower among HNSC patients expressing higher levels of USP2a. We then investigated two thiopurine drugs, 6-thioguanine (6-TG) and 6-mercaptopurine (6-MP), to determine whether they could potentially serve as inhibitors of USP2a. Western blot analysis showed that levels of two USP2a target proteins, FAS and Mdm2, were dose-dependently decreased in A253 submaxillary carcinoma cells treated with 6-TG or 6‐MP. Responding to the degradation of Mdm2, levels of p53 were increased. We found that 6-TG and 6-MP also suppressed levels of both USP2a mRNA and protein, suggesting these two thiopurines do not act solely through direct inhibition of USP2a. The effects of 6-TG and 6-MP were not cell type-specific, as they elicited similar decreases in FAS protein in leukemia, prostate and cervical cancer cell lines. 6-TG and 6-MP had effects on several cell cycle proteins, including another USP2a target protein, cyclin D1. The populations of cells in subG1 and S phase were increased by 6-TG and 6-MP, which was accompanied by reductions in G1 phase cells. In untreated cells, USP2a transfection increased FAS and cyclin D1 levels compared to an enzyme-dead USP2a C276A mutant, which lacked deubiquitinating activity. However, USP2a transfection failed to reverse the suppressive effects of 6‐TG and 6-MP on FAS levels. In summary, these findings suggest 6-TG and 6-MP reduce the stability of some USP2a targets, including FAS and Mdm2, by inhibiting USP2a-catalyzed deubiquitination in some cancer cells. Our work also provides repurposing evidence supporting 6‐TG and 6-MP as target therapeutic drugs, such as USP2a/FAS in this study.
Collapse
Affiliation(s)
- Chiao-Pei Cheng
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Shu-Ting Liu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Yi-Lin Chiu
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Shih-Ming Huang
- Department of Biochemistry, National Defense Medical Center, Taipei City, Taiwan
| | - Ching-Liang Ho
- Division of Hematology and Oncology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
19
|
Wang J, Ding J, Zhang S, Chen X, Yan S, Zhang Y, Yin T. Decreased USP2a Expression Inhibits Trophoblast Invasion and Associates With Recurrent Miscarriage. Front Immunol 2021; 12:717370. [PMID: 34489969 PMCID: PMC8416978 DOI: 10.3389/fimmu.2021.717370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/05/2021] [Indexed: 01/13/2023] Open
Abstract
An appropriate development of the placenta consisting of trophoblast cell migration, invasion, proliferation, and apoptosis, is essential to establishing and maintaining a successful pregnancy. Ubiquitin‐specific protease 2a (USP2a) regulates the processes of metastasis in multiple tumor cells. Yet, no known research has focused on exploring the effect of USP2a on trophoblasts and its possible mechanism in the pathogenies of recurrent miscarriage (RM). In this study, we first detected the decreased mRNA levels and the protein levels of USP2a in placental villous tissue samples from the RM patients. In vitro assays verified that overexpression of USP2a promoted human trophoblast proliferation, migration, invasion, whereas knockdown of USP2a inhibited these processes. Mechanistically, USP2a activated PI3K/Akt/GSK3β signaling pathway to promote nuclear translocation of β‐catenin and further activated epithelial-mesenchymal transition (EMT) in the trophoblasts. Moreover, transforming growth factor-beta (TGF-β) up-regulated USP2a expression in trophoblasts. Interestingly, M2 macrophage secreted TGF-β induced trophoblast migration and invasion, and an anti-TGF-β antibody alleviated this effect. Collectively, this study indicated that USP2a regulated trophoblast invasion and that abnormal USP2a expression might lead to aberrant trophoblast invasion, thus contributing to RM.
Collapse
Affiliation(s)
- Jiayu Wang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinli Ding
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sainan Zhang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xin Chen
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Sisi Yan
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Cruz L, Soares P, Correia M. Ubiquitin-Specific Proteases: Players in Cancer Cellular Processes. Pharmaceuticals (Basel) 2021; 14:ph14090848. [PMID: 34577547 PMCID: PMC8469789 DOI: 10.3390/ph14090848] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination represents a post-translational modification (PTM) essential for the maintenance of cellular homeostasis. Ubiquitination is involved in the regulation of protein function, localization and turnover through the attachment of a ubiquitin molecule(s) to a target protein. Ubiquitination can be reversed through the action of deubiquitinating enzymes (DUBs). The DUB enzymes have the ability to remove the mono- or poly-ubiquitination signals and are involved in the maturation, recycling, editing and rearrangement of ubiquitin(s). Ubiquitin-specific proteases (USPs) are the biggest family of DUBs, responsible for numerous cellular functions through interactions with different cellular targets. Over the past few years, several studies have focused on the role of USPs in carcinogenesis, which has led to an increasing development of therapies based on USP inhibitors. In this review, we intend to describe different cellular functions, such as the cell cycle, DNA damage repair, chromatin remodeling and several signaling pathways, in which USPs are involved in the development or progression of cancer. In addition, we describe existing therapies that target the inhibition of USPs.
Collapse
Affiliation(s)
- Lucas Cruz
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Paula Soares
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- FCUP—Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
- Departamento de Patologia, Faculdade de Medicina da Universidade Do Porto, 4200-139 Porto, Portugal
| | - Marcelo Correia
- i3S—Instituto de Investigação e Inovação Em Saúde, Universidade Do Porto, 4200-135 Porto, Portugal; (L.C.); (P.S.)
- Ipatimup—Instituto de Patologia e Imunologia Molecular da Universidade do Porto, 4250-475 Porto, Portugal
- Correspondence:
| |
Collapse
|
21
|
The Involvement of Ubiquitination Machinery in Cell Cycle Regulation and Cancer Progression. Int J Mol Sci 2021; 22:ijms22115754. [PMID: 34072267 PMCID: PMC8198665 DOI: 10.3390/ijms22115754] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023] Open
Abstract
The cell cycle is a collection of events by which cellular components such as genetic materials and cytoplasmic components are accurately divided into two daughter cells. The cell cycle transition is primarily driven by the activation of cyclin-dependent kinases (CDKs), which activities are regulated by the ubiquitin-mediated proteolysis of key regulators such as cyclins, CDK inhibitors (CKIs), other kinases and phosphatases. Thus, the ubiquitin-proteasome system (UPS) plays a pivotal role in the regulation of the cell cycle progression via recognition, interaction, and ubiquitination or deubiquitination of key proteins. The illegitimate degradation of tumor suppressor or abnormally high accumulation of oncoproteins often results in deregulation of cell proliferation, genomic instability, and cancer occurrence. In this review, we demonstrate the diversity and complexity of the regulation of UPS machinery of the cell cycle. A profound understanding of the ubiquitination machinery will provide new insights into the regulation of the cell cycle transition, cancer treatment, and the development of anti-cancer drugs.
Collapse
|
22
|
Xiong B, Huang J, Liu Y, Zou M, Zhao Z, Gong J, Wu X, Qiu C. Ubiquitin-specific protease 2a promotes hepatocellular carcinoma progression via deubiquitination and stabilization of RAB1A. Cell Oncol (Dordr) 2021; 44:329-343. [PMID: 33074477 DOI: 10.1007/s13402-020-00568-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Deubiquitination, the inverse process of ubiquitination, is catalyzed by deubiquitinases (DUBs) that remove ubiquitin from target proteins and subsequently prevent their degradation by proteasomes. Previously, deubiquitination has been found to be involved in hepatocellular carcinoma (HCC) progression. As yet, however, little is known about the exact role of deubiquitination in the development and/or progression of this type of cancer. METHODS HCC tissues and tissue microarrays were used to detect expression of the DUB ubiquitin-specific protease 2a (USP2a). The critical role of USP2a in HCC development and progression was assessed in both in vitro cell and in vivo animal models. LC-MS/MS analyses were performed to identify potential targets of USP2a in HCC cells, after which regulation of target protein stability and ubiquitin status by USP2a were investigated. RESULTS We found that USP2a was significantly upregulated in HCC tissues, and that a high expression was positively associated with a poor prognosis. Subsequently, we found that USP2a silencing resulted in inhibition of HCC cell proliferation, migration and invasion, whereas exogenous USP2a overexpression resulted in the opposite effects, both in vitro and in vivo. Mechanistically, LC-MS/MS analysis revealed that RAB1A, a key regulator of the ER and Golgi vesicular transport system, serves as a potential target of USP2a in HCC cells. In addition, we found that USP2a can deubiquitinate and stabilize RAB1A and prevent its degradation, and that this process is required for inducing HCC progression by USP2a. CONCLUSIONS Our data indicate that USP2a can promote HCC progression via deubiquitination and stabilization of RAB1A. This observation indicates that DUB targeting may serve as a novel approach to improve the treatment of HCC.
Collapse
Affiliation(s)
- Bin Xiong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Junwei Huang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Yan Liu
- Department of Gastroenterology, The Fifth people's Hospital of Chengdu, Chengdu, Sichuan, 611130, People's Republic of China
| | - Min Zou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Zhibo Zhao
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Xiaoling Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China
| | - Chan Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People's Republic of China.
| |
Collapse
|
23
|
Behavioral phenotyping of mice lacking the deubiquitinase USP2. PLoS One 2021; 16:e0241403. [PMID: 33621249 PMCID: PMC7901773 DOI: 10.1371/journal.pone.0241403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin specific peptidase 2 (USP2) is a deubiquitinating enzyme expressed almost ubiquitously in the body, including in multiple brain regions. We previously showed that mice lacking USP2 present altered locomotor activity rhythms and response of the clock to light. However, the possible implication of USP2 in regulating other behaviors has yet to be tested. To address this, we ran a battery of behavioral tests on Usp2 KO mice. Firstly, we confirmed our prior findings of increased daily activity and reduced activity fragmentation in Usp2 KO mice. Further, mice lacking USP2 showed impaired motor coordination and equilibrium, a decrease in anxiety-like behavior, a deficit in working memory and in sensorimotor gating. On the other hand, no effects of Usp2 gene deletion were found on spatial memory. Hence, our data uncover the implication of USP2 in different behaviors and expands the range of the known functions of this deubiquitinase.
Collapse
|
24
|
Kitamura H, Hashimoto M. USP2-Related Cellular Signaling and Consequent Pathophysiological Outcomes. Int J Mol Sci 2021; 22:1209. [PMID: 33530560 PMCID: PMC7865608 DOI: 10.3390/ijms22031209] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 12/13/2022] Open
Abstract
Ubiquitin specific protease (USP) 2 is a multifunctional deubiquitinating enzyme. USP2 modulates cell cycle progression, and therefore carcinogenesis, via the deubiquitination of cyclins and Aurora-A. Other tumorigenic molecules, including epidermal growth factor and fatty acid synthase, are also targets for USP2. USP2 additionally prevents p53 signaling. On the other hand, USP2 functions as a key component of the CLOCK/BMAL1 complex and participates in rhythmic gene expression in the suprachiasmatic nucleus and liver. USP2 variants influence energy metabolism by controlling hepatic gluconeogenesis, hepatic cholesterol uptake, adipose tissue inflammation, and subsequent systemic insulin sensitivity. USP2 also has the potential to promote surface expression of ion channels in renal and intestinal epithelial cells. In addition to modifying the production of cytokines in immune cells, USP2 also modulates the signaling molecules that are involved in cytokine signaling in the target cells. Usp2 knockout mice exhibit changes in locomotion and male fertility, which suggest roles for USP2 in the central nervous system and male genital tract, respectively. In this review, we summarize the cellular events with USP2 contributions and list the signaling molecules that are upstream or downstream of USP2. Additionally, we describe phenotypic differences found in the in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Veterinary Physiology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan;
| | | |
Collapse
|
25
|
Xu Q, Liu M, Zhang F, Liu X, Ling S, Chen X, Gu J, Ou W, Liu S, Liu N. Ubiquitin-specific protease 2 regulates Ang Ⅱ-induced cardiac fibroblasts activation by up-regulating cyclin D1 and stabilizing β-catenin in vitro. J Cell Mol Med 2021; 25:1001-1011. [PMID: 33314748 PMCID: PMC7812274 DOI: 10.1111/jcmm.16162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac fibrosis, featuring abnormally elevated extracellular matrix accumulation, decreases tissue compliance, impairs cardiac function and accelerates heart failure. Mounting evidence suggests that the ubiquitin proteasome pathway is involved in cardiac fibrosis. In the present study, ubiquitin-specific protease 2 (USP2) was identified as a novel therapeutic target in cardiac fibrosis. Indeed, USP2 expression was increased in angiotensin II-induced primary cardiac fibroblasts (CFs) from neonatal rats. In addition, USP2 inhibition suppressed CFs proliferation, collagen synthesis and cell cycle progression. Furthermore, USP2 interacted with β-catenin, thereby regulating its deubiquitination and stabilization in CFs. To sum up, these findings revealed that USP2 has a therapeutic potential for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Qiong Xu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Mingke Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Fangcheng Zhang
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xiaolin Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Sisi Ling
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Xuke Chen
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jielei Gu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Wenchao Ou
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Ningning Liu
- Guangzhou Institute of Cardiovascular DiseaseGuangdong Key Laboratory of Vascular DiseasesState Key Laboratory of Respiratory DiseaseThe Second Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Ubiquitin-proteasome system (UPS) as a target for anticancer treatment. Arch Pharm Res 2020; 43:1144-1161. [PMID: 33165832 PMCID: PMC7651821 DOI: 10.1007/s12272-020-01281-8] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 02/07/2023]
Abstract
The ubiquitin-proteasome system (UPS) plays an important role in the cellular processes for protein quality control and homeostasis. Dysregulation of the UPS has been implicated in numerous diseases, including cancer. Indeed, components of UPS are frequently mutated or abnormally expressed in various cancers. Since Bortezomib, a proteasome inhibitor, received FDA approval for the treatment of multiple myeloma and mantle cell lymphoma, increasing numbers of researchers have been seeking drugs targeting the UPS as a cancer therapeutic strategy. Here, we introduce the essential component of UPS, including ubiquitinating enzymes, deubiquitinating enzymes and 26S proteasome, and we summarize their targets and mechanisms that are crucial for tumorigenesis. In addition, we briefly discuss some UPS inhibitors, which are currently in clinical trials as cancer therapeutics.
Collapse
|
27
|
Overexpression of Ubiquitin-Specific Protease 2 (USP2) in the Heart Suppressed Pressure Overload-Induced Cardiac Remodeling. Mediators Inflamm 2020; 2020:4121750. [PMID: 32963492 PMCID: PMC7492881 DOI: 10.1155/2020/4121750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/15/2020] [Accepted: 08/27/2020] [Indexed: 01/26/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) is an important member of the deubiquitination system. GEO dataset revealed that USP2 was downregulated in the hearts under pressure overload. However, the cardiomyocyte-specific function of USP2 in the setting of pressure overload is unknown. In the current study, a mouse model of pressure overload was induced by transverse aortic constriction (TAC, 2 weeks). Overexpression of USP2 in the heart was conducted by AAV9 infection. Changes in heart histology were detected by Masson's trichrome staining and hematoxylin-eosin staining (H&E). Echocardiography was used to assess cardiac function. The size of cardiomyocytes was examined by wheat germ agglutinin (WGA) staining. Cardiac oxidative stress was detected by dihydroethidine staining. Our results showed that USP2 was downregulated in the cardiomyocytes following 2 weeks of TAC. Overexpression of cardiac USP2 preserved ventricular function following 2 weeks of TAC. Overexpression of cardiac USP2 inhibited TAC-induced cardiac remodeling, by suppressing cardiac hypertrophy, inhibiting inflammatory responses and fibrosis, and attenuating oxidative stress. Our findings reveal a previously unrecognized role of USP2 in regulating pressure overload-induced cardiac remodeling.
Collapse
|
28
|
Shahid M, Kim M, Jin P, Zhou B, Wang Y, Yang W, You S, Kim J. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer. Int J Biol Sci 2020; 16:2490-2505. [PMID: 32792852 PMCID: PMC7415425 DOI: 10.7150/ijbs.45640] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/02/2020] [Indexed: 12/25/2022] Open
Abstract
Protein S-palmitoylation is a powerful post-translational modification that regulates protein trafficking, localization, turnover, and signal transduction. Palmitoylation controls several important cellular processes, and, if dysregulated, can lead to cancer, cardiovascular disease, and neurological disorders. The role of protein palmitoylation in mediating resistance to systemic cisplatin-based chemotherapies in cancer is currently unknown. This is of particular interest because cisplatin is currently the gold standard of treatment for bladder cancer (BC), and there are no feasible options after resistance is acquired. Using unbiased global proteomic profiling of purified S-palmitoylated peptides combined with intensive bioinformatics analyses, we identified 506 candidate palmitoylated proteins significantly enriched in cisplatin-resistant BC cells. One of these proteins included PD-L1, which is highly palmitoylated in resistant cells. Pharmacological inhibition of fatty acid synthase (FASN) suppressed PD-L1 palmitoylation and expression, which suggests the potential use of FASN-PD-L1-targeted therapeutic strategies in BC patients. Taken together, these results highlight the role of protein palmitoylation in mediating BC chemoresistance.
Collapse
Affiliation(s)
- Muhammad Shahid
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Minhyung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Peng Jin
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bo Zhou
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yang Wang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Wei Yang
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| | - Sungyong You
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jayoung Kim
- Departments of Surgery and Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.,Department of Medicine, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
29
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
30
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
31
|
Zhao Y, Wang X, Wang Q, Deng Y, Li K, Zhang M, Zhang Q, Zhou J, Wang HY, Bai P, Ren Y, Zhang N, Li W, Cheng Y, Xiao W, Du HN, Cheng X, Yin L, Fu X, Lin D, Zhou Q, Zhong B. USP2a Supports Metastasis by Tuning TGF-β Signaling. Cell Rep 2019; 22:2442-2454. [PMID: 29490279 DOI: 10.1016/j.celrep.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
TGF-β has been demonstrated to promote tumor metastasis, and the regulatory mechanisms are poorly understood. Here, we report the role of USP2a in promoting metastasis by facilitating TGF-β-triggered signaling. USP2a interacts with TGFBR1 and TGFBR2 upon TGF-β stimulation and removes K33-linked polyubiquitin chains from Lys502 of TGFBR1, promoting the recruitment of SMAD2/3. Simultaneously, TGFBR2 phosphorylates Ser207/Ser225 of USP2a, leading to the disassociation of SMAD2/3 from TGFBR1. The phosphorylation of USP2a and SMAD2 is positively correlated in human tumor biopsies, and USP2a is hyper-phosphorylated in lung adenocarcinomas with lymph node invasion. Depletion or pharmacologic inhibition of USP2a dampens TGF-β-triggered signaling and metastasis. Our findings have characterized an essential role of USP2a as a potential target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Yin Zhao
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaomeng Wang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kang Li
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Man Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Yan Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Bai
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yujie Ren
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weina Li
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Wuhan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hai-Ning Du
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | - Lei Yin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangning Fu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
32
|
Kim SY, Baek KH. TGF-β signaling pathway mediated by deubiquitinating enzymes. Cell Mol Life Sci 2019; 76:653-665. [PMID: 30349992 PMCID: PMC11105597 DOI: 10.1007/s00018-018-2949-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/18/2022]
Abstract
Ubiquitination is a reversible cellular process mediated by ubiquitin-conjugating enzymes, whereas deubiquitinating enzymes (DUBs) detach the covalently conjugated ubiquitin from target substrates to counter ubiquitination. DUBs play a crucial role in regulating various signal transduction pathways and biological processes including apoptosis, cell proliferation, DNA damage repair, metastasis, differentiation, etc. Since the transforming growth factor-β (TGF-β) signaling pathway participates in various cellular functions such as inflammation, metastasis and embryogenesis, aberrant regulation of TGF-β signaling induces abnormal cellular functions resulting in numerous diseases. This review focuses on DUBs regulating the TGF-β signaling pathway. We discuss the molecular mechanisms of DUBs involved in TGF-β signaling pathway, and biological and therapeutic implications for various diseases.
Collapse
Affiliation(s)
- Soo-Yeon Kim
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
33
|
Oo HZ, Seiler R, Black PC, Daugaard M. Post-translational modifications in bladder cancer: Expanding the tumor target repertoire. Urol Oncol 2018; 38:858-866. [PMID: 30342880 DOI: 10.1016/j.urolonc.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 07/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade, genomic and transcriptomic analyses have uncovered promising tumor antigens including immunotherapeutic targets in bladder cancer (BCa). Conventional tumor antigens are proteins expressed on the plasma membrane of tumor cells such as EGFR, FGFR3, and ERBB2 in BCa, which can be targeted by antibodies or similar epitope-specific binding reagents. The cellular proteome consists of ∼100,000 proteins but the expression of these proteins is rarely unique to tumor cells. Many tumor-associated proteins are post-translationally modified with phosphorylation, glycosylation, ubiquitination, or SUMOylation moieties. Although these modifications expand the complexity, they potentially offer novel targeting opportunities across tumor sub-populations. Experimental targeting of cancer-specific post-translational modifications (PTMs) has shown encouraging results in pre-clinical models of BCa, which could potentially overcome issues with inherent intra-tumor heterogeneity due to simultaneous expression on different proteins. Here, we review current knowledge on post-translational modifications in BCa and highlight recent efforts in experimental targeting strategies.
Collapse
Affiliation(s)
- Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Roland Seiler
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Urology, University of Bern, Bern, Switzerland
| | - Peter C Black
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada; Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
34
|
Yuan T, Yan F, Ying M, Cao J, He Q, Zhu H, Yang B. Inhibition of Ubiquitin-Specific Proteases as a Novel Anticancer Therapeutic Strategy. Front Pharmacol 2018; 9:1080. [PMID: 30319415 PMCID: PMC6171565 DOI: 10.3389/fphar.2018.01080] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 09/06/2018] [Indexed: 01/23/2023] Open
Abstract
Dysfunction or dysregulation of the ubiquitin proteasome system (UPS) is closely related to tumorigenesis and the development of multiple cancers. Targeting the UPS provides a new anticancer therapeutic strategy, but clinically available UPS-targeted inhibitors, including lenalidomide and bortezomib, are limited to treat solid tumors. Under physiological conditions, deubiquitinases or deubiquitinating enzymes (DUBs) play vital roles in the UPS by removing ubiquitin from substrate proteins and regulating their proteasomal degradation and sub-localization, thus maintaining the balance between ubiquitination and deubiquitination for protein quality control and homeostasis. The aberrant expression or function of DUBs generally leads to the occurrence and progression of a series of disorders, including malignant tumors. Therefore, targeting DUBs is a novel anticancer therapeutic strategy. Ubiquitin-specific proteases (USPs) are the largest subfamily of DUBs which have attracted considerable interest as anticancer targets. Most of USPs are abnormally activated or expressed in a variety of malignant tumors or in the tumor microenvironment, making them ideal anticancer target candidates, which indicates that USPs inhibitors may be a class of potential anticancer therapeutic agents. However, there are no relevant inhibitors targeting USPs have entered clinical trial so far. In this review, we will summarize the roles and mechanisms of USPs in malignant transformation and progression as well as recent advances of small-molecule inhibitors targeting USPs.
Collapse
Affiliation(s)
- Tao Yuan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Kaushal K, Antao AM, Kim KS, Ramakrishna S. Deubiquitinating enzymes in cancer stem cells: functions and targeted inhibition for cancer therapy. Drug Discov Today 2018; 23:1974-1982. [PMID: 29864528 DOI: 10.1016/j.drudis.2018.05.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 12/28/2022]
Abstract
The ability of cancers to evade conventional treatments, such as chemotherapy and radiation therapy, has been attributed to a subpopulation of cancer stem cells (CSCs). CSCs are regulated by mechanisms similar to those that regulate normal stem cells (NSCs), including processes involving ubiquitination and deubiquitination enzymes (DUBs) that regulate the expression of various factors, such as Notch, Wnt, Sonic Hedgehog (Shh), and Hippo. In this review, we discuss the roles of various DUBs involved in the regulation of core stem cell transcription factors and CSC-related proteins that are implicated in the modulation of cellular processes and carcinogenesis. In addition, we discuss the various DUB inhibitors that have been designed to target processes relevant to cancer and CSC maintenance.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
36
|
Richter K, Paakkola T, Mennerich D, Kubaichuk K, Konzack A, Ali-Kippari H, Kozlova N, Koivunen P, Haapasaari KM, Jukkola-Vuorinen A, Teppo HR, Dimova EY, Bloigu R, Szabo Z, Kerkelä R, Kietzmann T. USP28 Deficiency Promotes Breast and Liver Carcinogenesis as well as Tumor Angiogenesis in a HIF-independent Manner. Mol Cancer Res 2018; 16:1000-1012. [PMID: 29545478 DOI: 10.1158/1541-7786.mcr-17-0452] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/14/2017] [Accepted: 02/21/2018] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that the ubiquitin-specific protease USP28 plays an important role in cellular repair and tissue remodeling, which implies that it has a direct role in carcinogenesis. The carcinogenic potential of USP28 was investigated in a comprehensive manner using patients, animal models, and cell culture. The findings demonstrate that overexpression of USP28 correlates with a better survival in patients with invasive ductal breast carcinoma. Mouse xenograft experiments with USP28-deficient breast cancer cells also support this view. Furthermore, lack of USP28 promotes a more malignant state of breast cancer cells, indicated by an epithelial-to-mesenchymal (EMT) transition, elevated proliferation, migration, and angiogenesis as well as a decreased adhesion. In addition to breast cancer, lack of USP28 in mice promoted an earlier onset and a more severe tumor formation in a chemical-induced liver cancer model. Mechanistically, the angio- and carcinogenic processes driven by the lack of USP28 appeared to be independent of HIF-1α, p53, and 53BP1.Implications: The findings of this study are not limited to one particular type of cancer but are rather applicable for carcinogenesis in a more general manner. The obtained data support the view that USP28 is involved in tumor suppression and has the potential to be a prognostic marker. Mol Cancer Res; 16(6); 1000-12. ©2018 AACR.
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Teija Paakkola
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,PEDEGO Research Unit, University of Oulu, Oulu, Finland
| | - Daniela Mennerich
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kateryna Kubaichuk
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heidi Ali-Kippari
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Nina Kozlova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Biocenter Oulu, University of Oulu, Oulu, Finland.,Centre of Excellence in Cell-Extracellular Matrix (ECM) Research, University of Oulu, Oulu, Finland
| | | | - Arja Jukkola-Vuorinen
- Department of Oncology and Radiotherapy, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Hanna-Riikka Teppo
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Department of Pathology, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Risto Bloigu
- Medical Informatics and Statistics Research Group, University of Oulu, Oulu, Finland
| | - Zoltan Szabo
- Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Risto Kerkelä
- Biocenter Oulu, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.,Department of Pharmacology and Toxicology, Research Unit of Biomedicine, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland. .,Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
37
|
Wei T, Biskup E, Gjerdrum LMR, Niazi O, Ødum N, Gniadecki R. Ubiquitin-specific protease 2 decreases p53-dependent apoptosis in cutaneous T-cell lymphoma. Oncotarget 2018; 7:48391-48400. [PMID: 27351221 PMCID: PMC5217025 DOI: 10.18632/oncotarget.10268] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 06/09/2016] [Indexed: 11/25/2022] Open
Abstract
Treatment of advanced cutaneous T-cell lymphomas (CTCL) is challenging because they are resistant to conventional chemotherapy. USP2 has been shown to promote resistance to chemotherapeutic agents in several cancer models.We show here USP2 is expressed in quiescent and activated T-cells and its expression is 50% lower in CTCL cell lines (MyLa2000, SeAx and Hut-78) than in normal T-cells. USP2 is expressed in neoplastic cells in early, plaque-stage mycosis fungoides (MF) and is downregulated in advanced tumor stages. Upon treatment with psoralen with UVA (PUVA) or a p53 activator, nutlin3a, USP2 expression is significantly increased in MyLa2000 (p53wt/wt), but not in SeAx (p53mut) or Hut-78 (p53-/-). USP2 knockdown decreases MyLa2000 cell viability after PUVA by 50% but not Hut-78, suggesting that the function of USP2 in CTCL cells is p53-dependent. Furthermore, USP2 knockdown results in a decreased Mdm2 expression and upregulation of p53. Taken together, our findings suggest that USP2 stabilizes Mdm2 which antagonizes pro-apoptotic activity of p53 and possibly contributes to therapeutic resistance in CTCL.
Collapse
Affiliation(s)
- Tianling Wei
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Edyta Biskup
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Omid Niazi
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark
| | - Niels Ødum
- Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robert Gniadecki
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.,Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Zhao YG, Shi BY, Qian YY, Bai HW, Xiao L, He XY. Dynamic Expression Changes between Non-Muscle-Invasive Bladder Cancer and Muscle-Invasive Bladder Cancer. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu-gang Zhao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bing-yi Shi
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ye-yong Qian
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hong-wei Bai
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Li Xiao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiu-yun He
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
39
|
Kapadia B, Nanaji NM, Bhalla K, Bhandary B, Lapidus R, Beheshti A, Evens AM, Gartenhaus RB. Fatty Acid Synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun 2018; 9:829. [PMID: 29483509 PMCID: PMC5827760 DOI: 10.1038/s41467-018-03028-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 01/15/2018] [Indexed: 01/29/2023] Open
Abstract
Altered lipid metabolism and aberrant protein translation are strongly associated with cancerous outgrowth; however, the inter-regulation of these key processes is still underexplored in diffuse large B-cell lymphoma (DLBCL). Although fatty acid synthase (FASN) activity is reported to positively correlate with PI3K-Akt-mTOR pathway that can modulate protein synthesis, the precise impact of FASN inhibition on this process is still unknown. Herein, we demonstrate that attenuating FASN expression or its activity significantly reduces eIF4B (eukaryotic initiation factor 4B) levels and consequently overall protein translation. Through biochemical studies, we identified eIF4B as a bonafide substrate of USP11, which stabilizes and enhances eIF4B activity. Employing both pharmacological and genetic approaches, we establish that FASN-induced PI3K-S6Kinase signaling phosphorylates USP11 enhancing its interaction with eIF4B and thereby promoting oncogenic translation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Eukaryotic Initiation Factors/genetics
- Eukaryotic Initiation Factors/metabolism
- Fatty Acid Synthase, Type I/genetics
- Fatty Acid Synthase, Type I/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Lipid Metabolism/genetics
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Protein Binding
- Protein Biosynthesis
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases/genetics
- Ribosomal Protein S6 Kinases/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
- Thiolester Hydrolases/genetics
- Thiolester Hydrolases/metabolism
Collapse
Affiliation(s)
- Bandish Kapadia
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Nahid M Nanaji
- Department of Veteran Affairs, Maryland Healthcare System, Baltimore, MD 21201, USA
- University of Maryland Medical Center, Baltimore, MD, 21201, USA
| | - Kavita Bhalla
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Binny Bhandary
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Rena Lapidus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Afshin Beheshti
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Andrew M Evens
- Division of Hematology/Oncology, Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, 02111, USA
| | - Ronald B Gartenhaus
- Department of Medicine, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
- Veterans Administration Medical Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
40
|
Jiang Z, Jiang J, Zhao B, Yang H, Wang Y, Guo S, Deng Y, Lu D, Ma T, Wang H, Wang J. CPNE1 silencing inhibits the proliferation, invasion and migration of human osteosarcoma cells. Oncol Rep 2017; 39:643-650. [PMID: 29207139 DOI: 10.3892/or.2017.6128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/13/2017] [Indexed: 01/26/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone affecting children and adolescents. Copine 1 (CPNE1) is a highly conserved calcium-dependent phospholipid-binding protein and may function in regulating signal transduction and membrane trafficking. In the present study, we investigated CPNE1 expression in osteosarcoma tissues and cells, and studied the effects of small interfering RNA (siRNA)-targeting CPNE1 on proliferation, metastasis and chemosensitivity of the osteosarcoma cells. The results demonstrated that CPNE1 was highly expressed in the osteosarcoma tissues and cell lines. Moreover, functional investigations confirmed that CPNE1 knockdown significantly inhibited cell proliferation, colony formation, invasion and metastasis in Saos-2 and HOS cells. Western blot analysis indicated that CPNE1 silencing downregulated the expression of many proteins associated with tumorigenesis and development, including Ras, MEK-1/2, WNT1, β-catenin, cyclin A1, IRAK2 and cIAP2. In addition, CPNE1 downregulation enhanced the sensitivity of Saos-2 cells towards cisplatin and adriamycin. The present study provides deep insight into the clinical use of lentiviral-mediated CPNE1 silencing for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zhenhuan Jiang
- Department of Orthopaedics, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Jiannong Jiang
- Department of Orthopaedics, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Bizeng Zhao
- Department of Orthopedics, Affiliated Sixth People's Hospital of Shanghai JiaoTong University, Shanghai 20023, P.R. China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215200, P.R. China
| | - Yunliang Wang
- Department of Neurology, The 148 Central Hospital of PLA, Zibo, Shangdong 255000, P.R. China
| | - Shang Guo
- Department of Orthopedics, Affiliated Sixth People's Hospital of Shanghai JiaoTong University, Shanghai 20023, P.R. China
| | - Youping Deng
- Bioinformatics Core, Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Deyi Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tieliang Ma
- Central Laboratory, Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, P.R. China
| | - Hongwei Wang
- Shanghai Realgen Biotech Inc., Pudong New District, Shanghai 203215, P.R. China
| | - Jinzhi Wang
- Department of Cell Biology, School of Medicine, Soochow University, Suzhou, Jiangsu 215007, P.R. China
| |
Collapse
|
41
|
Zhu HQ, Gao FH. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products. Int J Biol Sci 2017; 13:1489-1496. [PMID: 29230097 PMCID: PMC5723915 DOI: 10.7150/ijbs.21637] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) has a regulatory function in cell growth or death and is involved in the pathogenesis of various diseases. USP2 gene can generate 7 splicing variants through alternative splicing, and 5 variants respectively as USP2-201, USP2-202, USP2-204, USP2-205, USP2-206 can encode proteins. The influence of circadian rhythm, nutrition and androgen on specific signaling molecules or cytokines can regulate the alternative splicing of USP2. Specifically, PKC activator, IL-1β, TNF-α, PDGF-BB, TGF-β1 are all regulatory factors for USP2's alternative splicing. USP2-201 plays a crucial role in cell cycle progression, and is also of great significance in EGFR recycling. USP2-202 can activate apoptosis signaling pathway to participate in cell apoptosis, and USP2-204 can induce cell anti-virus reaction to decrease. In general, we collect and summarize the factors involved in the alternative splicing of USP2 in this review to further understand the mechanism behind the USP2's alternative splicing.
Collapse
Affiliation(s)
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China
| |
Collapse
|
42
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
43
|
Ubiquitin-Specific Protease 2 Modulates the Lipopolysaccharide-Elicited Expression of Proinflammatory Cytokines in Macrophage-like HL-60 Cells. Mediators Inflamm 2017; 2017:6909415. [PMID: 29138532 PMCID: PMC5613470 DOI: 10.1155/2017/6909415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/13/2022] Open
Abstract
We investigated the regulatory roles of USP2 in mRNA accumulation of proinflammatory cytokines in macrophage-like cells after stimulation with a toll-like receptor (TLR) 4 ligand, lipopolysaccharide (LPS). Human macrophage-like HL-60 cells, mouse macrophage-like J774.1 cells, and mouse peritoneal macrophages demonstrated negative feedback to USP2 mRNA levels after LPS stimulation, suggesting that USP2 plays a significant role in LPS-stimulated macrophages. USP2 knockdown (KD) by short hairpin RNA in HL-60 cells promoted the accumulation of transcripts for 25 of 104 cytokines after LPS stimulation. In contrast, limited induction of cytokines was observed in cells forcibly expressing the longer splice variant of USP2 (USP2A), or in peritoneal macrophages isolated from Usp2a transgenic mice. An ubiquitin isopeptidase-deficient USP2A mutant failed to suppress LPS-induced cytokine expression, suggesting that protein ubiquitination contributes to USP2-mediated cytokine repression. Although USP2 deficiency did not accelerate TNF receptor-associated factor (TRAF) 6-nuclear factor-κB (NF-κB) signaling, it increased the DNA binding ratio of the octamer binding transcription factor (Oct)-1 to Oct-2 in TNF, CXCL8, CCL4, and IL6 promoters. USP2 decreased nuclear Oct-2 protein levels in addition to decreasing the polyubiquitination of Oct-1. In summary, USP2 modulates proinflammatory cytokine induction, possibly through modification of Oct proteins, in macrophages following TLR4 activation.
Collapse
|
44
|
Wang Z, Xie W, Zhu M, Zhou H. Development of a highly reliable assay for ubiquitin-specific protease 2 inhibitors. Bioorg Med Chem Lett 2017; 27:4015-4018. [PMID: 28778469 DOI: 10.1016/j.bmcl.2017.07.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 10/19/2022]
Abstract
The dynamic modification of proteins with ubiquitin plays crucial roles in major celluar functions, and is associated with a number of pathological conditions. Ubiquitin-specific proteases (USPs) cleave ubiquitin from substrate proteins, and rescue them from proteasomal degradation. Among them, USP2 is overexpressed and plays important roles in various cancers including prostate cancer. Thus, it represents an attractive target for drug discovery. In order to develop potent and selective USP2 inhibitors, a highly reliable assay is needed for in-depth structure-activity relationship study. We report the cloning, expression, and purification of USP2 and UBA52, and the development of a highly reliable assay based on readily available SDS-PAGE-Coomassie systeme using UBA52 as the substrate protein. A number of effective USP2 inhibitors were also identified using this assay.
Collapse
Affiliation(s)
- Zhongli Wang
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenjuan Xie
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyan Zhu
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huchen Zhou
- State Key Laboratory of Microbial Metabolism, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
45
|
Yang H, Seo SG, Shin SH, Min S, Kang MJ, Yoo R, Kwon JY, Yue S, Kim KH, Cheng JX, Kim JR, Park JS, Kim JH, Park JHY, Lee HJ, Lee KW. 3,3’-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 05/06/2017] [Accepted: 05/26/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Hee Yang
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Sang Gwon Seo
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Seung Ho Shin
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Soyun Min
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Min Jeong Kang
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Ra Yoo
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Jeong Yeon Kwon
- Department of Food Science; Purdue University; West Lafayette IN USA
| | - Shuhua Yue
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA
| | - Kee Hong Kim
- Department of Food Science; Purdue University; West Lafayette IN USA
| | - Ji-Xin Cheng
- Weldon School of Biomedical Engineering; Purdue University; West Lafayette IN USA
- Department of Chemistry; Purdue University; West Lafayette IN USA
| | - Jong Rhan Kim
- R&D Evaluation Center; Korea Institute of Science and Technology Evaluation and Planning; Seoul Republic of Korea
| | - Joon-Suk Park
- Laboratory Animal Center; Daegu-GyeongBuk Medical Innovation Foundation; Daegu Republic of Korea
| | - Jong Hun Kim
- Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Republic of Korea
| | - Jung Han Yoon Park
- Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Republic of Korea
| | - Hyong Joo Lee
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Ki Won Lee
- Department of Agricultural Biotechnology; Seoul National University; Seoul Republic of Korea
- Research Institute of Agriculture and Life Sciences; Seoul National University; Seoul Republic of Korea
- Advanced Institutes of Convergence Technology; Seoul National University; Suwon Republic of Korea
| |
Collapse
|
46
|
Hu W, Wei H, Li K, Li P, Lin J, Feng R. Downregulation of USP32 inhibits cell proliferation, migration and invasion in human small cell lung cancer. Cell Prolif 2017; 50. [PMID: 28597490 DOI: 10.1111/cpr.12343] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/14/2017] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Ubiquitin specific protease 32 (USP32) is a highly conserved but uncharacterized gene, which has been reported to be associated with growth of breast cancer cells. However, the role of USP32 in human small cell lung cancer (SCLC) has not been uncovered. The aim of this study was to investigate and evaluate the clinical significance of USP32 in patients with SCLC. MATERIALS AND METHODS Expression of USP32 was firstly investigated using public online data sets and then determined in SCLC tissues and cell lines using quantitative real-time PCR, Western blotting and immunohistochemical staining. SCLC cells were transfected with a small-interfering RNA targeting USP32 mRNA and analysed for cell viability, proliferation ability, cell cycle distribution, apoptosis and invasion. RESULTS USP32 was found to be overexpressed in SCLC tissues compared with normal tissues. High USP32 expression was significantly correlated with disease stage and invasion. In vitro experiments demonstrated that silencing of USP32 caused a significant decrease in the proliferation and migration rate of cells. Furthermore, USP32 silencing arrested cell cycle progression at G0/G1 phase via decreasing CDK4/Cyclin D1 complex and elevating p21. In addition, downregulation of USP32 significantly induced cell apoptosis by activating cleaved caspase-3 and cleaved PARP, as well as inhibiting cell invasiveness via altering epithelial mesenchymal transition expression. CONCLUSIONS Our results suggest for the first time that USP32 is important for SCLC progression and might be a potential target for molecular therapy of SCLC.
Collapse
Affiliation(s)
- Wenyu Hu
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Haiyan Wei
- Physical and Chemical Laboratory, Shandong Academy of Occupational Health and Occupational Medicine, Ji Nan, Shandong, China
| | - Keming Li
- Department of Medicine science, Shandong Academy of Traditional Medicine, Ji Nan, Shandong, China
| | - Pei Li
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Jiamao Lin
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| | - Rui Feng
- Department of Medicine, Shandong Cancer Hospital and Institute, Ji Nan, Shan Dong, China
| |
Collapse
|
47
|
Magiera K, Tomala M, Kubica K, De Cesare V, Trost M, Zieba BJ, Kachamakova-Trojanowska N, Les M, Dubin G, Holak TA, Skalniak L. Lithocholic Acid Hydroxyamide Destabilizes Cyclin D1 and Induces G 0/G 1 Arrest by Inhibiting Deubiquitinase USP2a. Cell Chem Biol 2017; 24:458-470.e18. [PMID: 28343940 PMCID: PMC5404848 DOI: 10.1016/j.chembiol.2017.03.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/26/2016] [Accepted: 03/01/2017] [Indexed: 12/29/2022]
Abstract
USP2a is a deubiquitinase responsible for stabilization of cyclin D1, a crucial regulator of cell-cycle progression and a proto-oncoprotein overexpressed in numerous cancer types. Here we report that lithocholic acid (LCA) derivatives are inhibitors of USP proteins, including USP2a. The most potent LCA derivative, LCA hydroxyamide (LCAHA), inhibits USP2a, leading to a significant Akt/GSK3β-independent destabilization of cyclin D1, but does not change the expression of p27. This leads to the defects in cell-cycle progression. As a result, LCAHA inhibits the growth of cyclin D1-expressing, but not cyclin D1-negative cells, independently of the p53 status. We show that LCA derivatives may be considered as future therapeutics for the treatment of cyclin D1-addicted p53-expressing and p53-defective cancer types.
Collapse
Affiliation(s)
- Katarzyna Magiera
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Marcin Tomala
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Katarzyna Kubica
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Bartosz J Zieba
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Les
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387 Krakow, Poland
| | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland
| | - Lukasz Skalniak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, ul. Ingardena 3, 30-060 Krakow, Poland; Malopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7a, 30-387 Krakow, Poland.
| |
Collapse
|
48
|
Hashimoto K, Tsuji Y. Arsenic-Induced Activation of the Homeodomain-Interacting Protein Kinase 2 (HIPK2) to cAMP-Response Element Binding Protein (CREB) Axis. J Mol Biol 2016; 429:64-78. [PMID: 27884605 DOI: 10.1016/j.jmb.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/14/2022]
Abstract
Cyclic AMP-response element-binding protein (CREB) plays key transcriptional roles in cell metabolism, proliferation, and survival. Ser133 phosphorylation by protein kinase A (PKA) is a well-characterized CREB activation mechanism. Homeodomain-interacting protein kinase (HIPK) 2, a nuclear serine/threonine kinase, activates CREB through Ser271 phosphorylation; however, the regulatory mechanism remains uncharacterized. Transfection of CREB in HEK293 cells together with the kinase demonstrated that HIPK2 phosphorylated CREB at Ser271 but not Ser133; likewise, PKA phosphorylated CREB at Ser133 but not Ser271, suggesting two distinct CREB regulatory mechanisms by HIPK2 and PKA. In vitro kinase assay revealed that HIPK2, and HIPK1 and HIPK3, directly phosphorylated CREB. Cells exposed to 10μM sodium arsenite increased the stability of HIPK1 and HIPK2 proteins, leading to CREB activation via Ser271 phosphorylation. Phospho-Ser271 CREB showed facilitated interaction with the TFIID subunit coactivator TAF4 assessed by immunoprecipitation. Furthermore, a focused gene array between cells transfected with CREB alone and CREB plus HIPK2 over empty vector-transfected control displayed 14- and 32-fold upregulation of cyclin A1, respectively, while no upregulation was displayed by HIPK2 alone. These results suggest that the HIPK2-phospho-Ser271 CREB axis is a new arsenic-responsive CREB activation mechanism in parallel with the PKA-phospho-Ser133 CREB axis.
Collapse
Affiliation(s)
- Kazunori Hashimoto
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA
| | - Yoshiaki Tsuji
- Department of Biological Sciences, North Carolina State University, Campus Box 7633, Raleigh, NC 27695, USA.
| |
Collapse
|
49
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
50
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|