1
|
Di Nardo M, Musio A. Cohesin - bridging the gap among gene transcription, genome stability, and human diseases. FEBS Lett 2025; 599:190-208. [PMID: 38852996 DOI: 10.1002/1873-3468.14949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/11/2024]
Abstract
The intricate landscape of cellular processes governing gene transcription, chromatin organization, and genome stability is a fascinating field of study. A key player in maintaining this delicate equilibrium is the cohesin complex, a molecular machine with multifaceted roles. This review presents an in-depth exploration of these intricate connections and their significant impact on various human diseases.
Collapse
Affiliation(s)
- Maddalena Di Nardo
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| | - Antonio Musio
- Institute for Biomedical Technologies (ITB), National Research Council (CNR), Pisa, Italy
| |
Collapse
|
2
|
Cong K, Cantor SB. Exploiting replication gaps for cancer therapy. Mol Cell 2022; 82:2363-2369. [PMID: 35568026 PMCID: PMC9271608 DOI: 10.1016/j.molcel.2022.04.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 01/08/2023]
Abstract
Defects in DNA double-strand break repair are thought to render BRCA1 or BRCA2 (BRCA) mutant tumors selectively sensitive to PARP inhibitors (PARPis). Challenging this framework, BRCA and PARP1 share functions in DNA synthesis on the lagging strand. Thus, BRCA deficiency or "BRCAness" could reflect an inherent lagging strand problem that is vulnerable to drugs such as PARPi that also target the lagging strand, a combination that generates a toxic accumulation of replication gaps.
Collapse
Affiliation(s)
- Ke Cong
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sharon B Cantor
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
3
|
Henrikus SS, Costa A. Towards a Structural Mechanism for Sister Chromatid Cohesion Establishment at the Eukaryotic Replication Fork. BIOLOGY 2021; 10:466. [PMID: 34073213 PMCID: PMC8229022 DOI: 10.3390/biology10060466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
Cohesion between replicated chromosomes is essential for chromatin dynamics and equal segregation of duplicated genetic material. In the G1 phase, the ring-shaped cohesin complex is loaded onto duplex DNA, enriching at replication start sites, or "origins". During the same phase of the cell cycle, and also at the origin sites, two MCM helicases are loaded as symmetric double hexamers around duplex DNA. During the S phase, and through the action of replication factors, cohesin switches from encircling one parental duplex DNA to topologically enclosing the two duplicated DNA filaments, which are known as sister chromatids. Despite its vital importance, the structural mechanism leading to sister chromatid cohesion establishment at the replication fork is mostly elusive. Here we review the current understanding of the molecular interactions between the replication machinery and cohesin, which support sister chromatid cohesion establishment and cohesin function. In particular, we discuss how cryo-EM is shedding light on the mechanisms of DNA replication and cohesin loading processes. We further expound how frontier cryo-EM approaches, combined with biochemistry and single-molecule fluorescence assays, can lead to understanding the molecular basis of sister chromatid cohesion establishment at the replication fork.
Collapse
Affiliation(s)
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK;
| |
Collapse
|
4
|
Modeling DNA trapping of anticancer therapeutic targets using missense mutations identifies dominant synthetic lethal interactions. Proc Natl Acad Sci U S A 2021; 118:2100240118. [PMID: 33782138 DOI: 10.1073/pnas.2100240118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Genetic screens can identify synthetic lethal (SL) interactions and uncover potential anticancer therapeutic targets. However, most SL screens have utilized knockout or knockdown approaches that do not accurately mimic chemical inhibition of a target protein. Here, we test whether missense mutations can be utilized as a model for a type of protein inhibition that creates a dominant gain-of-function cytotoxicity. We expressed missense mutations in the FEN1 endonuclease and the replication-associated helicase, CHL1, that inhibited enzymatic activity but retained substrate binding, and found that these mutations elicited a dominant SL phenotype consistent with the generation of cytotoxic protein-DNA or protein-protein intermediates. Genetic screens with nuclease-defective hFEN1 and helicase-deficient yCHL1 captured dominant SL interactions, in which ectopic expression of the mutant form, in the presence of the wild-type form, caused SL in specific mutant backgrounds. Expression of nuclease-defective hFEN1 in yeast elicited DNA binding-dependent dominant SL with homologous recombination mutants. In contrast, dominant SL interactions with helicase-deficient yCHL1 were observed in spindle-associated, Ctf18-alternative replication factor C (Ctf18-RFC) clamp loader complex, and cohesin mutant backgrounds. These results highlight the different mechanisms underlying SL interactions that occur in the presence of an inhibited form of the target protein and point to the utility of modeling trapping mutations in pursuit of more clinically relevant SL interactions.
Collapse
|
5
|
Santos D, Mahtab M, Boavida A, Pisani FM. Role of the DDX11 DNA Helicase in Warsaw Breakage Syndrome Etiology. Int J Mol Sci 2021; 22:2308. [PMID: 33669056 PMCID: PMC7956524 DOI: 10.3390/ijms22052308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 12/23/2022] Open
Abstract
Warsaw breakage syndrome (WABS) is a genetic disorder characterized by sister chromatid cohesion defects, growth retardation, microcephaly, hearing loss and other variable clinical manifestations. WABS is due to biallelic mutations of the gene coding for the super-family 2 DNA helicase DDX11/ChlR1, orthologous to the yeast chromosome loss protein 1 (Chl1). WABS is classified in the group of "cohesinopathies", rare hereditary diseases that are caused by mutations in genes coding for subunits of the cohesin complex or protein factors having regulatory roles in the sister chromatid cohesion process. In fact, among the cohesion regulators, an important player is DDX11, which is believed to be important for the functional coupling of DNA synthesis and cohesion establishment at the replication forks. Here, we will review what is known about the molecular and cellular functions of human DDX11 and its role in WABS etiopathogenesis, even in light of recent findings on the role of cohesin and its regulator network in promoting chromatin loop formation and regulating chromatin spatial organization.
Collapse
Affiliation(s)
- Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| | - Francesca M. Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Via P. Castellino 111, 80131 Naples, Italy; (D.S.); (M.M.); (A.B.)
| |
Collapse
|
6
|
McNeil BL, Robertson AKH, Fu W, Yang H, Hoehr C, Ramogida CF, Schaffer P. Production, purification, and radiolabeling of the 203Pb/ 212Pb theranostic pair. EJNMMI Radiopharm Chem 2021; 6:6. [PMID: 33527221 PMCID: PMC7851237 DOI: 10.1186/s41181-021-00121-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/26/2022] Open
Abstract
Background Lead-212 (212Pb, t1/2 = 10.6 h) and lead-203 (203Pb, t1/2 = 51.9 h) are an element-equivalent, or a matched theranostic radioisotope pair that show great potential for application in targeted radionuclide therapy (TRT) and single-photon emission computed tomography (SPECT), respectively. At TRIUMF we have produced both 203Pb and 212Pb using TRIUMF’s TR13 (13 MeV) and 500 MeV cyclotrons, and subsequently purified and evaluated both radioisotopes using a series of pyridine-modified DOTA analogues in comparison to the commercially available chelates DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) and TCMC (1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane). Results Proton irradiation (12.8 MeV) of natural and enriched thallium-203 (203Tl) targets gave 203Pb saturation yields of 134 ± 25 and 483 ± 3 MBq/μA, respectively. Thorium-228 (228Th, t1/2 = 1.9 y), a by-product of 232Th proton spallation on TRIUMF’s main 500 MeV beamline (beamline 1A, BL1A), was recovered to build a 228Th/212Pb generator with the ability to deliver up to 9–10 MBq of 212Pb daily. Both lead isotopes were purified via solid phase extraction chromatography (Pb resin), and isolated in an acetate form ([203/212Pb]Pb(OAc)2) suitable for direct radiolabeling of chelators and bioconjugates. A series of cyclen-based chelators (herein referred to as DOTA-1Py, -2Py, and -3Py) along with established chelates DOTA and TCMC were evaluated for their ability to complex both 203Pb and 212Pb. All chelates incorporated 212Pb/203Pb efficiently, with higher radiolabeling yields observed for the 212Pb-complexes. Conclusion The production of 203Pb and 212Pb was established using TRIUMF 13 MeV and 500 MeV cyclotrons, respectively. Both production methods provided radiometals suitable for subsequent radiolabeling reactions using known and novel chelates. Furthermore, the novel chelate DOTA-3Py may be a good candidate for biomolecule conjugation and further theranostic 212Pb/203Pb studies. Supplementary Information The online version contains supplementary material available at 10.1186/s41181-021-00121-4.
Collapse
Affiliation(s)
- Brooke L McNeil
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew K H Robertson
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Winnie Fu
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada
| | | | - Caterina F Ramogida
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada. .,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada.
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver, BC, Canada. .,Department of Chemistry, Simon Fraser University, Burnaby, BC, Canada. .,Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
7
|
Zuilkoski CM, Skibbens RV. PCNA antagonizes cohesin-dependent roles in genomic stability. PLoS One 2020; 15:e0235103. [PMID: 33075068 PMCID: PMC7571713 DOI: 10.1371/journal.pone.0235103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/04/2020] [Indexed: 12/23/2022] Open
Abstract
PCNA sliding clamp binds factors through which histone deposition, chromatin remodeling, and DNA repair are coupled to DNA replication. PCNA also directly binds Eco1/Ctf7 acetyltransferase, which in turn activates cohesins and establishes cohesion between nascent sister chromatids. While increased recruitment thus explains the mechanism through which elevated levels of chromatin-bound PCNA rescue eco1 mutant cell growth, the mechanism through which PCNA instead worsens cohesin mutant cell growth remains unknown. Possibilities include that elevated levels of long-lived chromatin-bound PCNA reduce either cohesin deposition onto DNA or cohesin acetylation. Instead, our results reveal that PCNA increases the levels of both chromatin-bound cohesin and cohesin acetylation. Beyond sister chromatid cohesion, PCNA also plays a critical role in genomic stability such that high levels of chromatin-bound PCNA elevate genotoxic sensitivities and recombination rates. At a relatively modest increase of chromatin-bound PCNA, however, fork stability and progression appear normal in wildtype cells. Our results reveal that even a moderate increase of PCNA indeed sensitizes cohesin mutant cells to DNA damaging agents and in a process that involves the DNA damage response kinase Mec1(ATR), but not Tel1(ATM). These and other findings suggest that PCNA mis-regulation results in genome instabilities that normally are resolved by cohesin. Elevating levels of chromatin-bound PCNA may thus help target cohesinopathic cells linked that are linked to cancer.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
8
|
van Schie JJM, Faramarz A, Balk JA, Stewart GS, Cantelli E, Oostra AB, Rooimans MA, Parish JL, de Almeida Estéves C, Dumic K, Barisic I, Diderich KEM, van Slegtenhorst MA, Mahtab M, Pisani FM, Te Riele H, Ameziane N, Wolthuis RMF, de Lange J. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion. Nat Commun 2020; 11:4287. [PMID: 32855419 PMCID: PMC7452896 DOI: 10.1038/s41467-020-18066-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/30/2020] [Indexed: 02/01/2023] Open
Abstract
Warsaw Breakage Syndrome (WABS) is a rare disorder related to cohesinopathies and Fanconi anemia, caused by bi-allelic mutations in DDX11. Here, we report multiple compound heterozygous WABS cases, each displaying destabilized DDX11 protein and residual DDX11 function at the cellular level. Patient-derived cell lines exhibit sensitivity to topoisomerase and PARP inhibitors, defective sister chromatid cohesion and reduced DNA replication fork speed. Deleting DDX11 in RPE1-TERT cells inhibits proliferation and survival in a TP53-dependent manner and causes chromosome breaks and cohesion defects, independent of the expressed pseudogene DDX12p. Importantly, G-quadruplex (G4) stabilizing compounds induce chromosome breaks and cohesion defects which are strongly aggravated by inactivation of DDX11 but not FANCJ. The DNA helicase domain of DDX11 is essential for sister chromatid cohesion and resistance to G4 stabilizers. We propose that DDX11 is a DNA helicase protecting against G4 induced double-stranded breaks and concomitant loss of cohesion, possibly at DNA replication forks.
Collapse
Affiliation(s)
- Janne J M van Schie
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Atiq Faramarz
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Jesper A Balk
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Erika Cantelli
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Anneke B Oostra
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Martin A Rooimans
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
| | - Joanna L Parish
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | | - Katja Dumic
- Department of Pediatric Endocrinology and Diabetes, University Hospital Centre Zagreb, University of Zagreb Medical School, Zagreb, Croatia
| | - Ingeborg Barisic
- Children's Hospital Zagreb, Center of Excellence for Reproductive and Regenerative Medicine, Medical School University of Zagreb, Zagreb, Croatia
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Mohammad Mahtab
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | - Hein Te Riele
- Netherlands Cancer Institute, Division of Tumor Biology and Immunology, Amsterdam, The Netherlands
| | - Najim Ameziane
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands
- Centogene, Am Strande 7, 18055, Rostock, Germany
| | - Rob M F Wolthuis
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| | - Job de Lange
- Section of Oncogenetics, Cancer Center Amsterdam and Department of Clinical Genetics, Amsterdam University Medical Centers, De Boelelaan 1118, 1081, HV, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Shen D, Skibbens RV. Promotion of Hyperthermic-Induced rDNA Hypercondensation in Saccharomyces cerevisiae. Genetics 2020; 214:589-604. [PMID: 31980450 PMCID: PMC7054013 DOI: 10.1534/genetics.119.302994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/29/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosome biogenesis is tightly regulated through stress-sensing pathways that impact genome stability, aging and senescence. In Saccharomyces cerevisiae, ribosomal RNAs are transcribed from rDNA located on the right arm of chromosome XII. Numerous studies reveal that rDNA decondenses into a puff-like structure during interphase, and condenses into a tight loop-like structure during mitosis. Intriguingly, a novel and additional mechanism of increased mitotic rDNA compaction (termed hypercondensation) was recently discovered that occurs in response to temperature stress (hyperthermic-induced) and is rapidly reversible. Here, we report that neither changes in condensin binding or release of DNA during mitosis, nor mutation of factors that regulate cohesin binding and release, appear to play a critical role in hyperthermic-induced rDNA hypercondensation. A candidate genetic approach revealed that deletion of either HSP82 or HSC82 (Hsp90 encoding heat shock paralogs) result in significantly reduced hyperthermic-induced rDNA hypercondensation. Intriguingly, Hsp inhibitors do not impact rDNA hypercondensation. In combination, these findings suggest that Hsp90 either stabilizes client proteins, which are sensitive to very transient thermic challenges, or directly promotes rDNA hypercondensation during preanaphase. Our findings further reveal that the high mobility group protein Hmo1 is a negative regulator of mitotic rDNA condensation, distinct from its role in promoting premature condensation of rDNA during interphase upon nutrient starvation.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
10
|
Faramarz A, Balk JA, van Schie JJM, Oostra AB, Ghandour CA, Rooimans MA, Wolthuis RMF, de Lange J. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2. PLoS One 2020; 15:e0220348. [PMID: 31935221 PMCID: PMC6959578 DOI: 10.1371/journal.pone.0220348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
In a process linked to DNA replication, duplicated chromosomes are entrapped in large, circular cohesin complexes and functional sister chromatid cohesion (SCC) is established by acetylation of the SMC3 cohesin subunit. Roberts Syndrome (RBS) and Warsaw Breakage Syndrome (WABS) are rare human developmental syndromes that are characterized by defective SCC. RBS is caused by mutations in the SMC3 acetyltransferase ESCO2, whereas mutations in the DNA helicase DDX11 lead to WABS. We found that WABS-derived cells predominantly rely on ESCO2, not ESCO1, for residual SCC, growth and survival. Reciprocally, RBS-derived cells depend on DDX11 to maintain low levels of SCC. Synthetic lethality between DDX11 and ESCO2 correlated with a prolonged delay in mitosis, and was rescued by knockdown of the cohesin remover WAPL. Rescue experiments using human or mouse cDNAs revealed that DDX11, ESCO1 and ESCO2 act on different but related aspects of SCC establishment. Furthermore, a DNA binding DDX11 mutant failed to correct SCC in WABS cells and DDX11 deficiency reduced replication fork speed. We propose that DDX11, ESCO1 and ESCO2 control different fractions of cohesin that are spatially and mechanistically separated.
Collapse
Affiliation(s)
- Atiq Faramarz
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jesper A. Balk
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Janne J. M. van Schie
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Anneke B. Oostra
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Cherien A. Ghandour
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Martin A. Rooimans
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Rob M. F. Wolthuis
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Job de Lange
- Cancer Center Amsterdam, Department of Clinical Genetics, section Oncogenetics, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Bender D, Da Silva EML, Chen J, Poss A, Gawey L, Rulon Z, Rankin S. Multivalent interaction of ESCO2 with the replication machinery is required for sister chromatid cohesion in vertebrates. Proc Natl Acad Sci U S A 2020; 117:1081-1089. [PMID: 31879348 PMCID: PMC6969535 DOI: 10.1073/pnas.1911936117] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The tethering together of sister chromatids by the cohesin complex ensures their accurate alignment and segregation during cell division. In vertebrates, sister chromatid cohesion requires the activity of the ESCO2 acetyltransferase, which modifies the Smc3 subunit of cohesin. It was shown recently that ESCO2 promotes cohesion through interaction with the MCM replicative helicase. However, ESCO2 does not significantly colocalize with the MCM complex, suggesting there are additional interactions important for ESCO2 function. Here we show that ESCO2 is recruited to replication factories, sites of DNA replication, through interaction with PCNA. We show that ESCO2 contains multiple PCNA-interaction motifs in its N terminus, each of which is essential to its ability to establish cohesion. We propose that multiple PCNA-interaction motifs embedded in a largely flexible and disordered region of the protein underlie the unique ability of ESCO2 to establish cohesion between sister chromatids precisely as they are born during DNA replication.
Collapse
Affiliation(s)
- Dawn Bender
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| | | | - Jingrong Chen
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Annelise Poss
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Lauren Gawey
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Zane Rulon
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Susannah Rankin
- Program in Cell Cycle and Cancer Biology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104;
- Department of Cell Biology, Oklahoma University Health Science Center, Oklahoma City, OK 73104
| |
Collapse
|
12
|
Boginya A, Detroja R, Matityahu A, Frenkel-Morgenstern M, Onn I. The chromatin remodeler Chd1 regulates cohesin in budding yeast and humans. Sci Rep 2019; 9:8929. [PMID: 31222142 PMCID: PMC6586844 DOI: 10.1038/s41598-019-45263-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
Chd1 is a chromatin remodeler that is involved in nucleosome positioning and transcription. Deletion of CHD1 is a frequent event in prostate cancer. The Structural Maintenance of Chromosome (SMC) complex cohesin mediates long-range chromatin interactions and is involved in maintaining genome stability. We provide new evidence that Chd1 is a regulator of cohesin. In the yeast S. cerevisiae, Chd1 is not essential for viability. We show that deletion of the gene leads to a defect in sister chromatid cohesion and in chromosome morphology. Chl1 is a non-essential DNA helicase that has been shown to regulate cohesin loading. Surprisingly, co-deletion of CHD1 and CHL1 results in an additive cohesion defect but partial suppression of the chromosome structure phenotype. We found that the cohesin regulator Pds5 is overexpressed when Chd1 and Chl1 are deleted. However, Pds5 expression is reduced to wild type levels when both genes are deleted. Finally, we show a correlation in the expression of CHD1 and cohesin genes in prostate cancer patients. Furthermore, we show that overexpression of cohesin subunits is correlated with the aggressiveness of the tumor. The biological roles of the interplay between Chd1, Chl1 and SMCs are discussed.
Collapse
Affiliation(s)
- Alexandra Boginya
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Rajesh Detroja
- Cancer Genomics and Biocomputing of Complex Diseases Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Avi Matityahu
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and Biocomputing of Complex Diseases Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Itay Onn
- Chromosome Instability and Dynamics Lab. The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
13
|
Pisani FM, Napolitano E, Napolitano LMR, Onesti S. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11. Genes (Basel) 2018; 9:genes9110564. [PMID: 30469382 PMCID: PMC6266566 DOI: 10.3390/genes9110564] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/17/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
DDX11/ChlR1 (Chl1 in yeast) is a DNA helicase involved in sister chromatid cohesion and in DNA repair pathways. The protein belongs to the family of the iron–sulphur cluster containing DNA helicases, whose deficiencies have been linked to a number of diseases affecting genome stability. Mutations of human DDX11 are indeed associated with the rare genetic disorder named Warsaw breakage syndrome, showing both chromosomal breakages and chromatid cohesion defects. Moreover, growing evidence of a potential role in oncogenesis further emphasizes the clinical relevance of DDX11. Here, we illustrate the biochemical and structural features of DDX11 and how it cooperates with multiple protein partners in the cell, acting at the interface of DNA replication/repair/recombination and sister chromatid cohesion to preserve genome stability.
Collapse
Affiliation(s)
- Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Ettore Napolitano
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via P. Castellino, 111, 80131 Napoli, Italy.
| | - Luisa M R Napolitano
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| | - Silvia Onesti
- Elettra⁻Sincrotrone Trieste S.C.p.A., AREA Science Park Basovizza, 34149 Trieste, Italy.
| |
Collapse
|
14
|
Cortone G, Zheng G, Pensieri P, Chiappetta V, Tatè R, Malacaria E, Pichierri P, Yu H, Pisani FM. Interaction of the Warsaw breakage syndrome DNA helicase DDX11 with the replication fork-protection factor Timeless promotes sister chromatid cohesion. PLoS Genet 2018; 14:e1007622. [PMID: 30303954 PMCID: PMC6179184 DOI: 10.1371/journal.pgen.1007622] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022] Open
Abstract
Establishment of sister chromatid cohesion is coupled to DNA replication, but the underlying molecular mechanisms are incompletely understood. DDX11 (also named ChlR1) is a super-family 2 Fe-S cluster-containing DNA helicase implicated in Warsaw breakage syndrome (WABS). Herein, we examined the role of DDX11 in cohesion establishment in human cells. We demonstrated that DDX11 interacts with Timeless, a component of the replication fork-protection complex, through a conserved peptide motif. The DDX11-Timeless interaction is critical for sister chromatid cohesion in interphase and mitosis. Immunofluorescence studies further revealed that cohesin association with chromatin requires DDX11. Finally, we demonstrated that DDX11 localises at nascent DNA by SIRF analysis. Moreover, we found that DDX11 promotes cohesin binding to the DNA replication forks in concert with Timeless and that recombinant purified cohesin interacts with DDX11 in vitro. Collectively, our results establish a critical role for the DDX11-Timeless interaction in coordinating DNA replication with sister chromatid cohesion, and have important implications for understanding the molecular basis of WABS.
Collapse
Affiliation(s)
- Giuseppe Cortone
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Ge Zheng
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Pasquale Pensieri
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Viviana Chiappetta
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
| | - Rosarita Tatè
- Istituto di Genetica e Biofisica "Adriano Buzzati Traverso", Consiglio Nazionale Ricerche, Naples, Italy
| | - Eva Malacaria
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Pietro Pichierri
- Istituto Superiore di Sanità, Dipartimento Ambiente e Salute, Rome, Italy
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail: (HY); (FMP)
| | - Francesca M. Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale Ricerche, Naples, Italy
- * E-mail: (HY); (FMP)
| |
Collapse
|
15
|
Villa-Hernández S, Bermejo R. Cohesin dynamic association to chromatin and interfacing with replication forks in genome integrity maintenance. Curr Genet 2018; 64:1005-1013. [PMID: 29549581 DOI: 10.1007/s00294-018-0824-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 01/09/2023]
Abstract
Proliferating cells need to accurately duplicate and pass their genetic material on to daughter cells. Problems during replication and partition challenge the structural and numerical integrity of chromosomes. Diverse mechanisms, as the DNA replication checkpoint, survey the correct progression of replication and couple it with other cell cycle events to preserve genome integrity. The structural maintenance of chromosomes (SMC) cohesin complex primarily contributes to chromosome duplication by mediating the tethering of newly replicated sister chromatids, thus assisting their equal segregation in mitosis. In addition, cohesin exerts important functions in genome organization, gene expression and DNA repair. These are determined by cohesin's ability to bring together different DNA segments and, hence, by the fashion and dynamics of its interaction with chromatin. It recently emerged that cohesin contributes to the protection of stalled replication forks through a mechanism requiring its timely mobilization from unreplicated DNA and relocation to nascent strands. This mechanism relies on DNA replication checkpoint-dependent cohesin ubiquitylation and promotes nascent sister chromatid entrapment, likely contributing to preserve stalled replisome-fork architectural integrity. Here we review how cohesin dynamic association to chromatin is controlled through post-translational modifications to dictate its functions during chromosome duplication. We also discuss recent insights on the mechanism that mediates interfacing of replisome components with chromatin-bound cohesin and its contribution to the establishment of sister chromatid cohesion and the protection of stalled replication forks.
Collapse
Affiliation(s)
- Sara Villa-Hernández
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain
- Wolfson Centre for Age-Related Diseases, King's College London, London, SE1 1UL, UK
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas (CIB-CSIC), Calle Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
16
|
Puig S, Ramos-Alonso L, Romero AM, Martínez-Pastor MT. The elemental role of iron in DNA synthesis and repair. Metallomics 2018; 9:1483-1500. [PMID: 28879348 DOI: 10.1039/c7mt00116a] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Iron is an essential redox element that functions as a cofactor in many metabolic pathways. Critical enzymes in DNA metabolism, including multiple DNA repair enzymes (helicases, nucleases, glycosylases, demethylases) and ribonucleotide reductase, use iron as an indispensable cofactor to function. Recent striking results have revealed that the catalytic subunit of DNA polymerases also contains conserved cysteine-rich motifs that bind iron-sulfur (Fe/S) clusters that are essential for the formation of stable and active complexes. In line with this, mitochondrial and cytoplasmic defects in Fe/S cluster biogenesis and insertion into the nuclear iron-requiring enzymes involved in DNA synthesis and repair lead to DNA damage and genome instability. Recent studies have shown that yeast cells possess multi-layered mechanisms that regulate the ribonucleotide reductase function in response to fluctuations in iron bioavailability to maintain optimal deoxyribonucleotide concentrations. Finally, a fascinating DNA charge transport model indicates how the redox active Fe/S centers present in DNA repair machinery components are critical for detecting and repairing DNA mismatches along the genome by long-range charge transfers through double-stranded DNA. These unexpected connections between iron and DNA replication and repair have to be considered to properly understand cancer, aging and other DNA-related diseases.
Collapse
Affiliation(s)
- Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Ave. Agustín Escardino 7, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
17
|
Countryman P, Fan Y, Gorthi A, Pan H, Strickland E, Kaur P, Wang X, Lin J, Lei X, White C, You C, Wirth N, Tessmer I, Piehler J, Riehn R, Bishop AJR, Tao YJ, Wang H. Cohesin SA2 is a sequence-independent DNA-binding protein that recognizes DNA replication and repair intermediates. J Biol Chem 2018; 293:1054-1069. [PMID: 29175904 PMCID: PMC5777247 DOI: 10.1074/jbc.m117.806406] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/22/2017] [Indexed: 11/06/2022] Open
Abstract
Proper chromosome alignment and segregation during mitosis depend on cohesion between sister chromatids, mediated by the cohesin protein complex, which also plays crucial roles in diverse genome maintenance pathways. Current models attribute DNA binding by cohesin to entrapment of dsDNA by the cohesin ring subunits (SMC1, SMC3, and RAD21 in humans). However, the biophysical properties and activities of the fourth core cohesin subunit SA2 (STAG2) are largely unknown. Here, using single-molecule atomic force and fluorescence microscopy imaging as well as fluorescence anisotropy measurements, we established that SA2 binds to both dsDNA and ssDNA, albeit with a higher binding affinity for ssDNA. We observed that SA2 can switch between the 1D diffusing (search) mode on dsDNA and stable binding (recognition) mode at ssDNA gaps. Although SA2 does not specifically bind to centromeric or telomeric sequences, it does recognize DNA structures often associated with DNA replication and double-strand break repair, such as a double-stranded end, single-stranded overhang, flap, fork, and ssDNA gap. SA2 loss leads to a defect in homologous recombination-mediated DNA double-strand break repair. These results suggest that SA2 functions at intermediate DNA structures during DNA transactions in genome maintenance pathways. These findings have important implications for understanding the function of cohesin in these pathways.
Collapse
Affiliation(s)
| | - Yanlin Fan
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Aparna Gorthi
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | | | | | | | | | - Jiangguo Lin
- From the Physics Department
- the Institute of Biomechanics, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lei
- the Department of BioSciences, Rice University, Houston, Texas 77251
- the School of Public Health, Shandong University, Jinan 250012, China
| | | | - Changjiang You
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | - Nicolas Wirth
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Ingrid Tessmer
- the Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg, Germany
| | - Jacob Piehler
- the Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076 Osnabrück, Germany, and
| | | | - Alexander J R Bishop
- the Greehey Children's Cancer Research Institute and
- Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, Texas 78229
| | - Yizhi Jane Tao
- the Department of BioSciences, Rice University, Houston, Texas 77251
| | - Hong Wang
- From the Physics Department,
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
18
|
RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2017; 46:77-95. [PMID: 29273621 DOI: 10.1042/bst20170044] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/11/2022]
Abstract
Helicases are molecular motors that play central roles in nucleic acid metabolism. Mutations in genes encoding DNA helicases of the RecQ and iron-sulfur (Fe-S) helicase families are linked to hereditary disorders characterized by chromosomal instabilities, highlighting the importance of these enzymes. Moreover, mono-allelic RecQ and Fe-S helicase mutations are associated with a broad spectrum of cancers. This review will discuss and contrast the specialized molecular functions and biological roles of RecQ and Fe-S helicases in DNA repair, the replication stress response, and the regulation of gene expression, laying a foundation for continued research in these important areas of study.
Collapse
|
19
|
Shen D, Skibbens RV. Chl1 DNA helicase and Scc2 function in chromosome condensation through cohesin deposition. PLoS One 2017; 12:e0188739. [PMID: 29186203 PMCID: PMC5706694 DOI: 10.1371/journal.pone.0188739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/13/2017] [Indexed: 02/02/2023] Open
Abstract
Chl1 DNA helicase promotes sister chromatid cohesion and associates with both the cohesion establishment acetyltransferase Eco1/Ctf7 and the DNA polymerase processivity factor PCNA that supports Eco1/Ctf7 function. Mutation in CHL1 results in precocious sister chromatid separation and cell aneuploidy, defects that arise through reduced levels of chromatin-bound cohesins which normally tether together sister chromatids (trans tethering). Mutation of Chl1 family members (BACH1/BRIP/FANCJ and DDX11/ChlR1) also exhibit genotoxic sensitivities, consistent with a role for Chl1 in trans tethering which is required for efficient DNA repair. Chl1 promotes the recruitment of Scc2 to DNA which is required for cohesin deposition onto DNA. There is limited evidence, however, that Scc2 also directs the deposition onto DNA of condensins which promote tethering in cis (intramolecular DNA links). Here, we test the ability of Chl1 to promote cis tethering and the role of both Chl1 and Scc2 to promote condensin recruitment to DNA. The results reveal that chl1 mutant cells exhibit significant condensation defects both within the rDNA locus and genome-wide. Importantly, chl1 mutant cell condensation defects do not result from reduced chromatin binding of condensin, but instead through reduced chromatin binding of cohesin. We tested scc2-4 mutant cells and similarly found no evidence of reduced condensin recruitment to chromatin. Consistent with a role for Scc2 specifically in cohesin deposition, scc2-4 mutant cell condensation defects are irreversible. We thus term Chl1 a novel regulator of both chromatin condensation and sister chromatid cohesion through cohesin-based mechanisms. These results reveal an exciting interface between DNA structure and the highly conserved cohesin complex.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
20
|
Interactive Roles of DNA Helicases and Translocases with the Single-Stranded DNA Binding Protein RPA in Nucleic Acid Metabolism. Int J Mol Sci 2017; 18:ijms18061233. [PMID: 28594346 PMCID: PMC5486056 DOI: 10.3390/ijms18061233] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023] Open
Abstract
Helicases and translocases use the energy of nucleoside triphosphate binding and hydrolysis to unwind/resolve structured nucleic acids or move along a single-stranded or double-stranded polynucleotide chain, respectively. These molecular motors facilitate a variety of transactions including replication, DNA repair, recombination, and transcription. A key partner of eukaryotic DNA helicases/translocases is the single-stranded DNA binding protein Replication Protein A (RPA). Biochemical, genetic, and cell biological assays have demonstrated that RPA interacts with these human molecular motors physically and functionally, and their association is enriched in cells undergoing replication stress. The roles of DNA helicases/translocases are orchestrated with RPA in pathways of nucleic acid metabolism. RPA stimulates helicase-catalyzed DNA unwinding, enlists translocases to sites of action, and modulates their activities in DNA repair, fork remodeling, checkpoint activation, and telomere maintenance. The dynamic interplay between DNA helicases/translocases and RPA is just beginning to be understood at the molecular and cellular levels, and there is still much to be learned, which may inform potential therapeutic strategies.
Collapse
|
21
|
Abstract
Each time a cell duplicates, the whole genome must be accurately copied and distributed. The enormous amount of DNA in eukaryotic cells requires a high level of coordination between polymerases and other DNA and chromatin-interacting proteins to ensure timely and accurate DNA replication and chromatin formation. PCNA forms a ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and as a landing platform for different proteins that interact with DNA and chromatin. It thus serves as a signaling hub and influences the rate and accuracy of DNA replication, the r-formation of chromatin in the wake of the moving fork and the proper segregation of the sister chromatids. Four different, conserved, protein complexes are in charge of loading/unloading PCNA and similar molecules onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA, the replication clamp, during S-phase. The Rad24, Ctf18 and Elg1 proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast.
Collapse
Affiliation(s)
- Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
22
|
Calì F, Bharti SK, Di Perna R, Brosh RM, Pisani FM. Tim/Timeless, a member of the replication fork protection complex, operates with the Warsaw breakage syndrome DNA helicase DDX11 in the same fork recovery pathway. Nucleic Acids Res 2015; 44:705-17. [PMID: 26503245 PMCID: PMC4737141 DOI: 10.1093/nar/gkv1112] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 10/13/2015] [Indexed: 11/15/2022] Open
Abstract
We present evidence that Tim establishes a physical and functional interaction with DDX11, a super-family 2 iron-sulfur cluster DNA helicase genetically linked to the chromosomal instability disorder Warsaw breakage syndrome. Tim stimulates DDX11 unwinding activity on forked DNA substrates up to 10-fold and on bimolecular anti-parallel G-quadruplex DNA structures and three-stranded D-loop approximately 4–5-fold. Electrophoretic mobility shift assays revealed that Tim enhances DDX11 binding to DNA, suggesting that the observed stimulation derives from an improved ability of DDX11 to interact with the nucleic acid substrate. Surface plasmon resonance measurements indicate that DDX11 directly interacts with Tim. DNA fiber track assays with HeLa cells exposed to hydroxyurea demonstrated that Tim or DDX11 depletion significantly reduced replication fork progression compared to control cells; whereas no additive effect was observed by co-depletion of both proteins. Moreover, Tim and DDX11 are epistatic in promoting efficient resumption of stalled DNA replication forks in hydroxyurea-treated cells. This is consistent with the finding that association of the two endogenous proteins in the cell extract chromatin fraction is considerably increased following hydroxyurea exposure. Overall, our studies provide evidence that Tim and DDX11 physically and functionally interact and act in concert to preserve replication fork progression in perturbed conditions.
Collapse
Affiliation(s)
- Federica Calì
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino, 111. 80131 - Napoli, Italy
| | - Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Roberta Di Perna
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino, 111. 80131 - Napoli, Italy
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Francesca M Pisani
- Istituto di Biochimica delle Proteine, Consiglio Nazionale delle Ricerche, Via Pietro Castellino, 111. 80131 - Napoli, Italy
| |
Collapse
|
23
|
Tong K, Skibbens RV. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:7021-6. [PMID: 25986377 PMCID: PMC4460518 DOI: 10.1073/pnas.1501369112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures-processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
24
|
Guo M, Hundseth K, Ding H, Vidhyasagar V, Inoue A, Nguyen CH, Zain R, Lee JS, Wu Y. A distinct triplex DNA unwinding activity of ChlR1 helicase. J Biol Chem 2015; 290:5174-5189. [PMID: 25561740 DOI: 10.1074/jbc.m114.634923] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the human ChlR1 (DDX11) gene are associated with a unique genetic disorder known as Warsaw breakage syndrome characterized by cellular defects in genome maintenance. The DNA triplex helix structures that form by Hoogsteen or reverse Hoogsteen hydrogen bonding are examples of alternate DNA structures that can be a source of genomic instability. In this study, we have examined the ability of human ChlR1 helicase to destabilize DNA triplexes. Biochemical studies demonstrated that ChlR1 efficiently melted both intermolecular and intramolecular DNA triplex substrates in an ATP-dependent manner. Compared with other substrates such as replication fork and G-quadruplex DNA, triplex DNA was a preferred substrate for ChlR1. Also, compared with FANCJ, a helicase of the same family, the triplex resolving activity of ChlR1 is unique. On the other hand, the mutant protein from a Warsaw breakage syndrome patient failed to unwind these triplexes. A previously characterized triplex DNA-specific antibody (Jel 466) bound triplex DNA structures and inhibited ChlR1 unwinding activity. Moreover, cellular assays demonstrated that there were increased triplex DNA content and double-stranded breaks in ChlR1-depleted cells, but not in FANCJ(-/-) cells, when cells were treated with a triplex stabilizing compound benzoquinoquinoxaline, suggesting that ChlR1 melting of triple-helix structures is distinctive and physiologically important to defend genome integrity. On the basis of our results, we conclude that the abundance of ChlR1 known to exist in vivo is likely to be a strong deterrent to the stability of triplexes that can potentially form in the human genome.
Collapse
Affiliation(s)
- Manhong Guo
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kristian Hundseth
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Hao Ding
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | - Akira Inoue
- the Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Chi-Hung Nguyen
- UMR176 CNRS-Institut Curie, Laboratoire de Pharmacochimie, Centre Universitaire, 91405 Orsay, France, and
| | - Rula Zain
- the Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden
| | - Jeremy S Lee
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Yuliang Wu
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada,.
| |
Collapse
|
25
|
Elg1, a central player in genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:267-79. [PMID: 25795125 DOI: 10.1016/j.mrrev.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Collapse
|
26
|
Bharti SK, Khan I, Banerjee T, Sommers JA, Wu Y, Brosh RM. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome. Cell Mol Life Sci 2014; 71:2625-39. [PMID: 24487782 PMCID: PMC4537069 DOI: 10.1007/s00018-014-1569-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/07/2014] [Accepted: 01/16/2014] [Indexed: 02/08/2023]
Abstract
In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron-Sulfur (Fe-S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe-S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Irfan Khan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Joshua A. Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| | - Yuliang Wu
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK S7N 5E5 Canada
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, Baltimore, MD 21224 USA
| |
Collapse
|
27
|
Tong K, Skibbens RV. Cohesin without cohesion: a novel role for Pds5 in Saccharomyces cerevisiae. PLoS One 2014; 9:e100470. [PMID: 24963665 PMCID: PMC4070927 DOI: 10.1371/journal.pone.0100470] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/18/2014] [Indexed: 11/18/2022] Open
Abstract
High fidelity chromosome segregation during mitosis requires that cells identify the products of DNA replication during S-phase and then maintain that identity until anaphase onset. Sister chromatid identity is achieved through cohesin complexes (Smc1, Smc3, and Mcd1 and Irr1/Scc3), but the structure through which cohesins perform this task remains enigmatic. In the absence of unambiguous data, a popular model is that a subset of cohesin subunits form a huge ring-like structure that embraces both sister chromatids. This 'one-ring two-sister chromatid embrace' model makes clear predictions--including that premature cohesion loss in mitotic cells must occur through a substantial reduction in cohesin-DNA associations. We used chromatin immunoprecipitation to directly test for cohesin dissociation from well-established cohesin binding sites in mitotic cells inactivated for Pds5--a key cohesin regulatory protein. The results reveal little if any chromatin dissociation from cohesins, despite a regimen that produces both massive loss of sister chromatid tethering and cell inviability. We further excluded models that cohesion loss in mitotic cells inactivated for Pds5 arises through either cohesin subunit degradation, premature Hos1-dependent Smc3 de-acetylation or Rad61/WAPL-dependent regulation of cohesin dynamics. In combination, our findings support a model that cohesin complexes associate with each sister and that sister chromatid cohesion likely results from cohesin-cohesin interactions. We further assessed the role that Pds5 plays in cohesion establishment during S-phase. The results show that Pds5 inactivation can result in establishment defects despite normal cohesion loading and Smc3 acetylation, revealing a novel establishment role for Pds5 that is independent of these processes. The combination of findings provides important new insights that significantly impact current models of both cohesion establishment reactions and maintenance.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
28
|
Abstract
DNA replication during S phase generates two identical copies of each chromosome. Each chromosome is destined for a daughter cell, but each daughter must receive one and only one copy of each chromosome. To ensure accurate chromosome segregation, eukaryotic cells are equipped with a mechanism to pair the chromosomes during chromosome duplication and hold the pairs until a bi-oriented mitotic spindle is formed and the pairs are pulled apart. This mechanism is known as sister chromatid cohesion, and its actions span the entire cell cycle. During G1, before DNA is copied during S phase, proteins termed cohesins are loaded onto DNA. Paired chromosomes are held together through G2 phase, and finally the cohesins are dismantled during mitosis. The processes governing sister chromatid cohesion ensure that newly replicated sisters are held together from the moment they are generated to the metaphase-anaphase transition, when sisters separate.
Collapse
Affiliation(s)
- Adam R Leman
- Department of Biology, Duke University, Durham, NC, USA
| | | |
Collapse
|
29
|
Abstract
Mitosis and meiosis are essential processes that occur during development. Throughout these processes, cohesion is required to keep the sister chromatids together until their separation at anaphase. Cohesion is created by multiprotein subunit complexes called cohesins. Although the subunits differ slightly in mitosis and meiosis, the canonical cohesin complex is composed of four subunits that are quite diverse. The cohesin complexes are also important for DNA repair, gene expression, development, and genome integrity. Here we provide an overview of the roles of cohesins during these different events as well as their roles in human health and disease, including the cohesinopathies. Although the exact roles and mechanisms of these proteins are still being elucidated, this review serves as a guide for the current knowledge of cohesins.
Collapse
Affiliation(s)
- Amanda S Brooker
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, MS 497, Philadelphia, PA, 19102, USA
| | | |
Collapse
|
30
|
Rudra S, Skibbens RV. Chl1 DNA helicase regulates Scc2 deposition specifically during DNA-replication in Saccharomyces cerevisiae. PLoS One 2013; 8:e75435. [PMID: 24086532 PMCID: PMC3784445 DOI: 10.1371/journal.pone.0075435] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/13/2013] [Indexed: 11/19/2022] Open
Abstract
The conserved family of cohesin proteins that mediate sister chromatid cohesion requires Scc2, Scc4 for chromatin-association and Eco1/Ctf7 for conversion to a tethering competent state. A popular model, based on the notion that cohesins form huge ring-like structures, is that Scc2, Scc4 function is essential only during G1 such that sister chromatid cohesion results simply from DNA replisome passage through pre-loaded cohesin rings. In such a scenario, cohesin deposition during G1 is temporally uncoupled from Eco1-dependent establishment reactions that occur during S-phase. Chl1 DNA helicase (homolog of human ChlR1/DDX11 and BACH1/BRIP1/FANCJ helicases implicated in Fanconi anemia, breast and ovarian cancer and Warsaw Breakage Syndrome) plays a critical role in sister chromatid cohesion, however, the mechanism through which Chl1 promotes cohesion remains poorly understood. Here, we report that Chl1 promotes Scc2 loading unto DNA such that both Scc2 and cohesin enrichment to chromatin are defective in chl1 mutant cells. The results further show that both Chl1 expression and chromatin-recruitment are tightly regulated through the cell cycle, peaking during S-phase. Importantly, kinetic ChIP studies reveals that Chl1 is required for Scc2 chromatin-association specifically during S-phase, but not during G1. Despite normal chromatin enrichment of both Scc2 and cohesin during G1, chl1 mutant cells exhibit severe chromosome segregation and cohesion defects--revealing that G1-loaded cohesins is insufficient to promote cohesion. Based on these findings, we propose a new model wherein S-phase cohesin loading occurs during DNA replication and in concert with both cohesion establishment and chromatin assembly reactions--challenging the notion that DNA replication fork navigates through or around pre-loaded cohesin rings.
Collapse
Affiliation(s)
- Soumya Rudra
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
31
|
Bolaños-Villegas P, Yang X, Wang HJ, Juan CT, Chuang MH, Makaroff CA, Jauh GY. Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:927-40. [PMID: 23750584 PMCID: PMC3824207 DOI: 10.1111/tpj.12261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 05/29/2013] [Indexed: 05/21/2023]
Abstract
The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis.
Collapse
Affiliation(s)
- Pablo Bolaños-Villegas
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia SinicaTaipei, 11529, Taiwan
| | - Xiaohui Yang
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, 45056, USA
| | - Huei-Jing Wang
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | - Chien-Ta Juan
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | - Min-Hsiang Chuang
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
| | | | - Guang-Yuh Jauh
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia SinicaTaipei, 11529, Taiwan
- Biotechnology Center, Graduate Institute of Biotechnology, National Chung-Hsing UniversityTaichung, 402, Taiwan
| |
Collapse
|
32
|
Singh DK, Andreuzza S, Panoli AP, Siddiqi I. AtCTF7 is required for establishment of sister chromatid cohesion and association of cohesin with chromatin during meiosis in Arabidopsis. BMC PLANT BIOLOGY 2013; 13:117. [PMID: 23941555 PMCID: PMC3751900 DOI: 10.1186/1471-2229-13-117] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/05/2013] [Indexed: 05/29/2023]
Abstract
BACKGROUND The establishment of sister chromatid cohesion followed by its controlled release at the metaphase to anaphase transition is necessary for faithful segregation of chromosomes in mitosis and meiosis. Cohesion is established by the action of Ctf7/Eco1 on the cohesin complex during DNA replication following loading of cohesin onto chromatin by the Scc2-Scc4 complex. Ctf7 is also required for sister chromatid cohesion during repair of DNA double strand breaks. Ctf7 contains an acetyltransferase domain and a zinc finger motif and acetylates conserved lysine residues in the Smc3 subunit of cohesin. In Arabidopsis CTF7 is encoded by a single gene and mutations in AtCTF7 cause embryo lethality indicating that the gene is essential. RESULTS To study the function of Ctf7 in plants and to determine its role in sister chromatid cohesion, we constructed a conditional allele of AtCTF7 in Arabidopsis using an inducible RNA interference (RNAi) strategy, so as to avoid the embryo lethality caused by mutations in AtCTF7. We found that induction of RNAi against AtCTF7 caused severe inhibition and defects in growth during vegetative and reproductive stages as well as sterility. AtCTF7-RNAi plants displayed chromosome fragmentation and loss of sister chromatid cohesion during meiosis. Immunostaining for the cohesion subunit AtSCC3 showed a marked reduction in association of cohesin with chromatin during meiosis in AtCTF7-RNAi plants. CONCLUSIONS We find that AtCTF7 is essential for sister chromatid cohesion during meiosis in Arabidopsis and is required for association of cohesin with chromatin in prophase of meiosis.
Collapse
Affiliation(s)
- Dipesh K Singh
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Sebastien Andreuzza
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Aneesh P Panoli
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| | - Imran Siddiqi
- Centre for Cellular & Molecular Biology (CSIR), Uppal Road, Hyderabad 500007, India
| |
Collapse
|
33
|
Kubota T, Myung K, Donaldson AD. Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 2013; 12:2570-9. [PMID: 23907118 PMCID: PMC3865047 DOI: 10.4161/cc.25626] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Maintaining genome stability is crucial for all cells. The budding yeast Elg1 protein, the major subunit of a replication factor C-like complex, is important for genome stability, since cells lacking Elg1 exhibit increased recombination and chromosomal rearrangements. This genome maintenance function of Elg1 seems to be conserved in higher eukaryotes, since removal of the human Elg1 homolog, encoded by the ATAD5 gene, also causes genome instability leading to tumorigenesis. The fundamental molecular function of the Elg1/ATAD5-replication factor C-like complex (RLC) was, until recently, elusive, although Elg1/ATAD5-RLC was known to interact with the replication sliding clamp PCNA. Two papers have now reported that following DNA replication, the Elg1/ATAD5-RLC is required to remove PCNA from chromatin in yeast and human cells. In this Review, we summarize the evidence that Elg1/ATAD5-RLC acts as a PCNA unloader and discuss the still enigmatic relationship between the function of Elg1/ATAD5-RLC in PCNA unloading and the role of Elg1/ATAD5 in maintaining genomic stability.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| | | | | |
Collapse
|
34
|
Borges V, Smith DJ, Whitehouse I, Uhlmann F. An Eco1-independent sister chromatid cohesion establishment pathway in S. cerevisiae. Chromosoma 2013; 122:121-34. [PMID: 23334284 PMCID: PMC3608886 DOI: 10.1007/s00412-013-0396-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 10/28/2022]
Abstract
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin's DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.
Collapse
Affiliation(s)
- Vanessa Borges
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY UK
| | - Duncan J. Smith
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY UK
| |
Collapse
|
35
|
Rudra S, Skibbens RV. Cohesin codes - interpreting chromatin architecture and the many facets of cohesin function. J Cell Sci 2013; 126:31-41. [PMID: 23516328 PMCID: PMC3603509 DOI: 10.1242/jcs.116566] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sister chromatid tethering is maintained by cohesin complexes that minimally contain Smc1, Smc3, Mcd1 and Scc3. During S-phase, chromatin-associated cohesins are modified by the Eco1/Ctf7 family of acetyltransferases. Eco1 proteins function during S phase in the context of replicated sister chromatids to convert chromatin-bound cohesins to a tethering-competent state, but also during G2 and M phases in response to double-stranded breaks to promote error-free DNA repair. Cohesins regulate transcription and are essential for ribosome biogenesis and complete chromosome condensation. Little is known, however, regarding the mechanisms through which cohesin functions are directed. Recent findings reveal that Eco1-mediated acetylation of different lysine residues in Smc3 during S phase promote either cohesion or condensation. Phosphorylation and SUMOylation additionally impact cohesin functions. Here, we posit the existence of a cohesin code, analogous to the histone code introduced over a decade ago, and speculate that there is a symphony of post-translational modifications that direct cohesins to function across a myriad of cellular processes. We also discuss evidence that outdate the notion that cohesion defects are singularly responsible for cohesion-mutant-cell inviability. We conclude by proposing that cohesion establishment is linked to chromatin formation.
Collapse
Affiliation(s)
| | - Robert V. Skibbens
- Department of Biological Sciences, 111 Research Drive, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
36
|
Abstract
The eukaryotic cell replicates its chromosomal DNA with almost absolute fidelity in the course of every cell cycle. This accomplishment is remarkable considering that the conditions for DNA replication are rarely ideal. The replication machinery encounters a variety of obstacles on the chromosome, including damaged template DNA. In addition, a number of chromosome regions are considered to be difficult to replicate owing to DNA secondary structures and DNA binding proteins required for various transactions on the chromosome. Under these conditions, replication forks stall or break, posing grave threats to genomic integrity. How does the cell combat such stressful conditions during DNA replication? The replication fork protection complex (FPC) may help answer this question. Recent studies have demonstrated that the FPC is required for the smooth passage of replication forks at difficult-to-replicate genomic regions and plays a critical role in coordinating multiple genome maintenance processes at the replication fork.
Collapse
Affiliation(s)
- Adam R. Leman
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology; Drexel University College of Medicine; Philadelphia, PA USA
| |
Collapse
|
37
|
Bharti SK, Banerjee T, Brosh RM. Setting the stage for cohesion establishment by the replication fork. Cell Cycle 2012; 11:2228-9. [PMID: 22677705 PMCID: PMC3383582 DOI: 10.4161/cc.20962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Comment on: Rudra S, et al. Cell Cycle 2012; 2114-21
Collapse
Affiliation(s)
- Sanjay Kumar Bharti
- Laboratory of Molecular Gerontology; National Institute on Aging; National Institutes of Health; NIH Biomedical Research Center; Baltimore, MD USA
| | - Taraswi Banerjee
- Laboratory of Molecular Gerontology; National Institute on Aging; National Institutes of Health; NIH Biomedical Research Center; Baltimore, MD USA
| | - Robert M. Brosh
- Laboratory of Molecular Gerontology; National Institute on Aging; National Institutes of Health; NIH Biomedical Research Center; Baltimore, MD USA
| |
Collapse
|