1
|
Cappelli E, Ravera S, Bertola N, Grilli F, Squillario M, Regis S, Degan P. Advanced Analysis and Validation of a microRNA Signature for Fanconi Anemia. Genes (Basel) 2024; 15:820. [PMID: 39062599 PMCID: PMC11276059 DOI: 10.3390/genes15070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Some years ago, we reported the generation of a Fanconi anemia (FA) microRNA signature. This study aims to develop an analytical strategy to select a smaller and more reliable set of molecules that could be tested for potential benefits for the FA phenotype, elucidate its biochemical and molecular mechanisms, address experimental activity, and evaluate its possible impact on FA therapy. In silico analyses of the data obtained in the original study were thoroughly processed and anenrichment analysis was employed to identify the classes of genes that are over-represented in the FA-miRNA population under study. Primary bone marrow mononuclear cells (MNCs) from sixFA patients and sixhealthy donors as control samples were employed in the study. RNAs containing the small RNA fractions were reverse-transcribed and real-time PCR was performed in triplicate using the specific primers. Experiments were performed in triplicate.The in-silico analysis reported six miRNAs as likely contributors to the complex pathological spectrum of FA. Among these, three miRNAs were validated by real-time PCR. Primary bone marrow mononuclear cells (MNCs) reported a significant reduction in the expression level of miRNA-1246 and miRNA-206 in the FA samples in comparison to controls.This study highlights several biochemical pathways as culprits in the phenotypic manifestations and the pathophysiological mechanisms acting in FA. A relatively low number of miRNAs appear involved in all these different phenotypes, demonstrating the extreme plasticity of the gene expression modulation. This study further highlights miR-206 as a pivotal player in regulatory functions and signaling in the bone marrow mesenchymal stem cell (BMSC) process in FA. Due to this evidence, the activity of miR-206 in FA deserves specific experimental scrutiny. The results, here presented, might be relevant in the management of FA.
Collapse
Affiliation(s)
- Enrico Cappelli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Via De Toni 14, 16132 Genova, Italy;
| | - Nadia Bertola
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, L. go R. Benzi 10, 16132 Genoa, Italy;
| | - Federica Grilli
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | | | - Stefano Regis
- Laboratory of Clinical and Experimental Immunology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16148 Genova, Italy;
| | - Paolo Degan
- Mutagenesi e Prevenzione Oncologica Unit—IRCCS Ospedale Policlinico San Martino, L. go R. Benzi 10, 16132 Genoa, Italy;
| |
Collapse
|
2
|
Della Bella E, Menzel U, Naros A, Kubosch EJ, Alini M, Stoddart MJ. Identification of circulating miRNAs as fracture-related biomarkers. PLoS One 2024; 19:e0303035. [PMID: 38820355 PMCID: PMC11142570 DOI: 10.1371/journal.pone.0303035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 04/16/2024] [Indexed: 06/02/2024] Open
Abstract
Fracture non-unions affect many patients worldwide, however, known risk factors alone do not predict individual risk. The identification of novel biomarkers is crucial for early diagnosis and timely patient treatment. This study focused on the identification of microRNA (miRNA) related to the process of fracture healing. Serum of fracture patients and healthy volunteers was screened by RNA sequencing to identify differentially expressed miRNA at various times after injury. The results were correlated to miRNA in the conditioned medium of human bone marrow mesenchymal stromal cells (BMSCs) during in vitro osteogenic differentiation. hsa-miR-1246, hsa-miR-335-5p, and miR-193a-5p were identified both in vitro and in fracture patients and their functional role in direct BMSC osteogenic differentiation was assessed. The results showed no influence of the downregulation of the three miRNAs during in vitro osteogenesis. However, miR-1246 may be involved in cell proliferation and recruitment of progenitor cells. Further studies should be performed to assess the role of these miRNA in other processes relevant to fracture healing.
Collapse
Affiliation(s)
| | - Ursula Menzel
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Andreas Naros
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Oral and Maxillofacial Surgery, Tübingen University Hospital, Tübingen, Germany
| | - Eva Johanna Kubosch
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Mauro Alini
- AO Research Institute Davos, Davos Platz, Switzerland
| | - Martin J. Stoddart
- AO Research Institute Davos, Davos Platz, Switzerland
- Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Córdoba-Lanús E, Domínguez de-Barros A, Oliva A, Mayato D, Gonzalvo F, Remírez-Sanz A, Zulueta JJ, Celli B, Casanova C. Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:12437. [PMID: 37569812 PMCID: PMC10418760 DOI: 10.3390/ijms241512437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer (LC) is the most common cause of cancer death, with 75% of cases being diagnosed in late stages. This study aimed to determine potential miRNAs as biomarkers for the early detection of LC in chronic obstructive pulmonary disease (COPD) cases. Ninety-nine patients were included, with registered clinical and lung function parameters followed for 6 years. miRNAs were determined in 16 serum samples from COPD patients (four with LC and four controls) by next generation sequencing (NGS) at LC diagnosis and 3 years before. The validation by qPCR was performed in 33 COPD-LC patients and 66 controls at the two time points. Over 170 miRNAs (≥10 TPM) were identified; among these, miR-224-5p, miR-206, miR-194-5p, and miR-1246 were significantly dysregulated (p < 0.001) in COPD-LC 3 years before LC diagnosis when compared to the controls. The validation showed that miR-1246 and miR-206 were differentially expressed in COPD patients who developed LC three years before (p = 0.035 and p = 0.028, respectively). The in silico enrichment analysis showed miR-1246 and miR-206 to be linked to gene mediators in various signaling pathways related to cancer. Our study demonstrated that miR-1246 and miR-206 have potential value as non-invasive biomarkers of early LC detection in COPD patients who could benefit from screening programs.
Collapse
Affiliation(s)
- Elizabeth Córdoba-Lanús
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angélica Domínguez de-Barros
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
| | - Alexis Oliva
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38296 San Cristóbal de La Laguna, Spain; (A.D.d.-B.); (A.O.)
- Department of Pharmaceutical Technology, Universidad de La Laguna, 38206 Santa Cruz de Tenerife, Spain
| | - Delia Mayato
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Francisca Gonzalvo
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
| | - Ana Remírez-Sanz
- CIMA, Centro de Investigación Médica Aplicada, Universidad de Navarra, 31008 Pamplona, Spain;
| | - Javier J. Zulueta
- Navarra Institute for Health Research (IdISNA), 31008 Pamplona, Spain;
- Pulmonary, Critical Care and Sleep Medicine Division, Mount Sinai Morningside Hospital, New York, NY 10029, USA
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Bartolomé Celli
- Pulmonary Critical Care Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ciro Casanova
- Department of Internal Medicine, Dermatology and Psychiatry, Universidad de La Laguna, 38071 San Cristóbal de La Laguna, Spain;
- Pulmonary Department-Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain; (D.M.); (F.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
4
|
Qi SS, Miao Y, Sheng YY, Hu RM, Zhao J, Yang QP. MicroRNA-1246 Inhibits NFATc1 Phosphorylation and Regulates T Helper 17 Cell Activation in the Pathogenesis of Severe Alopecia Areata. Ann Dermatol 2023; 35:46-55. [PMID: 36750458 PMCID: PMC9905862 DOI: 10.5021/ad.22.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 10/12/2022] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND We found microRNA (miR)-1246 to be significantly differentially expressed between severe active alopecia areata (AA) patients and healthy individuals. OBJECTIVE To explore the role and mechanism of miR-1246 in severe AA. METHODS Expression of miR-1246, dual-specific tyrosine phosphorylation-regulated kinase 1A (DYRK1A), and nuclear factor of activated T cells 1c (NFATc1) in peripheral CD4+ T cells and in scalp tissues of patients were detected using RT-qPCR, Western blot, and immunohistochemistry assays. Peripheral CD4+ T cells from the AA patients were transfected with lentiviral vectors overexpressing miR-1246. RT-qPCR and Western blot analysis were used to measure mRNA or protein expression of retinoic-acid-receptor-related orphan nuclear receptor gamma (ROR-γt), interleukin (IL)-17, DYRK1A, NFATc1, and phosphorylated NFATc1. Flow cytometry was used to assay the CD4+IL-17+ cells proportion. ELISA was used to measure cytokine levels. RESULTS miR-1246 levels decreased and DYRK1A and NFATc1 mRNA levels significantly increased in the peripheral CD4+ T cells and scalp tissues of severe active AA samples. NFATc1 protein expression was also significantly increased in the peripheral CD4+ T cells but not in the scalp tissues. NFATc1 positive cells were mainly distributed among infiltrating inflammatory cells around hair follicles. In peripheral CD4+ T cells of severe active AA, overexpression of miR-1246 resulted in significant downregulation of DYRK1A, NFATc1, ROR-γt, and IL-17 mRNA and phosphorylated NFATc1 protein, as well as a decrease in the CD4+IL-17+ cells proportion and the IL-17F level. CONCLUSION miR-1246 can inhibit NFAT signaling and Th17 cell activation, which may be beneficial in the severe AA treatment.
Collapse
Affiliation(s)
- Si-si Qi
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Miao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - You-yu Sheng
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui-ming Hu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jun Zhao
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qin-ping Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
6
|
Wu L, Zuo N, Pan S, Wang Y, Wang Q, Ma J. miR-1246 promotes laryngeal squamous cell carcinoma progression by interacting with THBS1. J Environ Pathol Toxicol Oncol 2022; 41:65-75. [DOI: 10.1615/jenvironpatholtoxicoloncol.2022040516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
He Y, Guan X, Du Y, Liu G, Li Y, Wei Z, Shi C, Yang J, Hou T. Screening of differentially expressed miRNAs during osteogenic/odontogenic differentiation of human dental pulp stem cells exposed to mechanical stress. Am J Transl Res 2021; 13:11126-11143. [PMID: 34786047 PMCID: PMC8581937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
MicroRNAs (miRNAs) have been demonstrated as crucial transcriptional regulators in proliferation, differentiation, and tumorigenesis. The comprehensive miRNA profiles of osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) under the condition of mechanical stress remains largely unknown. In this study, we aimed to discover the miRNA expression profiles of hDPSCs exposed to mechanical stress under the osteogenic/odontogenic process. We found that mechanical stress (0.09 MPa and 0.18 MPa, respectively, 30 min/day) significantly promoted the proliferation of hDPSCs since the fifth day. The expressions of DSPP, DMP1, and RUNX2 were significantly increased on day 7 in the presence of 0.09 MPa and 0.18 MPa mechanical stress. On day 14, the expression levels of DSPP, DMP1, and RUNX2 were decreased in the presence of mechanical stress. Among 2578 expressed miRNAs, 5 miRNAs were upregulated and 3 miRNAs were downregulated. Six hub target genes were merged in protein-protein interactions (PPI) network analysis, in which existed only one sub-network. Bioinformatics analysis identified an array of affected signaling pathways involved in the development of epithelial and endothelial cells, cell-cell junction assembly, Rap1 signaling pathway, regulation of actin cytoskeleton, and MAPK signaling pathway. Our results revealed the miRNA expression profiles of osteogenic/odontogenic differentiation of hDPSCs under mechanical stress and identified eight miRNAs that were differentially expressed in response to the mechanical stress. Bioinformatics analysis also showed that various signaling pathways were affected by mechanical stress.
Collapse
Affiliation(s)
- Yani He
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Xiaoyue Guan
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Yang Du
- Department of Stomatology, Taihe HospitalShiyan 442008, Hubei, P. R. China
| | - Guanzhi Liu
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Yingxue Li
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Zhichen Wei
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Chen Shi
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Jianmin Yang
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| | - Tiezhou Hou
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
- Department of Endodontics, Stomatological Hospital, College of Medicine, Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, P. R. China
| |
Collapse
|
8
|
Nguyen HD, Bisson M, Scott M, Boire G, Bouchard L, Roux S. miR profile in pagetic osteoclasts: from large-scale sequencing to gene expression study. J Mol Med (Berl) 2021; 99:1771-1781. [PMID: 34609560 DOI: 10.1007/s00109-021-02128-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Paget's disease of bone (PDB) is characterized by excessive and disorganized bone remodeling, in which bone-resorbing osteoclasts play a key role. We investigated microRNA (miR) expression in osteoclasts derived from the blood of 40 PDB patients and 30 healthy controls. By deep sequencing, a preliminary analysis identified differentially expressed miRs in a discovery cohort of 9 PDB patients and 9 age and sex-matched healthy controls. Six mature miRs, miR-29b1-3p, miR-15b-5p, miR-181a-5p, let-7i-3p, miR-500b-5p, and miR-1246, were found to be significantly decreased in pagetic overactive osteoclasts. The differential expression of the miRs was confirmed by the analysis of a larger independent cohort using qPCR. In an integrative network biology analysis of the miR candidates, we identified strong validated interactions between the miRs and some pathways, primarily apoptosis, and major osteoclast signaling pathways including PI3K/Akt, IFNγ, or TGFβ, as well as c-Fos, a transcription factor, and MMP-9, a metalloprotease. In addition, other genes like CCND2, CCND1, WEE1, SAMHD1, and AXIN2 were revealed in this network of interactions. Our results enhance the understanding of osteoclast biology in PDB; our work may also provide fresh perspectives on the research or therapeutic development of other bone diseases. KEY MESSAGES: miR profile in overactive osteoclasts from patients with Paget's disease of bone. Six mature miRs were significantly decreased in pagetic osteoclasts vs controls. miRs of interest: let7i-3p, miR-15b-5p, -29b1-3p, -181a-5p, -500b-5p, and -1246. Target genes and enriched pathways highlight the importance of apoptotic pathways.
Collapse
Affiliation(s)
- Hoang Dong Nguyen
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Martine Bisson
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Michelle Scott
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Gilles Boire
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada
| | - Luigi Bouchard
- Clinical Department of Laboratory Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Chicoutimi, PQ, Canada
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, PQ, Canada.
| |
Collapse
|
9
|
Pucelik B, Barzowska A, Dąbrowski JM, Czarna A. Diabetic Kinome Inhibitors-A New Opportunity for β-Cells Restoration. Int J Mol Sci 2021; 22:9083. [PMID: 34445786 PMCID: PMC8396662 DOI: 10.3390/ijms22169083] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
Diabetes, and several diseases related to diabetes, including cancer, cardiovascular diseases and neurological disorders, represent one of the major ongoing threats to human life, becoming a true pandemic of the 21st century. Current treatment strategies for diabetes mainly involve promoting β-cell differentiation, and one of the most widely studied targets for β-cell regeneration is DYRK1A kinase, a member of the DYRK family. DYRK1A has been characterized as a key regulator of cell growth, differentiation, and signal transduction in various organisms, while further roles and substrates are the subjects of extensive investigation. The targets of interest in this review are implicated in the regulation of β-cells through DYRK1A inhibition-through driving their transition from highly inefficient and death-prone populations into efficient and sufficient precursors of islet regeneration. Increasing evidence for the role of DYRK1A in diabetes progression and β-cell proliferation expands the potential for pharmaceutical applications of DYRK1A inhibitors. The variety of new compounds and binding modes, determined by crystal structure and in vitro studies, may lead to new strategies for diabetes treatment. This review provides recent insights into the initial self-activation of DYRK1A by tyrosine autophosphorylation. Moreover, the importance of developing novel DYRK1A inhibitors and their implications for the treatment of diabetes are thoroughly discussed. The evolving understanding of DYRK kinase structure and function and emerging high-throughput screening technologies have been described. As a final point of this work, we intend to promote the term "diabetic kinome" as part of scientific terminology to emphasize the role of the synergistic action of multiple kinases in governing the molecular processes that underlie this particular group of diseases.
Collapse
Affiliation(s)
- Barbara Pucelik
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Agata Barzowska
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| | - Janusz M. Dąbrowski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Anna Czarna
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland; (B.P.); (A.B.)
| |
Collapse
|
10
|
Yuan X, Zhang Y, Cai C, Liu C, Xie J, Yi C. Circular RNA circZNF652 is overexpressed in osteoarthritis and positively regulates LPS-induced apoptosis of chondrocytes by upregulating PTEN. Autoimmunity 2021; 54:415-421. [PMID: 34263675 DOI: 10.1080/08916934.2021.1951716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Circular RNA circZNF652 promotes LPS-induced inflammation, contributing to the development of osteoarthritis (OA), indicating the potential involvement of circZNF652 in OA. This study was carried to explore the involvement of circZNF652 in OA. RT-qPCR was performed to analyse the expression of circZNF652 and PTEN mRNA in synovial fluid samples from 60 OA patients and 60 healthy controls. Correlations between circZNF652 and PTEN mRNA were analysed by Pearson's correlation coefficient. Overexpression and siRNA silencing of circZNF652 were achieved in chondrocytes, followed by performing RT-qPCR and Western blot to analyse the expression of PTEN. The role of circZNF652 and PTEN in regulating the apoptosis of chondrocytes induced by LPS was analysed by cell apoptosis assay. We found that circZNF652 was overexpressed in OA and positively correlated with PTEN, MMP13, and NF-KB mRNA. In chondrocytes, circZNF652 overexpression increased the expression of PTEN, MMP13, and NF-KB; circZNF652 siRNA silencing decreased the expression of PTEN, MMP13, and NF-KB. Moreover, circZNF652 and PTEN positively regulated the apoptosis of chondrocytes induced by LPS. PTEN overexpression reversed the inhibitory effects of circZNF652 siRNA silencing on cell apoptosis. Therefore, circZNF652 is overexpressed in OA and positively regulates LPS-induced apoptosis of chondrocytes by upregulating PTEN.
Collapse
Affiliation(s)
- Xuefeng Yuan
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| | - Yingchi Zhang
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| | - Cong Cai
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| | - Chaoxu Liu
- Department of Orthopaedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| | - Jie Xie
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| | - Chengla Yi
- Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, Hubei Province, P. R. China
| |
Collapse
|
11
|
Zhang F, Ni ZJ, Ye L, Zhang YY, Thakur K, Cespedes-Acuña CL, Han J, Zhang JG, Wei ZJ. Asparanin A inhibits cell migration and invasion in human endometrial cancer via Ras/ERK/MAPK pathway. Food Chem Toxicol 2021; 150:112036. [PMID: 33561516 DOI: 10.1016/j.fct.2021.112036] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022]
Abstract
Asparanin A (AA), a natural compound present in vegetables and medicinal herbs like Asparagus officinalis L., has been investigated extensively for its pharmacological attributes. So far, the effect of AA on endometrial cancer (EC) cell migration and invasion has not been explored. Herein, we elucidated the anti-metastasis mechanism of AA on Ishikawa cells based on miRNA-seq and mRNA-seq integrated analyses. AA treatment led to altered miRNAs expression in Ishikawa cells and inhibited the cell wound healing, cell migration and invasion. Gene Ontology and KEGG enrichment analyses showed that the target genes of different expression miRNAs were significantly enriched in Ras, Rap1 and MAPK signaling pathways. Further verification of these changes via qRT-PCR and Western blot assays in vitro and in vivo demonstrated that AA could suppress human EC cell migration and invasion through Ras/ERK/MAPK pathway. Furthermore, top two miRNAs (miR-6236-p5 and miR-12136_R+8) and top three target genes (KITLG, PDGFD, and NRAS) were identified as functional hub miRNAs and genes through miRNA-target gene network analysis. Our data presented a holistic approach to comprehend the anti-metastatic role of AA in EC after in vitro and in vivo analyses.
Collapse
Affiliation(s)
- Fan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China; School of Environmental Science and Engineering, Anhui Normal University, Wuhu, 241002, People's Republic of China.
| | - Zhi-Jing Ni
- Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Lei Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | | | - Jinzhi Han
- College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, People's Republic of China.
| | - Jian-Guo Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China; Collaborative Innovation Center for Food Production and Safety, School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
12
|
Zhang F, Zhang YY, Ma RH, Thakur K, Han J, Hu F, Zhang JG, Wei ZJ. Multi-omics reveals the anticancer mechanism of asparagus saponin-asparanin A on endometrial cancer Ishikawa cells. Food Funct 2021; 12:614-632. [DOI: 10.1039/d0fo02265a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multi-omics reveals that AA not only induced apoptosis, but also triggered autophagy in Ishikawa cells through ER stress and DNA damage-related pathways.
Collapse
Affiliation(s)
- Fan Zhang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| | - Yuan-Yuan Zhang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
| | - Run-Hui Ma
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| | - Kiran Thakur
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| | - Jinzhi Han
- College of Biological Science and Technology
- Fuzhou University
- Fuzhou
- People's Republic of China
| | - Fei Hu
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| | - Jian-Guo Zhang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| | - Zhao-Jun Wei
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- People's Republic of China
- Collaborative Innovation Center for Food Production and Safety
| |
Collapse
|
13
|
Liu XC, Xu L, Cai YL, Zheng ZY, Dai EN, Sun S. MiR-1207-5p/CX3CR1 axis regulates the progression of osteoarthritis via the modulation of the activity of NF-κB pathway. Int J Rheum Dis 2020; 23:1057-1065. [PMID: 32597559 DOI: 10.1111/1756-185x.13898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/29/2020] [Accepted: 06/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Osteoarthritis (OA) is a prevalent chronic diseases characterized by formation of osteophytes and degradation of articular cartilage. Previous evidence has identified the regulatory effects of microRNAs (miRNAs) in OA. The goal of this study is to clearly explore the biological function of miR-1207-5p in OA. METHODS MiR-1207-5p and C-X3-C motif chemokine receptor 1 (CX3CR1) expression in OA cartilages were revealed by accessing to Gene Expression Omnibus database. In vitro OA model was established by lipopolysaccharide (LPS) stimulation. Western blot and quantitative real-time polymerase chain reaction were conducted to detect the expression level of genes. Cell counting kit-8 (CCK-8) and flow cytometric experiments were performed to investigate the proliferation and apoptosis capacities of CHON-001 cells. Bioinformatics analysis was applied to predict the binding site of miR-1207-5p and CX3CR1, the connections of which were ascertained using luciferase reporter assay. RESULTS MiR-1207-5p expression was decreased while CX3CR1 was increased in OA cartilages. Up-regulation of miR-1207-5p alleviated the LPS-induced damage in the view of cell proliferation, apoptosis and extracellular matrix (ECM) degradation. A target of miR-1207-5p CX3CR1, its down-regulation intensified the impacts of miR-1207-5p mimic, promoted proliferation and mitigated apoptosis. LPS exposure increased the protein expression of the phosphorylated IκBα and P65, and this phenomena was reversed due to miR-1207-5p up-regulation and CX3CR1 knockdown. The treatment of Betulinic acid (BA; an activator of nuclear factor-κB pathway) reversed the miR-1207-5p mimic-induced inhibitory effect on apoptosis in LPS-treated CHON-001. CONCLUSION Our results highlight that miR-1207-5p can prevent CHON-001 from LPS-stimulated injury, providing a novel biomarker for OA progression and further advancing treatment of OA.
Collapse
Affiliation(s)
- Xiao-Chen Liu
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liang Xu
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China.,Department of Orthopedics, Shandong Chest Hospital, Jinan, Shandong, China
| | - Yu-Li Cai
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhi-Yong Zheng
- Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - E-Nuo Dai
- Department of Orthopedic Surgery, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Hoshino I, Yokota H, Ishige F, Iwatate Y, Takeshita N, Nagase H, Uno T, Matsubara H. Radiogenomics predicts the expression of microRNA-1246 in the serum of esophageal cancer patients. Sci Rep 2020; 10:2532. [PMID: 32054931 PMCID: PMC7018689 DOI: 10.1038/s41598-020-59500-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Radiogenomics is a new field that provides clinically useful prognostic predictions by linking molecular characteristics such as the genetic aberrations of malignant tumors with medical images. The abnormal expression of serum microRNA-1246 (miR-1246) has been reported as a prognostic factor of esophageal squamous cell carcinoma (ESCC). To evaluate the power of the miR-1246 level predicted with radiogenomics techniques as a predictor of the prognosis of ESCC patients. The real miR-1246 expression (miR-1246real) was measured in 92 ESCC patients. Forty-five image features (IFs) were extracted from tumor regions on contrast-enhanced computed tomography. A prediction model for miR-1246real was constructed using linear regression with selected features identified in a correlation analysis of miR-1246real and each IF. A threshold to divide the patients into two groups was defined according to a receiver operating characteristic analysis for miR-1246real. Survival analyses were performed between two groups. Six IFs were correlated with miR-1246real and were included in the prediction model. The survival curves of high and low groups of miR-1246real and miR-1246pred showed significant differences (p = 0.001 and 0.016). Both miR-1246real and miR-1246pred were independent predictors of overall survival (p = 0.030 and 0.035). miR-1246pred produced by radiogenomics had similar power to miR-1246real for predicting the prognosis of ESCC.
Collapse
Affiliation(s)
- Isamu Hoshino
- Division of Gastroenterological Surgery, Chiba Cancer Center, Chiba, Japan.
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumitaka Ishige
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Yosuke Iwatate
- Department of Hepatobiliary and Pancreatic Surgery, Chiba Cancer Center, Chiba, Japan
| | - Nobuyoshi Takeshita
- Division of Surgical Technology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Hiroki Nagase
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
15
|
Qi K, Lin R, Xue C, Liu T, Wang Y, Zhang Y, Li J. Long Non-Coding RNA (LncRNA) CAIF is Downregulated in Osteoarthritis and Inhibits LPS-Induced Interleukin 6 (IL-6) Upregulation by Downregulation of MiR-1246. Med Sci Monit 2019; 25:8019-8024. [PMID: 31653823 PMCID: PMC6827483 DOI: 10.12659/msm.917135] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background Osteoarthritis (OA) affects about 40% of people older than 40 years of age, and the mechanism is not well understood. Long non-coding RNA (lncRNA) CAIF is a recently identified critical player in myocardial infarction, while its role in other human diseases is unclear. The present study aimed to investigate the role of CAIF in OA. Material/Methods Levels of CAIF in synovial fluid of OA patients (n=60) and healthy controls (n=60) were measuring by performing quantitative real-time polymerase chain reaction (qRT-PCR). MiR-1246 and interleukin (IL)-6 levels in synovial fluid were measured by performing qRT-PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Cell apoptosis analysis was performed after CHON-001 cells were treated with 500 mg/mL lipopolysaccharide (LPS) for 24 hours. Results We found that CAIF in synovial fluid was downregulated in OA patients and inversely correlated with miR-1246 and IL-6. Downregulated CAIF distinguished OA patients from healthy controls. In cells of chondrogenic cell line CHON-001, CAIF overexpression mediated the inhibited expression of miR-1246 and secretion of IL-6, while miR-1246 overexpression reduced the effects of CAIF overexpression on IL-6 secretion. In addition, CAIF overexpression inhibited the apoptosis of CHON-001 cells under LPS treatment, while miR-1246 overexpression attenuated the effects of CAIF overexpression. Conclusions Therefore, CAIF may downregulate miR-1246 to improve OA.
Collapse
Affiliation(s)
- Ke Qi
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Rongqiang Lin
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Chenchen Xue
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Tianze Liu
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Yiming Wang
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Yongjin Zhang
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| | - Jia Li
- Department of Joint Surgery, Changhai Hospital, Shanghai, China (mainland)
| |
Collapse
|
16
|
Chai M, Su L, Hao X, Zhang M, Zheng L, Bi J, Han X, Gao C. Identification of a thymus microRNA‑mRNA regulatory network in Down syndrome. Mol Med Rep 2019; 20:2063-2072. [PMID: 31257513 PMCID: PMC6691205 DOI: 10.3892/mmr.2019.10433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
The present bioinformatics analysis was performed using a multi‑step approach to identify a microRNA (miR)‑mRNA regulatory network in Down syndrome. miR (GSE69210) and mRNA (GSE70573) data was downloaded and collected from the thymic tissues of both Down syndrome and karyotypically normal subjects and placed in a public repository. Then, weighted gene co‑expression network analysis (WGCNA) was performed to screen for miRs and mRNAs associated with Down syndrome. Subsequently, differentially expressed miRs (DEmiRs) and mRNAs/differentially expressed genes (DEGs) were identified following screening and mapping to RNA data. Bidirectional hierarchical clustering analysis was then performed to distinguish DEmiRs and DEGs between Down syndrome samples and normal control samples. DEmiR targets were retrieved using the miRanda database and mapped to the mRNA module screen by WGCNA. A gene co‑expression network was constructed and subjected to functional enrichment analysis. During WGCNA, a total of 6 miR modules and 20 mRNA modules associated with Down syndrome were identified. Following mapping of these miRs and mRNAs to the miR and mRNA modules screened using WGNCA, a total of 12 DEmiRs and 237 DEGs were collected. Following comparison with DEmiR targets retrieved from the miRanda database, a total of 255 DEmiR‑DEG pairs, including 6 DEmiRs and 106 DEGs were obtained. At expression correlation coefficient >0.9, a total of 231 gene pairs were selected. These gene pairs were enriched in response to stress and response to stimuli following functional annotation and module division. An integrated analysis of miR and mRNA expression in the thymus in Down syndrome is reported in the present study. miR‑30c, miR‑145, miR‑183 and their targets may serve important roles in the pathogenesis and development of complications in Down syndrome. However, further experimental studies are required to verify these results.
Collapse
Affiliation(s)
- Miao Chai
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Liju Su
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiaolei Hao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Meng Zhang
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Lihui Zheng
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Jiabing Bi
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xiao Han
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Chunbo Gao
- Department of Clinical Laboratory, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
17
|
Du P, Lai YH, Yao DS, Chen JY, Ding N. Downregulation of microRNA-1246 inhibits tumor growth and promotes apoptosis of cervical cancer cells by targeting thrombospondin-2. Oncol Lett 2019; 18:2491-2499. [PMID: 31404330 PMCID: PMC6676746 DOI: 10.3892/ol.2019.10571] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 05/29/2019] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer pathogenesis is regulated by numerous factors, including microRNAs. MicroRNA 1246 (miR-1246) has been shown to serve a role in cervical cancer tumorigenesis. However, the mechanisms through which miR-1246 exerts its oncogenic effects are largely unknown. The aim of the current study was to evaluate the effects of lentivirus-mediated miR-1246 knockdown on the biological characteristics and behavior of cervical cancer cells, and to identify the downstream signaling pathways affected by miR-1246 knockdown. Short hairpins inhibiting miR-1246 were synthesized and cloned into a recombinant lentiviral vector (LV-miR-1246-Inh), which was then used to infect SiHa cervical cancer cells. The effects of LV-miR-1246-Inh infection on cell invasion, proliferation and apoptosis were evaluated by Transwell assay, Cell Counting Kit-8 assay and flow cytometry, respectively. Thrombospondin-2 (THBS2), matrix metalloproteinase 2 (MMP2), MMP9 and extracellular matrix (ECM) component expression levels were evaluated, and the growth of xenograft tumors formed following injection of SiHa cells with knockdown of miR-1246 was assessed. miR-1246 downregulation in SiHa cells decreased proliferation, induced apoptosis and upregulated THBS2 expression. Furthermore, MMP2 and MMP9 levels were downregulated, whereas components of the ECM were upregulated subsequent to miR-1246 knockdown, indicating that this miRNA regulates cervical cancer cell pathogenesis via the THBS2/MMP/ECM pathway. Notably, SiHa cells with miR-1246 downregulation had a markedly decreased ability to form tumors in vivo. These results suggest that miR-1246 functions during cervical cancer pathogenesis and tumor formation via the THBS2/MMP/ECM signaling pathway. These findings support the future use of miR-1246 suppression in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ping Du
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Gynecology, Guangxi Minzu Hospital Affiliated to Guangxi Medical University, Nanning, Guangxi 530001, P.R. China
| | - Yue-Hua Lai
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - De-Sheng Yao
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun-Ying Chen
- Department of Gynecology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530022, P.R. China
| | - Nan Ding
- Department of Gynecological Oncology, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
18
|
p73-Governed miRNA Networks: Translating Bioinformatics Approaches to Therapeutic Solutions for Cancer Metastasis. Methods Mol Biol 2019; 1912:33-52. [PMID: 30635889 DOI: 10.1007/978-1-4939-8982-9_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The transcription factor p73 synthesizes a large number of isoforms and presents high structural and functional homology with p53, a well-known tumor suppressor and a famous "Holy Grail" of anticancer targeting. p73 has attracted increasing attention mainly because (a) unlike p53, p73 is rarely mutated in cancer, (b) some p73 isoforms can inhibit all hallmarks of cancer, and (c) it has the ability to mimic oncosuppressive functions of p53, even in p53-mutated cells. These attributes render p73 and its downstream pathways appealing for therapeutic targeting, especially in mutant p53-driven cancers. p73 functions are, at least partly, mediated by microRNAs (miRNAs), which constitute nodal components of p73-governed networks. p73 not only regulates transcription of crucial miRNA genes, but is also predicted to affect miRNA populations in a transcription-independent manner by developing protein-protein interactions with components of the miRNA processing machinery. This combined effect of p73, both in miRNA transcription and maturation, appears to be isoform-dependent and can result in a systemic switch of cell miRNomes toward either an anti-oncogenic or oncogenic outcome. In this review, we combine literature search with bioinformatics approaches to reconstruct the p73-governed miRNA network and discuss how these crosstalks may be exploited to develop next-generation therapeutics.
Collapse
|
19
|
Xie C, Huang T, Teng Z, Xu S, Bu J, Li M, Zhang Y, Zhang J. A meta-analysis of the diagnostic value of microRNA-1246 for malignant tumors. Medicine (Baltimore) 2019; 98:e15848. [PMID: 31145333 PMCID: PMC6708943 DOI: 10.1097/md.0000000000015848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer morbidity and mortality are growing rapidly worldwide. There have been an increasing number of studies on the correlation between miRNA1246 expression in circulating blood and tumors; however, no comprehensive conclusion has been reached. Therefore, this meta-analysis was carried out to systematically evaluate the diagnostic value of blood levels of microRNA-1246 for malignant tumors. METHODS We searched PubMed, MEDLINE, Embase, The Cochrane Library, the China National Knowledge Internet (CNKI), and Wanfang databases from the inception of each database until November 2018. The quality of the included literature was evaluated using the quality assessment tool called Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). The data were pooled using Stata14 and Meta-DiSc 1.4 software. RESULTS Seven studies were included. The pooled sensitivity (SENS) was 0.80 (95% CI 0.65-0.89), the pooled specificity (SPEC) was 0.77 (95% CI 0.70-0.83), the pooled positive likelihood ratio (PLR) was 3.55 (95% CI 2.53-4.99), the pooled negative likelihood ratio (NLR) was 0.26 (95% CI 0.16-0.47), the pooled diagnostic odds ratio (DOR) was 13.78 (95% CI 5.84-32.5), and the area under the curve (AUC) was 0.83 (95% CI 0.79-0.86). The result of Deeks' funnel plot was P = 0.31, indicating a lack of publication bias. CONCLUSION MicroRNA-1246 in the blood can be used as a good indicator for the diagnosis of malignant tumor diseases and has a moderate diagnostic accuracy for the differentiation of patients with malignant tumors from healthy people.
Collapse
Affiliation(s)
- Chunlin Xie
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| | - Tao Huang
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| | - Zhaowei Teng
- Department of Orthopaedics, The 6th Affiliated Hospital of Kunming Medical University, Yuxi
| | - Shuanglan Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, Yunnan, PR China
| | - Junhui Bu
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| | - Mengzhou Li
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| | - Yibing Zhang
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| | - Jing Zhang
- Department of Thoracic Surgery, The 1st Affiliated Hospital of Kunming Medical University, Kunming
| |
Collapse
|
20
|
Sheng Y, Qi S, Hu R, Zhao J, Rui W, Miao Y, Ma J, Yang Q. Identification of blood microRNA alterations in patients with severe active alopecia areata. J Cell Biochem 2019; 120:14421-14430. [PMID: 30983035 DOI: 10.1002/jcb.28700] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Youyu Sheng
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Sisi Qi
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Ruiming Hu
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Jun Zhao
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Wenlong Rui
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Ying Miao
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Jingwen Ma
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| | - Qinping Yang
- Department of Dermatology Huashan Hospital Fudan University Shanghai China
| |
Collapse
|
21
|
Wei C, Li Y, Huang K, Li G, He M. Exosomal miR-1246 in body fluids is a potential biomarker for gastrointestinal cancer. Biomark Med 2018; 12:1185-1196. [PMID: 30235938 DOI: 10.2217/bmm-2017-0440] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
AIM The aim was to systematically evaluate whether exosomal miRNAs could be regarded as potential minimally invasive biomarkers of diagnosis for gastrointestinal cancer. METHODS A systematic review and meta analysis of exosomal miRNA expression in gastrointestinal cancer were performed. RESULTS A total of 370 articles were retrieved from PubMed and EMBASE. The summary receiver operating characteristic curves of three miRNAs (miR-21, miR-1246 and miR-4644) were drawn, miR-21, miR-1246 and miR-4644 exhibited sensitivities of 0.66, 0.920 and 0.750, respectively; specificities were 0.87, 0.958 and 0.769, respectively; and areas under the curve for discriminating gastrointestinal cancer patients from control subjects were 0.876, 0.969 and 0.827, respectively. CONCLUSION Exosome miR-1246 had the highest level of diagnostic efficiency, which indicated that miR-1246 could be a biomarker.
Collapse
Affiliation(s)
- Chunmeng Wei
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Yasi Li
- College of Arts & Sciences, Stony Brook University, NY 11790, USA
| | - Kaiming Huang
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China
| | - Min He
- School of Public Health, Guangxi Medical University, Nanning 530021, PR China.,Key Laboratory of High-Incidence Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, PR China
| |
Collapse
|
22
|
Lin SS, Peng CY, Liao YW, Chou MY, Hsieh PL, Yu CC. miR-1246 Targets CCNG2 to Enhance Cancer Stemness and Chemoresistance in Oral Carcinomas. Cancers (Basel) 2018; 10:cancers10080272. [PMID: 30115848 PMCID: PMC6115994 DOI: 10.3390/cancers10080272] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
MiRNAs have been recognized as crucial components in carcinogenesis, but whether miR-1246 affects the cancer stemness and drug resistance in oral squamous cell carcinoma (OSCC) has not been fully understood and its downstream targets still need to be unraveled. In the present work, we employed miRNAs RT-PCR analysis to evaluate the expression of miR-1246 in tumor tissues and oral cancer stem cells (OCSC). Stemness phenotypes, including self-renewal, migration, invasion, colony formation capacities, and in vivo oncogenicity of oral cancer cells following transfected with miR-1246 inhibitors or mimics were examined. Our results suggested that the expression level of miR-1246 was significantly upregulated in the tumor tissues and OCSC. Kaplan-Meier survival analysis of OSCC patients with high levels of miR-1246 had the worst survival rate compared to their low-expression counterparts. Inhibition of miR-1246 in OCSC significantly reduced the stemness hallmarks, while overexpression of miR-1246 enhanced these characteristics. Moreover, we showed that downregulation of miR-1246 decreased chemoresistance. In addition, we verified that miR-1246-inhibited CCNG2 contributed to the cancer stemness of OSCC. These results demonstrated the significance of miR-1246 in the regulation of OSCC stemness. Targeting miR-1246-CCNG2 axis may be beneficial to suppress cancer relapse and metastasis in OSCC patients.
Collapse
Affiliation(s)
- Shih-Shen Lin
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Chih-Yu Peng
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
| | - Yi-Wen Liao
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Ming-Yung Chou
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| | - Pei-Ling Hsieh
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung 40201, Taiwan.
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung 40201, Taiwan.
- Institute of Oral Sciences, Chung Shan Medical University, Taichung 40201, Taiwan.
| |
Collapse
|
23
|
Bone remodeling induced by mechanical forces is regulated by miRNAs. Biosci Rep 2018; 38:BSR20180448. [PMID: 29844019 PMCID: PMC6028748 DOI: 10.1042/bsr20180448] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/25/2018] [Indexed: 12/14/2022] Open
Abstract
The relationship between mechanical force and alveolar bone remodeling is an important issue in orthodontics because tooth movement is dependent on the response of bone tissue to the mechanical force induced by the appliances used. Mechanical cyclical stretch (MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the cell differentiation and proliferation involved in bone remodeling. However, the underlying mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs (ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miRNAs act as post-transcriptional regulators that inhibit the expression of their target genes. miRNAs are considered key regulators of many biologic processes including bone remodeling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.
Collapse
|
24
|
Zou Y, Yao S, Chen X, Liu D, Wang J, Yuan X, Rao J, Xiong H, Yu S, Yuan X, Zhu F, Hu G, Wang Y, Xiong H. LncRNA OIP5-AS1 regulates radioresistance by targeting DYRK1A through miR-369-3p in colorectal cancer cells. Eur J Cell Biol 2018; 97:369-378. [PMID: 29773344 DOI: 10.1016/j.ejcb.2018.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/30/2018] [Accepted: 04/10/2018] [Indexed: 01/12/2023] Open
Abstract
OBJECT This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells. METHODS Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A's effect on radioresistance of CRC cells. RESULTS LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells. CONCLUSION LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.
Collapse
Affiliation(s)
- Yanmei Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shuo Yao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xiuqiong Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jianhua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Jie Rao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Shiying Yu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Feng Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological, Shanghai, 200031, China
| | - Yihua Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO171BJ, UK
| | - Hua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China.
| |
Collapse
|
25
|
Soto M, Raaijmakers JA, Bakker B, Spierings DCJ, Lansdorp PM, Foijer F, Medema RH. p53 Prohibits Propagation of Chromosome Segregation Errors that Produce Structural Aneuploidies. Cell Rep 2018. [PMID: 28636931 DOI: 10.1016/j.celrep.2017.05.055] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The presence of an abnormal karyotype has been shown to be profoundly detrimental at the cellular and organismal levels but is an overt hallmark of cancer. Aneuploidy can lead to p53 activation and thereby prevents proliferation, but the exact trigger for p53 activation has remained controversial. Here, we have used a system to induce aneuploidy in untransformed human cells to explore how cells deal with different segregation errors. We show that p53 is activated only in a subset of the cells with altered chromosome content. Importantly, we find that at least a subset of whole-chromosome aneuploidies can be propagated in p53-proficient cells, indicating that aneuploidy does not always lead to activation of p53. Finally, we demonstrate that propagation of structural aneuploidies (gain or loss of part of a chromosome) induced by segregation errors is limited to p53-deficient cells.
Collapse
Affiliation(s)
- Mar Soto
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jonne A Raaijmakers
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Peter M Lansdorp
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - René H Medema
- Department of Cell Biology and Cancer Genomics Center, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Cheng JH, Wang CJ, Su SH, Huang CY, Hsu SL. Next-generation sequencing identifies articular cartilage and subchondral bone miRNAs after ESWT on early osteoarthritis knee. Oncotarget 2018; 7:84398-84407. [PMID: 27542282 PMCID: PMC5356668 DOI: 10.18632/oncotarget.11331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Extracorporeal shockwave therapy (ESWT) has shown chondroprotective effects on the initiation of the osteoarthritis (OA) changes of the rat knee. This study evaluated 69 significant expressed profiles of microRNA (miRNA) in the articular cartilage and subchondral bone after ESWT. There were 118 target genes identified for miRNAs of interest in articular cartilage and 214 target genes in subchondral bone by next generation sequencing (NGS). In principal component analysis (PCA), the relationships of miRNA expression in bone and cartilage were improved after ESWT. Global functional annotation showed that predicted targets were involved in cartilage development, inflammatory and immune response, ion binding, angiogenesis, cell adhesion, cell cycle, transcription and translation, gene expression, NTP binding, signal transduction, collagen fibril organization, apoptotic process, chondrocyte differentiation, cell differentiation, bone development as well as cell proliferation. The miRNAs profile and the target genes were comprehensively surveyed and compared in articular cartilage and subchondral bone of early OA knee before and after ESWT. Our study represents the direct assessment to date of miRNA expression profiling in early OA articular cartilage and subchondral bone. The results provide insights that could contribute to the development of new biomarkers and therapeutic strategies for OA changes and the treatment with ESWT.
Collapse
Affiliation(s)
- Jai-Hong Cheng
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Jen Wang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shi-Hao Su
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chien-Yiu Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shan-Ling Hsu
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
27
|
Lou W, Liu J, Gao Y, Zhong G, Chen D, Shen J, Bao C, Xu L, Pan J, Cheng J, Ding B, Fan W. MicroRNAs in cancer metastasis and angiogenesis. Oncotarget 2017; 8:115787-115802. [PMID: 29383201 PMCID: PMC5777813 DOI: 10.18632/oncotarget.23115] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022] Open
Abstract
Cancer metastasis is a malignant process by which tumor cells migrate from their primary site of origin to other organs. It is the main cause of poor prognosis in cancer patients. Angiogenesis is the process of generating new blood capillaries from pre-existing vasculature. It plays a vital role in primary tumor growth and distant metastasis. MicroRNAs are small non-coding RNAs involved in regulating normal physiological processes as well as cancer pathogenesis. They suppress gene expression by specifically binding to the 3′-untranslated region (3′-UTR) of their target genes. They can thus act as oncogenes or tumor suppressors depending on the function of their target genes. MicroRNAs have shown great promise for use in anti-metastatic cancer therapy. In this article, we review the roles of various miRNAs in cancer angiogenesis and metastasis and highlight their potential for use in future therapies against metastatic cancer.
Collapse
Affiliation(s)
- Weiyang Lou
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jingxing Liu
- Department of Intensive Care Unit, Changxing People's Hospital of Zhejiang, Zhejiang Province, Huzhou 313100, China
| | - Yanjia Gao
- Department of Anesthesiology, International Hospital of Zhejiang University, Shulan (Hangzhou) Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Guansheng Zhong
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Danni Chen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Jiaying Shen
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Chang Bao
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Liang Xu
- Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Zhejiang Province, Hangzhou 310003, China
| | - Jie Pan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Junchi Cheng
- Department of Chemotherapy, Zhejiang Cancer Hospital, Zhejiang Province, Hangzhou 310003, China
| | - Bisha Ding
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China
| | - Weimin Fan
- Program of Innovative Cancer Therapeutics, Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou 310003, China.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
28
|
Worst TS, Daskalova K, Steidler A, Berner-Leischner K, Röth R, Niesler B, Kriegmair MC, Erben P, Pfalzgraf D. Impact of Altered WNT2B Expression on Bladder Wall Fibroblasts: Implications for Apoptosis Regulation in the Stroma of the Lower Urinary Tract. Urol Int 2017; 99:476-483. [PMID: 29131138 DOI: 10.1159/000481440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND Little is known about the role of WNT signalling in pathological processes involving the urinary tract stroma. Here the impact of WNT signalling on bladder wall fibroblasts (BWFs) was studied using integrated expression profiling. MATERIAL AND METHODS WNT ligand and downstream WNT pathway component expression was profiled in human BWFs using qRT-PCR. Highly expressed WNT2B was knocked down using siRNA in BWFs. The expression of 730 mRNAs and 800 miRNAs was analyzed on the nCounter MAX platform in #WNT2B and control transfected BWFs. qRT-PCR was used for validation in vitro and in matched scar and healthy bladder wall tissue samples of 12 patients with vesico-urethral anastomotic stricture (VUAS). RESULTS Thirteen genes and 9 miRNAs showed differential expression in #WNT2B cells. Among these were TNFSF10, a key apoptosis inductor, (0.22fold, p = 0.011) and miR-1246 (36.2fold, p = 0.031). miRNA target prediction indicated TNFSF10 to be regulated by miR-1246. qRT-PCR analysis confirmed differential expression of miR-1246 and TNFSF10 in #WNT2B BWFs. Furthermore, TNFSF10 was significantly underexpressed in VUAS tissue (p = 0.009). CONCLUSION Perturbation of WNT signalling results in an altered expression of the apoptosis inductor TNFSF10. Similar changes are observed in VUAS. Further studies investigating the crosslink between WNT signalling and apoptosis regulation in the urinary tract stroma are warranted.
Collapse
Affiliation(s)
- Thomas Stefan Worst
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Daskalova
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Annette Steidler
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Karin Berner-Leischner
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ralph Röth
- nCounter Core Facility, Institute for Human Genetics, University of Heidelberg, Mannheim, Germany
| | - Beate Niesler
- nCounter Core Facility, Institute for Human Genetics, University of Heidelberg, Mannheim, Germany
| | - Maximilian C Kriegmair
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Philipp Erben
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Daniel Pfalzgraf
- Department of Urology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
29
|
Cha SY, Choi YH, Hwang S, Jeong JY, An HJ. Clinical Impact of microRNAs Associated With Cancer Stem Cells as a Prognostic Factor in Ovarian Carcinoma. J Cancer 2017; 8:3538-3547. [PMID: 29151939 PMCID: PMC5687169 DOI: 10.7150/jca.20348] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background: Ovarian carcinoma is a highly lethal gynecological malignancy due to its frequent relapses and adoption of chemoresistance. To develop new biomarkers for disease progression in ovarian carcinoma, CSCs, which are considered to contribute to disease relapse and metastasis, were isolated from human ovarian carcinoma tissues, and differentially expressed microRNAs (miRNAs) in CSCs were identified and assessed the clinical implication of expression of these miRNAs. Methods: Primary cancer cells derived from human ovarian carcinomas were cultured and spheroid-forming cells (SFCs) were isolated. Profiles of miRNA expression in CSC-like SFCs were identified by miRNA microarray and the results were validated by quantitative real-time RT-PCR (qRT-PCR). We also assessed the correlations between miRNA expression levels and clinicopathological parameters in ovarian carcinomas. Results: Five miRNAs (miR-5703, miR-630, miR-1246, miR-424-5p, and miR-320b) were significantly dysregulated in CSC-like SFCs compared with primary cancer cells. The qRT-PCR showed that miR-5703 and miR-1246 expression was significantly higher in ovarian cancer cells than in normal control cells, whereas the miR-424-5p level was significantly lower. Decreased expression of miR-424-5p was significantly associated with distant metastasis in high stage (stage IIII & IV) carcinomas (35.5% vs. 72.2%, respectively, p=0.013) Conclusion: Taken together, miR-5703, miR-630, miR-1246, miR-424-5p, and miR-320b are useful markers for enriching ovarian CSCs. Decreased expression of miR-424-5p in ovarian carcinoma might be a putative biomarker for distant metastasis in ovarian carcinoma.
Collapse
Affiliation(s)
- So Youn Cha
- Department of Pathology, CHA University, Sungnam, Republic of Korea
| | - Yeon Ho Choi
- Institute for Clinical Research, CHA University, Sungnam, Republic of Korea
| | - Sohyun Hwang
- Department of Biomedical Science, CHA University, Sungnam, Republic of Korea
| | - Ju-Yeon Jeong
- Institute for Clinical Research, CHA University, Sungnam, Republic of Korea
| | - Hee Jung An
- Department of Pathology, CHA University, Sungnam, Republic of Korea.,Institute for Clinical Research, CHA University, Sungnam, Republic of Korea
| |
Collapse
|
30
|
Reza AMMT, Choi YJ, Yuan YG, Das J, Yasuda H, Kim JH. MicroRNA-7641 is a regulator of ribosomal proteins and a promising targeting factor to improve the efficacy of cancer therapy. Sci Rep 2017; 7:8365. [PMID: 28827731 PMCID: PMC5566380 DOI: 10.1038/s41598-017-08737-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/14/2017] [Indexed: 12/16/2022] Open
Abstract
Many diseases, including myocardial infarction, autoimmune disease, viral diseases, neurodegenerative diseases, and cancers, are frequently diagnosed with aberrant expression of microRNAs (miRNAs) and their allied pathways. This indicates the crucial role of miRNAs in maintaining biological and physiological processes. miR-7641 is a miRNA whose role in disease has not been fully investigated. In the present study, we investigated the expression pattern of miR-7641 and its target genes in different cancer cells, as well as in clinical cancer patients. Our data confirmed RPS16 and TNFSF10 as two direct targets of miR-7641, while gene expression study showed that a group of genes are also deregulated by miR-7641, including many ribosomal proteins that are frequently co-expressed with RPS16 in breast cancer. Direct inhibition of miR-7641 using a locked nucleic acid upregulated the expression of its target genes, sensitized cancer cells, and enhanced the efficiency of therapeutic agents such as doxorubicin. In addition, inhibition of miR-7641 boosted doxorubicin-mediated apoptosis of cancer cells via upregulation of apoptotic molecules Caspase 9 (CAS9) and poly ADP ribose polymerase (PARP) and downregulation of anti-apoptotic molecule BCL2. Thus, miR-7641 might be a clinically important cancer biomarker. Inhibition of miR-7641 expression could be an efficient treatment strategy for clinical patients.
Collapse
Affiliation(s)
- Abu Musa Md Talimur Reza
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Yu-Guo Yuan
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Joydeep Das
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Hideyo Yasuda
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Humanized Pig Research Centre (SRC), Konkuk University, Seoul, 143-701, Republic of Korea.
| |
Collapse
|
31
|
Mikhailov VF, Shulenina LV, Vasilyeva IM, Startsev MI, Zasukhina GD. The miRNA as human cell gene activity regulator after ionizing radiation. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
MicroRNA profiling of low-grade glial and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod Pathol 2017; 30:204-216. [PMID: 27739438 PMCID: PMC5288128 DOI: 10.1038/modpathol.2016.177] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 12/19/2022]
Abstract
Low-grade (WHO I-II) gliomas and glioneuronal tumors represent the most frequent primary tumors of the central nervous system in children. They often have a good prognosis following total resection, however they can create many neurological complications due to mass effect, and may be difficult to resect depending on anatomic location. MicroRNAs have been identified as molecular regulators of protein expression/translation that can repress multiple mRNAs concurrently through base pairing, and have an important role in cancer, including brain tumors. Using the NanoString digital counting system, we analyzed the expression levels of 800 microRNAs in nine low-grade glial and glioneuronal tumor types (n=45). A set of 61 of these microRNAs were differentially expressed in tumors compared with the brain, and several showed levels varying by tumor type. The expression differences were more accentuated in subependymal giant cell astrocytoma, compared with other groups, and demonstrated the highest degree of microRNA repression validated by RT-PCR, including miR-129-2-3p, miR-219-5p, miR-338-3p, miR-487b, miR-885-5p, and miR-323a-3p. Conversely, miR-4488 and miR-1246 were overexpressed in dysembryoplastic neuroepithelial tumors compared with the brain and other tumors. The cluster 14q32.31 member miR-487b was variably under-expressed in pediatric glioma lines compared with human neural stem cells. Overexpression of miR-487b in a pediatric glioma cell line (KNS42) using lentiviral vectors led to a decrease in colony formation in soft agar (30%) (P<0.05), and decreased expression of known predicted targets PROM1 and Nestin (but not WNT5A). miR-487b overexpression had no significant effect on cell growth, proliferation, sensitivity to temozolomide, migration, or invasion. In summary, microRNA regulation appears to have a role in the biology of glial and glioneuronal tumor subtypes, a finding that deserves further investigation.
Collapse
|
33
|
Lin H, Sui W, Li W, Tan Q, Chen J, Lin X, Guo H, Ou M, Xue W, Zhang R, Dai Y. Integrated microRNA and protein expression analysis reveals novel microRNA regulation of targets in fetal down syndrome. Mol Med Rep 2016; 14:4109-4118. [PMID: 27666924 PMCID: PMC5101898 DOI: 10.3892/mmr.2016.5775] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/09/2016] [Indexed: 01/01/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 and is associated with a number of deleterious phenotypes. To investigate the role of microRNA (miRNA) in the regulation of DS, high‑throughput Illumina sequencing technology and isobaric tagging for relative and absolute protein quantification analysis were utilized for simultaneous expression profiling of miRNA and protein in fetuses with DS and normal fetuses. A total of 344 miRNAs were associated with DS. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were used to investigate the proteins found to be differentially expressed. Functionally important miRNAs were determined by identifying enriched or depleted targets in the transcript and the protein expression levels were consistent with miRNA regulation. The results indicated that GRB2, TMSB10, RUVBL2, the hsa‑miR‑329 and hsa‑miR‑27b, hsa‑miR‑27a targets, and MAPK1, PTPN11, ACTA2 and PTK2 or other differentially expressed proteins were connected with each other directly or indirectly. Integrative analysis of miRNAs and proteins provided an expansive view of the molecular signaling pathways in DS.
Collapse
Affiliation(s)
- Hua Lin
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Weiguo Sui
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wuxian Li
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Qiupei Tan
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Jiejing Chen
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Xiuhua Lin
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Hui Guo
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| | - Minglin Ou
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Wen Xue
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Ruohan Zhang
- Nephrology Department of the 181st Hospital, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin, Guangxi 541002, P.R. China
| | - Yong Dai
- The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
34
|
Kay LJ, Smulders-Srinivasan TK, Soundararajan M. Understanding the Multifaceted Role of Human Down Syndrome Kinase DYRK1A. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 105:127-71. [PMID: 27567487 DOI: 10.1016/bs.apcsb.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The dual-specificity tyrosine (Y) phosphorylation-regulated kinase DYRK1A, also known as Down syndrome (DS) kinase, is a dosage-dependent signaling kinase that was originally shown to be highly expressed in DS patients as a consequence of trisomy 21. Although this was evident some time ago, it is only in recent investigations that the molecular roles of DYRK1A in a wide range of cellular processes are becoming increasingly apparent. Since initial knowledge on DYRK1A became evident through minibrain mnb, the Drosophila homolog of DYRK1A, this review will first summarize the scientific reports on minibrain and further expand on the well-established neuronal functions of mammalian and human DYRK1A. Recent investigations across the current decade have provided rather interesting and compelling evidence in establishing nonneuronal functions for DYRK1A, including its role in infection, immunity, cardiomyocyte biology, cancer, and cell cycle control. The latter part of this review will therefore focus in detail on the emerging nonneuronal functions of DYRK1A and summarize the regulatory role of DYRK1A in controlling Tau and α-synuclein. Finally, the emerging role of DYRK1A in Parkinson's disease will be outlined.
Collapse
Affiliation(s)
- L J Kay
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - T K Smulders-Srinivasan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - M Soundararajan
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
35
|
Stevanato L, Thanabalasundaram L, Vysokov N, Sinden JD. Investigation of Content, Stoichiometry and Transfer of miRNA from Human Neural Stem Cell Line Derived Exosomes. PLoS One 2016; 11:e0146353. [PMID: 26752061 PMCID: PMC4713432 DOI: 10.1371/journal.pone.0146353] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/16/2015] [Indexed: 01/05/2023] Open
Abstract
Exosomes are small (30–100 nm) membrane vesicles secreted by a variety of cell types and only recently have emerged as a new avenue for cell-to-cell communication. They are natural shuttles of RNA and protein cargo, making them attractive as potential therapeutic delivery vehicles. MicroRNAs (miRNAs) are short non-coding RNAs which regulate biological processes and can be found in exosomes. Here we characterized the miRNA contents of exosomes derived from human neural stem cells (hNSCs). Our investigated hNSC line is a clonal, conditionally immortalized cell line, compliant with good manufacturing practice (GMP), and in clinical trials for stroke and critical limb ischemia in the UK (clinicaltrials.gov: NCT01151124, NCT02117635, and NCT01916369). By using next generation sequencing (NGS) technology we identified the presence of a variety of miRNAs in both exosomal and cellular preparations. Many of these miRNAs were enriched in exosomes indicating that cells specifically sort them for extracellular release. Although exosomes have been proven to contain miRNAs, the copy number quantification per exosome of a given miRNA remains unclear. Herein we quantified by real-time PCR a highly shuttled exosomal miRNA subtype (hsa-miR-1246) in order to assess its stoichiometry per exosome. Furthermore, we utilized an in vitro system to confirm its functional transfer by measuring the reduction in luciferase expression using a 3’ untranslated region dual luciferase reporter assay. In summary, NGS analysis allowed the identification of a unique set of hNSC derived exosomal miRNAs. Stoichiometry and functional transfer analysis of one of the most abundant identified miRNA, hsa-miR-1246, were measured to support biological relevance of exosomal miRNA delivery.
Collapse
Affiliation(s)
- Lara Stevanato
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
- * E-mail:
| | | | - Nickolai Vysokov
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
- Wolfson CARD, Kings College London, Guys Campus, London, United Kingdom
| | - John D. Sinden
- Stem Cell Discovery, ReNeuron, Guildford, United Kingdom
| |
Collapse
|
36
|
Kim G, An HJ, Lee MJ, Song JY, Jeong JY, Lee JH, Jeong HC. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer 2015; 91:15-22. [PMID: 26711929 DOI: 10.1016/j.lungcan.2015.11.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/30/2015] [Accepted: 11/12/2015] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Cancer stem cells (CSCs) are considered to play a pivotal role in the process of invasion, metastasis and chemotherapy resistance. Diverse aberrantly expressed microRNAs (miRNAs) have been reported in lung cancer cells. However, there have been few reports about miRNAs that were associated with stemness and invasion of lung cancer. We investigated the role of miRNAs associated with characteristics of CSCs in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS We cultured A549 cells (lung adenocarcinoma) and HCC1588 cells (lung squamous cell carcinoma) in serum free media condition. We isolated sphere-forming NSCLC cells and examined the microRNA expression by microarray and qRT-PCT. By inhibition of CSC-associated microRNAs, we identified the changes of stemness and invasiveness in NSCLC. RESULTS AND CONCLUSION We discovered 44 over-expressed, 42 down-regulated miRNAs in the sphere-forming cells compared with the parent cells of NSCLC. By in-silico database search, we selected miR-1246 and miR-1290 that were suspected to be associated with CSCs among aberrantly expressed miRNAs. Inhibition of miR-1246 and miR-1290 showed decreased stemness markers and epithelial-mesenchymal transition (EMT) markers in NSCLC. Anti-miR-1246 and anti-miR-1290 suppressed proliferation, sphere-formation, colony formation and invasion of NSCLC. CSCs-associated miR-1246, or miR-1290 may be important in the invasion or metastasis of NSCLC.
Collapse
Affiliation(s)
- Gwangil Kim
- Department of Pathology, College of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Hee-Jung An
- Department of Pathology, College of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Mi-Jung Lee
- Institute for Clinical Research, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Ji-Ye Song
- Institute for Clinical Research, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Ju-Yeon Jeong
- Institute for Clinical Research, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Ji-Hyun Lee
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea
| | - Hye-Cheol Jeong
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, CHA Bundang Medical Center, College of Medicine, CHA University, 59 Yatap-ro, Bundang-gu, Seongnam 463-712, South Korea.
| |
Collapse
|
37
|
Wang S, Zeng Y, Zhou JM, Nie SL, Peng Q, Gong J, Huo JR. MicroRNA-1246 promotes growth and metastasis of colorectal cancer cells involving CCNG2 reduction. Mol Med Rep 2015; 13:273-80. [PMID: 26573378 DOI: 10.3892/mmr.2015.4557] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 09/14/2015] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type and the fourth leading cause of cancer‑associated mortality worldwide. MicroRNA (miR)‑1246 is involved in differentiation, invasion, metastasis and chemoresistance of certain types of tumor cells. CCNG2 encodes an unconventional cyclin homolog, cyclin G2 (CycG2), associated with growth inhibition, which correlated significantly with lymph node metastasis, clinical stage, histological grade and poor overall survival in numerous cancer types. To investigate the regulation of miR‑1246 on CycG2 expression, and their effects on proliferation and metastasis of CRC, HCT‑116 and LOVO cells were transfected with pre‑miR‑1246 anti‑miR‑1246 and their negative controls. It was demonstrated that the expression of miR‑1246 was significantly increased in CRC tissues and cell lines, which was the opposite of CycG2. miR‑1246 negatively regulated the expression of CycG2 in HCT‑116 and LOVO CRC cells. CCNG2 is a direct target of miR‑1246 in CRC cells. Overexpression of miR‑1246 induced cell proliferation, migration and invasion, while knockdown of miR‑1246 inhibited proliferation, migration and invasion in the CRC cells. Upregulation of miR‑1246 mediated the malignant progression of CRC and is partly attributed to the downregulation of the expression of CycG2. Consequently, these findings provided a molecular basis for the role of miR‑1246/CCNG2 in the progression of human CRC and suggested a novel target for the treatment of CRC.
Collapse
Affiliation(s)
- Sai Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ya Zeng
- Department of Digestive Diseases, Changsha Central Hospital, Changsha, Hunan 410011, P.R. China
| | - Ju-Mei Zhou
- Department of Radiotherapy, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410011, P.R. China
| | - Shao-Lin Nie
- Department of Colorectal Tumor Surgery, The Affiliated Tumor Hospital of Xiangya Medical School of Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiao Peng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Ji-Rong Huo
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
38
|
Yang Y, Xie YJ, Xu Q, Chen JX, Shan NC, Zhang Y. Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecol Oncol 2015; 138:683-8. [PMID: 26074491 DOI: 10.1016/j.ygyno.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/25/2015] [Accepted: 06/09/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are non-coding RNAs that regulate the expression of mRNAs by binding to their 3'-untranslated regions (UTRs). Accumulating evidences show that miRNAs are involved in tumorigenesis such as lung cancer, liver cancer, colon cancer, and cervical cancer. In this study, we focused on the expression of miR-1246 in clinical cervical cancer tissues as well as the relationship between miR-1246 and HPV16E6 infection status. METHODS Real-time quantitative polymerase chain reaction technology was used to detect the expression of miR-1246 in 68 cervical cancer tissues and 52 normal tissues. The expression of miR-1246 also was tested in HPV16E6 negative cervical cell line (SiHa) or HPV16E6 positive cell line (C33A). Western blot was performed to detect the expression of DYRK1A after knocking down HPV16E6. RESULTS Our data showed that the expression of miR-1246 was dramatically decreased in cervical cancer tissue, compared with normal control group (p=0.0012), and miR-1246 was negatively correlated with clinical stage and HPV16E6 infected status (p=0.0410), but no correlation was observed with age, tumor diameter, cervical invasion depth, lymph node metastasis, or vascular invasion (p>0.05). Knock down of HPV16E6 significantly raised DYRK1A protein expression targeted by miR-1246. CONCLUSIONS The expression of miR-1246 is negatively correlated with cervical cancer procedure as well as HPV16E6 infection status and the miR-1246 may act as a diagnostic biomarker for cervical cancer. In addition, HPV16E6 infection may be a major reason leading to decrease the expression of miR-1246 in cervical cancer. This finding contributes to deep understanding of the miR-1246 function in cervical carcinogenesis.
Collapse
Affiliation(s)
- Y Yang
- School of Resources Processing and Bioengineering, Central South University, Changsha, China
| | - Y J Xie
- School of Resources Processing and Bioengineering, Central South University, Changsha, China
| | - Q Xu
- School of Resources Processing and Bioengineering, Central South University, Changsha, China
| | - J X Chen
- Xinjiang Cancer Hospital, Urumchi, China
| | - N C Shan
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Y Zhang
- Department of Obstetrics and Gynecology, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
39
|
Huang W, Li H, Luo R. The microRNA-1246 promotes metastasis in non-small cell lung cancer by targeting cytoplasmic polyadenylation element-binding protein 4. Diagn Pathol 2015. [PMID: 26209100 PMCID: PMC4514963 DOI: 10.1186/s13000-015-0366-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The microRNAs present a class of non-coding RNAs which are usually implicated in tumor biology. Recent report has unraveled that a novel member of microRNA family called miR-1246. However, the functional role and molecular mechanisms of miR-1246 in non-small cell lung cancer (NSCLC) is still elusive. Methods Using RT-PCR, luciferase reporter, mRNA microarrays, invasion and migration assays, we investigated the potential role of miR-1246 in the pathogenesis of NSCLC. Results In this study, we showed that miR-1246 markedly promoted NSCLC cell migration and invasion. Meanwhile, we found that cytoplasmic polyadenylation element binding protein 4 (CPEB4) might be involved and serve as a direct target of miR-1246 in NSCLC. CPEB4 knockdown substantially enhanced NSCLC migration and invasion resembling the effect of miR-1246 in NSCLC. CPEB4 is also frequently downregulated in NSCLC and decreased CPEB4 expression correlated with poor survival. Conclusions These results suggested that the miR-1246 may promote cell metastasis by targeting CPEB4. Meanwhile, the level of CPEB4 could be used as a potential marker in NSCLC patients. Our findings unraveled novel functions of miR-1246 in lung cancer cells and shed light on NSCLC prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s13000-015-0366-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Weihua Huang
- TCM-Integrated Hospital, Southern Medical University, Cancer Center, NO.13 Shiliugang Road, Haizhu District, Guangzhou, Guangdong, 510315, China
| | - Huifen Li
- Department of Chemotherapy, Zhongshan People's Hospital, Zhongshan, Guangdong, 528400, China
| | - Rongcheng Luo
- TCM-Integrated Hospital, Southern Medical University, Cancer Center, NO.13 Shiliugang Road, Haizhu District, Guangzhou, Guangdong, 510315, China.
| |
Collapse
|
40
|
Abbassi R, Johns TG, Kassiou M, Munoz L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol Ther 2015; 151:87-98. [PMID: 25795597 DOI: 10.1016/j.pharmthera.2015.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Protein kinases are one of the most studied drug targets in current pharmacological research, as evidenced by the vast number of kinase-targeting agents enrolled in active clinical trials. Dual-specificity Tyrosine phosphorylation-Regulated Kinase 1A (DYRK1A) has been much less studied compared to many other kinases. DYRK1A primary function occurs during early development, where this protein regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells. Although most extensively characterised for its role in brain development, DYRK1A is over-expressed in a variety of diseases including a number of human malignancies, such as haematological and brain cancers. Here we review the accumulating molecular studies that support our understanding of how DYRK1A signalling could underlie these pathological functions. The relevance of DYRK1A in a number of diseases is also substantiated with intensive drug discovery efforts to develop potent and selective inhibitors of DYRK1A. Several classes of DYRK1A inhibitors have recently been disclosed and some molecules are promising leads to develop DYRK1A inhibitors as drugs for DYRK1A-dependent diseases.
Collapse
Affiliation(s)
- Ramzi Abbassi
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia
| | - Terrance G Johns
- MIMR-PHI Institute of Medical Research, 27-31 Wright Street, Clayton, VIC 3168, Australia; Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, NSW 2006, Australia
| | - Lenka Munoz
- Department of Pharmacology, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
41
|
Lin C, Li X, Zhang Y, Guo Y, Zhou J, Gao K, Dai J, Hu G, Lv L, Du J, Zhang Y. The microRNA feedback regulation of p63 in cancer progression. Oncotarget 2015; 6:8434-53. [PMID: 25726529 PMCID: PMC4496160 DOI: 10.18632/oncotarget.3020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/31/2014] [Indexed: 12/14/2022] Open
Abstract
The transcription factor p63 is a member of the p53 gene family that plays a complex role in cancer due to its involvement in epithelial differentiation, cell cycle arrest and apoptosis. MicroRNAs are a class of small, non-coding RNAs with an important regulatory role in various cellular processes, as well as in the development and progression of cancer. A number of microRNAs have been shown to function as transcriptional targets of p63. Conversely, microRNAs also can modulate the expression and activity of p63. However, the p63-microRNA regulatory circuit has not been addressed in depth so far. Here, computational genomic analysis was performed using miRtarBase, Targetscan, microRNA.ORG, DIANA-MICROT, RNA22-HSA and miRDB to analyze miRNA binding to the 3'UTR of p63. JASPAR (profile score threshold 80%) and TFSEARCH datasets were used to search transcriptional start sites for p53/p63 response elements. Remarkably, these data revealed 63 microRNAs that targeted p63. Furthermore, there were 39 microRNAs targeting p63 that were predicted to be regulated by p63. These analyses suggest a crosstalk between p63 and microRNAs. Here, we discuss the crosstalk between p63 and the microRNA network, and the role of their interactions in cancer.
Collapse
Affiliation(s)
- Changwei Lin
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaorong Li
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yihang Guo
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianyu Zhou
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Kai Gao
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Dai
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Gui Hu
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lv Lv
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Juan Du
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Zhang
- Department of General Surgery, The Third XiangYa Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
42
|
Irizar H, Muñoz-Culla M, Sáenz-Cuesta M, Osorio-Querejeta I, Sepúlveda L, Castillo-Triviño T, Prada A, Lopez de Munain A, Olascoaga J, Otaegui D. Identification of ncRNAs as potential therapeutic targets in multiple sclerosis through differential ncRNA - mRNA network analysis. BMC Genomics 2015; 16:250. [PMID: 25880556 PMCID: PMC4391585 DOI: 10.1186/s12864-015-1396-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/24/2015] [Indexed: 11/30/2022] Open
Abstract
Background Several studies have revealed a potential role for both small nucleolar RNAs (snoRNAs) and microRNAs (miRNAs) in the physiopathology of relapsing-remitting multiple sclerosis (RRMS). This potential implication has been mainly described through differential expression studies. However, it has been suggested that, in order to extract additional information from large-scale expression experiments, differential expression studies must be complemented with differential network studies. Thus, the present work is aimed at the identification of potential therapeutic ncRNA targets for RRMS through differential network analysis of ncRNA – mRNA coexpression networks. ncRNA – mRNA coexpression networks have been constructed from both selected ncRNA (specifically miRNAs, snoRNAs and sdRNAs) and mRNA large-scale expression data obtained from 22 patients in relapse, the same 22 patients in remission and 22 healthy controls. Condition-specific (relapse, remission and healthy) networks have been built and compared to identify the parts of the system most affected by perturbation and aid the identification of potential therapeutic targets among the ncRNAs. Results All the coexpression networks we built present a scale-free topology and many snoRNAs are shown to have a prominent role in their architecture. The differential network analysis (relapse vs. remission vs. controls’ networks) has revealed that, although both network topology and the majority of the genes are maintained, few ncRNA – mRNA links appear in more than one network. We have selected as potential therapeutic targets the ncRNAs that appear in the disease-specific network and were found to be differentially expressed in a previous study. Conclusions Our results suggest that the diseased state of RRMS has a strong impact on the ncRNA – mRNA network of peripheral blood leukocytes, as a massive rewiring of the network happens between conditions. Our findings also indicate that the role snoRNAs have in targeted gene silencing is a widespread phenomenon. Finally, among the potential therapeutic target ncRNAs, SNORA40 seems to be the most promising candidate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1396-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haritz Irizar
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM), San Sebastián, Spain.
| | - Maider Muñoz-Culla
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM), San Sebastián, Spain.
| | - Matías Sáenz-Cuesta
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM) and Immunology Department, Donostia University Hospital, San Sebastián, Spain.
| | - Iñaki Osorio-Querejeta
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM), San Sebastián, Spain.
| | - Lucía Sepúlveda
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM), San Sebastián, Spain.
| | - Tamara Castillo-Triviño
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM) and Neurology Department, Donostia University Hospital, San Sebastián, Spain.
| | - Alvaro Prada
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Immunology Department, Donostia University Hospital, San Sebastián, Spain.
| | - Adolfo Lopez de Munain
- Biodonostia Health Research Institute, San Sebastián, Spain. .,Department of Neurology, Donostia University Hospital, Donostia - San Sebastián, Spain. .,Centro de Investigación Biomédica en red Enfermedades Neurodegenerativas (CIBERNED) and Department of Neuroscience, University of the Basque Country (UVP/EHU), San Sebastián, Spain.
| | - Javier Olascoaga
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM) and Neurology Department, Donostia University Hospital, San Sebastián, Spain.
| | - David Otaegui
- Multiple Sclerosis group, Biodonostia Health Research Institute, Paseo Dr. Begiristain s/n, San Sebastián, 20001, Spain. .,Spanish Network on Multiple Sclerosis (REEM), San Sebastián, Spain.
| |
Collapse
|
43
|
Wei FL, Wang JH, Ding G, Yang SY, Li Y, Hu YJ, Wang SL. Mechanical force-induced specific MicroRNA expression in human periodontal ligament stem cells. Cells Tissues Organs 2015; 199:353-63. [PMID: 25823370 DOI: 10.1159/000369613] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2014] [Indexed: 01/14/2023] Open
Abstract
It remains unclear how the expression of microRNAs (miRNAs) in human periodontal ligament stem cells (PDLSCs) might respond to mechanical stretch. To investigate specific miRNA expression in stretched PDLSCs, we used a Flexcell® FX-5000™ tension system to achieve external mechanical stimulation. Then, a custom-designed microarray assay was performed to investigate and describe the genome-wide differential expression of miRNAs in normal and stretched PDLSCs. Finally, we implemented integrative miRNA target prediction and network analysis approaches to construct an interaction network of the key miRNAs and their putative targets. We found that stretching induced morphological changes and increased alkaline phosphatase (ALP) activity, runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and bone sialoprotein (BSP) expression in PDLSCs. The microarray data showed that 53 miRNAs were differentially expressed with stretching. With an interaction network, we examined the connections between 10 selected key miRNAs and their putative target genes, which were related to mechanical force. The results from the interaction network provided a basis for postulating the functional roles of miRNAs in PDLSCs.
Collapse
Affiliation(s)
- F L Wei
- Department of Orthodontics, Shandong Provincial Key Laboratory of Oral Biomedicine, School of Stomatology, Shandong University, Jinan, PR China
| | | | | | | | | | | | | |
Collapse
|
44
|
Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:509241. [PMID: 25852816 PMCID: PMC4380103 DOI: 10.1155/2015/509241] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/19/2015] [Indexed: 11/25/2022]
Abstract
Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.
Collapse
|
45
|
Luo S, Liu Y, Liang G, Zhao M, Wu H, Liang Y, Qiu X, Tan Y, Dai Y, Yung S, Chan TM, Lu Q. The role of microRNA-1246 in the regulation of B cell activation and the pathogenesis of systemic lupus erythematosus. Clin Epigenetics 2015; 7:24. [PMID: 25789080 PMCID: PMC4364674 DOI: 10.1186/s13148-015-0063-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/20/2015] [Indexed: 02/08/2023] Open
Abstract
Background The pathogenesis of systemic lupus erythematosus (SLE) has not yet been completely elucidated. One of the hallmarks of SLE is the production of autoantibodies by uncontrolled over-activated B cells. Early B cell factor 1 (EBF1) contributes to the development, activation, and proliferation of B cells through activation of the AKT signaling pathway. Accumulating evidence has demonstrated that several microRNAs (miRNAs) contribute to the pathogenesis of autoimmune diseases through the regulation of B cells in SLE. We aim to investigate the expression patterns of miR-1246 in B cells and its contribution to pathogenesis of SLE. Results Our results showed that the expression of miR-1246 was significantly decreased in B cells from SLE patients. We verified that miR-1246 specifically targeted the EBF1 messenger RNA (mRNA) by interacting with its 3′-untranslated region (3′-UTR) and regulated the expression of EBF1. Transfection of miR-1246 inhibitors into healthy B cells upregulated the expression of EBF1, enhanced B cell function, and increased the production of B cell surface co-stimulatory molecules CD40, CD80, and CD86. We also observed that abnormal activation of the AKT signaling pathway was associated with decreased P53 expression, leading to the downregulation of the miR-1246 expression; and upregulation of the miR-1246 expression reversed the responsiveness of B cells by inhibiting EBF1 expression. Conclusions Activated B cells in lupus could decrease the expression of miR-1246 through the AKT-P53 signaling pathway, which in turn enhances the expression of EBF1, thereby promoting further activation of B cells. Conversely, upregulation of miR-1246 could interrupt this amplification pathway. Our findings thus provide a theoretical framework towards the research of novel biological targets in SLE treatment. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0063-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuangyan Luo
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Gongping Liang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Yunsheng Liang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Xiangning Qiu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Yixin Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| | - Yong Dai
- Clinical Medical Research Center, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, Guangdong 518020 People's Republic of China
| | - Susan Yung
- Division of Nephrology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, 999077 China
| | - Tak-Mao Chan
- Division of Nephrology, Department of Medicine, University of Hong Kong, Queen Mary Hospital, Hong Kong, 999077 China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan 410011 China
| |
Collapse
|
46
|
Investigating the pretreatment miRNA expression patterns of advanced hepatocellular carcinoma patients in association with response to TACE treatment. BIOMED RESEARCH INTERNATIONAL 2015; 2015:649750. [PMID: 25811030 PMCID: PMC4355598 DOI: 10.1155/2015/649750] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/25/2014] [Accepted: 12/15/2014] [Indexed: 01/01/2023]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with poor prognosis and limited treatment options. Transarterial chemoembolization (TACE) using chemotherapy agents—doxorubicin and cisplatin—is an accepted treatment option for locally advanced hepatocellular carcinoma. In the current study, we analyzed the expression pattern of a selected panel of 94 miRNAs in archival samples that were collected prior to treatment from 15 Egyptian patients diagnosed with advanced hepatocelleular carcinoma. We observed an overall increase in miRNA expression in HCC samples compared with normal subjects. Out of 94 examined miRNAs, 53 were significantly upregulated while 3 miRNAs were downregulated in HCC samples compared to normal liver samples. Comparing the pretreatment miRNA expression profiles in HCC patients and the patients response to TACE treatment resulted in the identification of a set of 12 miRNAs that are significantly upregulated in nonresponders group. This miRNA panel includes miR-10a-1, miR-23a-1, miR-24, miR-26a, miR-27a, miR-30c, miR-30e, miR-106b, miR-133b, miR-199a, miR-199-3p, and miR-200b. Furthermore, we observed that a panel of 10 miRNAs was significantly associated with patients' survival status at 1 year. These results highlight the potential implications of pretreatment miRNAs expression profiling in prediction of the patients' response to TACE treatment in liver cancer.
Collapse
|
47
|
Zhang Q, Cao LY, Cheng SJ, Zhang AM, Jin XS, Li Y. p53-induced microRNA-1246 inhibits the cell growth of human hepatocellular carcinoma cells by targeting NFIB. Oncol Rep 2015; 33:1335-41. [PMID: 25591821 DOI: 10.3892/or.2015.3715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/29/2014] [Indexed: 11/06/2022] Open
Abstract
In recent years, miR-1246 has been identified as a transcriptional target of p53 in Down syndrome and may provide a new p53-miR-1246-DYRK1A-NFAT pathway in cancer. The present study aimed to explore the role of miR-1246 in the tumorigenesis of human hepatocellular carcinoma (HCC). We found that wild-type p53 regulated the expression of miR-1246 in HCC cell lines, and alteration of miR-1246 modulated cell proliferation, colony formation ability and apoptosis. The nuclear factor I/B (NFIB), an oncogene, was identified as a direct target gene of miR-1246 using a fluorescent reporter assay. Overexpression of NFIB abolished the regulation of cell apoptosis caused by miR-1246 in HepG2 cells. This finding suggests that miR-1246 is regulated by p53 and suppresses the growth of human HCC by targeting NFIB. Here, we propose a new p53-miR-1246-NFIB pathway in HCC.
Collapse
Affiliation(s)
- Quan Zhang
- Department of Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Li-Ye Cao
- Department of Ultrasound, The Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Shu-Jie Cheng
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Ai-Min Zhang
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Xiao-Shi Jin
- Department of Surgery, The Affiliated Hospital of Hebei University, Baoding, Hebei, P.R. China
| | - Yong Li
- Department of Surgery, The Fourth Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
48
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
49
|
miR-1246 releases RTKN2-dependent resistance to UVB-induced apoptosis in HaCaT cells. Mol Cell Biochem 2014; 394:299-306. [DOI: 10.1007/s11010-014-2108-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/15/2014] [Indexed: 02/06/2023]
|
50
|
Chen J, Yao D, Zhao S, He C, Ding N, Li L, Long F. MiR-1246 promotes SiHa cervical cancer cell proliferation, invasion, and migration through suppression of its target gene thrombospondin 2. Arch Gynecol Obstet 2014; 290:725-32. [DOI: 10.1007/s00404-014-3260-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 04/16/2014] [Indexed: 01/31/2023]
|