1
|
Ren J, Rieger R, Pereira de Sa N, Kelapire D, Del Poeta M, Hannun YA. Orm proteins control ceramide synthesis and endocytosis via LCB-mediated Ypk1 regulation. J Lipid Res 2024:100683. [PMID: 39490931 DOI: 10.1016/j.jlr.2024.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Sphingolipids (SPLs) are major components of cell membranes with significant functions. Their production is a highly-regulated multi-step process with the formation of two major intermediates, long chain bases (LCBs) and ceramides. Homologous Orm proteins in both yeast and mammals negatively regulate LCB production by inhibiting serine palmitoyltransferase (SPT), the first enzyme in SPL de novo synthesis. Orm proteins are therefore regarded as major regulator of SPL production. Combining targeted lipidomic profiling with phenotypic analysis of yeast mutants with both ORM1 and ORM2 deleted (orm1/2Δ), we report here that Ypk1, an AGC family protein kinase, signaling is compromised in an LCB-dependent manner. In orm1/2Δ, phosphorylation of Ypk1 at its activation sites is reduced, so does its in vivo activity shown by reduced phosphorylation of Ypk1 substrate, Lac1, the catalytic component of ceramide synthase (CerS). A corresponding defect in ceramide synthesis was detected, preventing the extra LCBs generated in orm1/2Δ from fully converting into downstream SPL products. The results suggest that Orm proteins play a complex role in regulating SPL production in yeast S. cerevisiae by exerting an extra and opposite effect on CerS. Functionally, we define an endocytosis and an actin polarization defect of orm1/2Δ and demonstrate the roles of Ypk1 in mediating the effects of Orm proteins on endocytosis. Collectively, the results reveal a previously unrecognized complexity of SPL de novo synthesis pathway and point to a potential role of Orm proteins as upstream regulators to control Ypk1-mediated biological functions via regulating LCB production.
Collapse
Affiliation(s)
- Jihui Ren
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Robert Rieger
- Biological Mass Spectrometry Core Facility, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Douglas Kelapire
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, 11794, USA; Northport Veterans Affairs Medical Center, Northport, New York 11768
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, 11794, USA; Northport Veterans Affairs Medical Center, Northport, New York 11768.
| |
Collapse
|
2
|
Chai Z, Li Y, Zhang J, Ding C, Tong X, Zhang Z. Sirtulin-Ypk1 regulation axis governs the TOR signaling pathway and fungal pathogenicity in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0003824. [PMID: 38912819 PMCID: PMC11302014 DOI: 10.1128/spectrum.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 05/06/2024] [Indexed: 06/25/2024] Open
Abstract
Cryptococcus neoformans is a life-threatening fungal pathogen that is a causative agent for pulmonary infection and meningoencephalitis in both immunocompetent and immunodeficient individuals. Recent studies have elucidated the important function of the target of rapamycin (TOR) signaling pathway in the modulation of C. neoformans virulence factor production and pathogenicity in animal infection models. Herein, we discovered that Ypk1, a critical component of the TOR signaling pathway, acts as a critical modulator in fungal pathogenicity through post-translational modifications (PTMs). Mass spectrometry analysis revealed that Ypk1 is subject to protein acetylation at lysines 315 and 502, and both sites are located within kinase functional domains. Inhibition of the C. neoformans TOR pathway by rapamycin activates the deacetylation process for Ypk1. The YPK1Q strain, a hyper-acetylation of Ypk1, exhibited increased sensitivity to rapamycin, decreased capsule formation ability, reduced starvation tolerance, and diminished fungal pathogenicity, indicating that deacetylation of Ypk1 is crucial for responding to stress. Deacetylase inhibition assays have shown that sirtuin family proteins are critical to the Ypk1 deacetylation mechanism. After screening deacetylase mutants, we found that Dac1 and Dac7 directly interact with Ypk1 to facilitate the deacetylation modification process via a protein-protein interaction. These findings provide new insights into the molecular basis for regulating the TORC-Ypk1 axis and demonstrate an important function of protein acetylation in modulating fungal pathogenicity. IMPORTANCE Cryptococcus neoformans is an important opportunistic fungal pathogen in humans. While there are currently few effective antifungal treatments, the absence of novel molecular targets in fungal pathogenicity hinders the development of new drugs. There is increasing evidence that protein post-translational modifications (PTMs) can modulate the pathogenicity of fungi. In this study, we discovered that the pathogenicity of C. neoformans was significantly impacted by the dynamic acetylation changes of Ypk1, the immediate downstream target of the TOR complex. We discovered that Ypk1 is acetylated at lysines 315 and 502, both of which are within kinase functional domains. Deacetylation of Ypk1 is necessary for formation of the capsule structure, the response to the TOR pathway inhibitor rapamycin, nutrient utilization, and host infection. We also demonstrate that the sirtuin protein family is involved in the Ypk1 deacetylation mechanism. We anticipate that the sirtuin-Ypk1 regulation axis could be used as a potential target for the development of antifungal medications.
Collapse
Affiliation(s)
- Zhenghua Chai
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjian Li
- College of Sciences, Northeastern University, Shenyang, China
| | - Jing Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Xiujuan Tong
- Department of Laboratory Medicine of Central Hospital of Chaoyang, Chaoyang, China
| | - Zhijie Zhang
- Department of Laboratory Medicine of Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Nomura W, Inoue Y. Activation of the cell wall integrity pathway negatively regulates TORC2-Ypk1/2 signaling through blocking eisosome disassembly in Saccharomyces cerevisiae. Commun Biol 2024; 7:722. [PMID: 38862688 PMCID: PMC11166964 DOI: 10.1038/s42003-024-06411-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
The target of rapamycin complex 2 (TORC2) signaling is associated with plasma membrane (PM) integrity. In Saccharomyces cerevisiae, TORC2-Ypk1/2 signaling controls sphingolipid biosynthesis, and Ypk1/2 phosphorylation by TORC2 under PM stress conditions is increased in a Slm1/2-dependent manner, under which Slm1 is known to be released from an eisosome, a furrow-like invagination PM structure. However, it remains unsolved how the activation machinery of TORC2-Ypk1/2 signaling is regulated. Here we show that edelfosine, a synthetic lysophospholipid analog, inhibits the activation of TORC2-Ypk1/2 signaling, and the cell wall integrity (CWI) pathway is involved in this inhibitory effect. The activation of CWI pathway blocked the eisosome disassembly promoted by PM stress and the release of Slm1 from eisosomes. Constitutive activation of TORC2-Ypk1/2 signaling exhibited increased sensitivity to cell wall stress. We propose that the CWI pathway negatively regulates the TORC2-Ypk1/2 signaling, which is involved in the regulatory mechanism to ensure the proper stress response to cell wall damage.
Collapse
Affiliation(s)
- Wataru Nomura
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
- Research Unit for Physiological Chemistry, the Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, 606-8501, Japan.
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Shinshu University, Nagano, 399-4598, Japan.
| | - Yoshiharu Inoue
- Laboratory of Molecular Microbiology, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
4
|
Esch BM, Walter S, Schmidt O, Fröhlich F. Identification of distinct active pools of yeast serine palmitoyltransferase in sub-compartments of the ER. J Cell Sci 2023; 136:jcs261353. [PMID: 37982431 DOI: 10.1242/jcs.261353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023] Open
Abstract
Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.
Collapse
Affiliation(s)
- Bianca M Esch
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Stefan Walter
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| | - Oliver Schmidt
- Institute of Cell Biology, Biocenter Innsbruck, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Florian Fröhlich
- Osnabrück University, Department of Biology-Chemistry, Bioanalytical Chemistry Section, Barbarastrasse 13, 49076 Osnabrück, Germany
- Osnabrück University, Center for Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076 Osnabrück, Germany
| |
Collapse
|
5
|
Thorner J. TOR complex 2 is a master regulator of plasma membrane homeostasis. Biochem J 2022; 479:1917-1940. [PMID: 36149412 PMCID: PMC9555796 DOI: 10.1042/bcj20220388] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022]
Abstract
As first demonstrated in budding yeast (Saccharomyces cerevisiae), all eukaryotic cells contain two, distinct multi-component protein kinase complexes that each harbor the TOR (Target Of Rapamycin) polypeptide as the catalytic subunit. These ensembles, dubbed TORC1 and TORC2, function as universal, centrally important sensors, integrators, and controllers of eukaryotic cell growth and homeostasis. TORC1, activated on the cytosolic surface of the lysosome (or, in yeast, on the cytosolic surface of the vacuole), has emerged as a primary nutrient sensor that promotes cellular biosynthesis and suppresses autophagy. TORC2, located primarily at the plasma membrane, plays a major role in maintaining the proper levels and bilayer distribution of all plasma membrane components (sphingolipids, glycerophospholipids, sterols, and integral membrane proteins). This article surveys what we have learned about signaling via the TORC2 complex, largely through studies conducted in S. cerevisiae. In this yeast, conditions that challenge plasma membrane integrity can, depending on the nature of the stress, stimulate or inhibit TORC2, resulting in, respectively, up-regulation or down-regulation of the phosphorylation and thus the activity of its essential downstream effector the AGC family protein kinase Ypk1. Through the ensuing effect on the efficiency with which Ypk1 phosphorylates multiple substrates that control diverse processes, membrane homeostasis is maintained. Thus, the major focus here is on TORC2, Ypk1, and the multifarious targets of Ypk1 and how the functions of these substrates are regulated by their Ypk1-mediated phosphorylation, with emphasis on recent advances in our understanding of these processes.
Collapse
Affiliation(s)
- Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3202, U.S.A
| |
Collapse
|
6
|
Schlarmann P, Ikeda A, Funato K. Membrane Contact Sites in Yeast: Control Hubs of Sphingolipid Homeostasis. MEMBRANES 2021; 11:971. [PMID: 34940472 PMCID: PMC8707754 DOI: 10.3390/membranes11120971] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023]
Abstract
Sphingolipids are the most diverse class of membrane lipids, in terms of their structure and function. Structurally simple sphingolipid precursors, such as ceramides, act as intracellular signaling molecules in various processes, including apoptosis, whereas mature and complex forms of sphingolipids are important structural components of the plasma membrane. Supplying complex sphingolipids to the plasma membrane, according to need, while keeping pro-apoptotic ceramides in check is an intricate task for the cell and requires mechanisms that tightly control sphingolipid synthesis, breakdown, and storage. As each of these processes takes place in different organelles, recent studies, using the budding yeast Saccharomyces cerevisiae, have investigated the role of membrane contact sites as hubs that integrate inter-organellar sphingolipid transport and regulation. In this review, we provide a detailed overview of the findings of these studies and put them into the context of established regulatory mechanisms of sphingolipid homeostasis. We have focused on the role of membrane contact sites in sphingolipid metabolism and ceramide transport, as well as the mechanisms that prevent toxic ceramide accumulation.
Collapse
Affiliation(s)
| | | | - Kouichi Funato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-4-4, Higashi-Hiroshima 739-8528, Japan; (P.S.); (A.I.)
| |
Collapse
|
7
|
An P, Xu W, Luo J, Luo Y. Expanding TOR Complex 2 Signaling: Emerging Regulators and New Connections. Front Cell Dev Biol 2021; 9:713806. [PMID: 34395443 PMCID: PMC8363310 DOI: 10.3389/fcell.2021.713806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022] Open
Abstract
Almost three decades after its seminal discovery, our understanding of the remarkable TOR pathway continues to expand. As a TOR complex, TORC2 lies at the nexus of many signaling pathways and directs a diverse array of fundamental processes such as cell survival, proliferation, and metabolism by integrating environmental and intracellular cues. The dysregulation of TORC2 activity disrupts cellular homeostasis and leads to many pathophysiological conditions. With continued efforts at mapping the signaling landscape, the pace of discovery in TORC2 regulation has been accelerated in recent years. Consequently, emerging evidence has expanded the repertoire of upstream regulators and has revealed unexpected diversity in the modes of TORC2 regulation. Multiple environmental cues and plasma membrane proteins that fine-tune TORC2 activity are unfolding. Furthermore, TORC2 signaling is intricately intertwined with other major signaling pathways. Therefore, feedback and crosstalk regulation also extensively modulate TORC2. In this context, we provide a comprehensive overview of revolutionary concepts regarding emerging regulators of TORC2 and discuss evidence of feedback and crosstalk regulation that shed new light on TORC2 biology.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wenyi Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Junjie Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yongting Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Phosphorylation of mRNA-Binding Proteins Puf1 and Puf2 by TORC2-Activated Protein Kinase Ypk1 Alleviates Their Repressive Effects. MEMBRANES 2021; 11:membranes11070500. [PMID: 34209236 PMCID: PMC8304900 DOI: 10.3390/membranes11070500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023]
Abstract
Members of the Puf family of RNA-binding proteins typically associate via their Pumilio homology domain with specific short motifs in the 3’-UTR of an mRNA and thereby influence the stability, localization and/or efficiency of translation of the bound transcript. In our prior unbiased proteome-wide screen for targets of the TORC2-stimulated protein kinase Ypk1, we identified the paralogs Puf1/Jsn1 and Puf2 as high-confidence substrates. Earlier work by others had demonstrated that Puf1 and Puf2 exhibit a marked preference for interaction with mRNAs encoding plasma membrane-associated proteins, consistent with our previous studies documenting that a primary physiological role of TORC2-Ypk1 signaling is maintenance of plasma membrane homeostasis. Here, we show, first, that both Puf1 and Puf2 are authentic Ypk1 substrates both in vitro and in vivo. Fluorescently tagged Puf1 localizes constitutively in cortical puncta closely apposed to the plasma membrane, whereas Puf2 does so in the absence of its Ypk1 phosphorylation, but is dispersed in the cytosol when phosphorylated. We further demonstrate that Ypk1-mediated phosphorylation of Puf1 and Puf2 upregulates production of the protein products of the transcripts to which they bind, with a concomitant increase in the level of the cognate mRNAs. Thus, Ypk1 phosphorylation relieves Puf1- and Puf2-mediated post-transcriptional repression mainly by counteracting their negative effect on transcript stability. Using a heterologous protein-RNA tethering and fluorescent protein reporter assay, the consequence of Ypk1 phosphorylation in vivo was recapitulated for full-length Puf1 and even for N-terminal fragments (residues 1-340 and 143-295) corresponding to the region upstream of its dimerization domain (an RNA-recognition motif fold) encompassing its two Ypk1 phosphorylation sites (both also conserved in Puf2). This latter result suggests that alleviation of Puf1-imposed transcript destabilization does not obligatorily require dissociation of Ypk1-phosphorylated Puf1 from a transcript. Our findings add new insight about how the TORC2-Ypk1 signaling axis regulates the content of plasma membrane-associated proteins to promote maintenance of the integrity of the cell envelope.
Collapse
|
9
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
10
|
Riggi M, Kusmider B, Loewith R. The flipside of the TOR coin - TORC2 and plasma membrane homeostasis at a glance. J Cell Sci 2020; 133:133/9/jcs242040. [PMID: 32393676 DOI: 10.1242/jcs.242040] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine protein kinase conserved in most eukaryote organisms. TOR assembles into two multiprotein complexes (TORC1 and TORC2), which function as regulators of cellular growth and homeostasis by serving as direct transducers of extracellular biotic and abiotic signals, and, through their participation in intrinsic feedback loops, respectively. TORC1, the better-studied complex, is mainly involved in cell volume homeostasis through regulating accumulation of proteins and other macromolecules, while the functions of the lesser-studied TORC2 are only now starting to emerge. In this Cell Science at a Glance article and accompanying poster, we aim to highlight recent advances in our understanding of TORC2 signalling, particularly those derived from studies in yeast wherein TORC2 has emerged as a major regulator of cell surface homeostasis.
Collapse
Affiliation(s)
- Margot Riggi
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Beata Kusmider
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland.,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Robbie Loewith
- Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland .,Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Ren J, Saied EM, Zhong A, Snider J, Ruiz C, Arenz C, Obeid LM, Girnun GD, Hannun YA. Tsc3 regulates SPT amino acid choice in Saccharomyces cerevisiae by promoting alanine in the sphingolipid pathway. J Lipid Res 2018; 59:2126-2139. [PMID: 30154231 DOI: 10.1194/jlr.m088195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
The generation of most sphingolipids (SPLs) starts with condensation between serine and an activated long-chain fatty acid catalyzed by serine palmitoyltransferase (SPT). SPT can also use other amino acids to generate small quantities of noncanonical SPLs. The balance between serine-derived and noncanonical SPLs is pivotal; for example, hereditary sensory and autonomic neuropathy type I results from SPT mutations that cause an abnormal accumulation of alanine-derived SPLs. The regulatory mechanism for SPT amino acid selectivity and physiological functions of noncanonical SPLs are unknown. We investigated SPT selection of amino acid substrates by measuring condensation products of serine and alanine in yeast cultures and SPT use of serine and alanine in a TSC3 knockout model. We identified the Tsc3 subunit of SPT as a regulator of amino acid substrate selectivity by demonstrating its primary function in promoting alanine utilization by SPT and confirmed its requirement for the inhibitory effect of alanine on SPT utilization of serine. Moreover, we observed downstream metabolic consequences to Tsc3 loss: serine influx into the SPL biosynthesis pathway increased through Ypk1-depenedent activation of SPT and ceramide synthases. This Ypk1-dependent activation of serine influx after Tsc3 knockout suggests a potential function for deoxy-sphingoid bases in modulating Ypk1 signaling.
Collapse
Affiliation(s)
- Jihui Ren
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Essa M Saied
- Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany.,Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Aaron Zhong
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Justin Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY
| | - Christian Ruiz
- Department of Pathology, Stony Brook University, Stony Brook, NY
| | - Christoph Arenz
- Institute for Chemistry, Humboldt University of Berlin, Berlin, Germany
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY.,Northport Veterans Affairs Medical Center, Northport, NY
| | - Geoffrey D Girnun
- Department of Pathology, Stony Brook University, Stony Brook, NY.,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY .,Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY
| |
Collapse
|
12
|
Who does TORC2 talk to? Biochem J 2018; 475:1721-1738. [PMID: 29794170 DOI: 10.1042/bcj20180130] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022]
Abstract
The target of rapamycin (TOR) is a protein kinase that, by forming complexes with partner proteins, governs diverse cellular signalling networks to regulate a wide range of processes. TOR thus plays central roles in maintaining normal cellular functions and, when dysregulated, in diverse diseases. TOR forms two distinct types of multiprotein complexes (TOR complexes 1 and 2, TORC1 and TORC2). TORC1 and TORC2 differ in their composition, their control and their substrates, so that they play quite distinct roles in cellular physiology. Much effort has been focused on deciphering the detailed regulatory links within the TOR pathways and the structure and control of TOR complexes. In this review, we summarize recent advances in understanding mammalian (m) TORC2, its structure, its regulation, and its substrates, which link TORC2 signalling to the control of cell functions. It is now clear that TORC2 regulates several aspects of cell metabolism, including lipogenesis and glucose transport. It also regulates gene transcription, the cytoskeleton, and the activity of a subset of other protein kinases.
Collapse
|
13
|
Rodríguez-Escudero I, Fernández-Acero T, Cid VJ, Molina M. Heterologous mammalian Akt disrupts plasma membrane homeostasis by taking over TORC2 signaling in Saccharomyces cerevisiae. Sci Rep 2018; 8:7732. [PMID: 29769614 PMCID: PMC5955888 DOI: 10.1038/s41598-018-25717-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/26/2018] [Indexed: 01/21/2023] Open
Abstract
The Akt protein kinase is the main transducer of phosphatidylinositol-3,4,5-trisphosphate (PtdIns3,4,5P3) signaling in higher eukaryotes, controlling cell growth, motility, proliferation and survival. By co-expression of mammalian class I phosphatidylinositol 3-kinase (PI3K) and Akt in the Saccharomyces cerevisiae heterologous model, we previously described an inhibitory effect on yeast growth that relied on Akt kinase activity. Here we report that PI3K-Akt expression in yeast triggers the formation of large plasma membrane (PM) invaginations that were marked by actin patches, enriched in PtdIns4,5P2 and associated to abnormal intracellular cell wall deposits. These effects of Akt were mimicked by overproduction of the PtdIns4,5P2 effector Slm1, an adaptor of the Ypk1 and Ypk2 kinases in the TORC2 pathway. Although Slm1 was phosphorylated in vivo by Akt, TORC2-dependent Ypk1 activation did not occur. However, PI3K-activated Akt suppressed the lethality derived from inactivation of either TORC2 or Ypk protein kinases. Thus, heterologous co-expression of PI3K and Akt in yeast short-circuits PtdIns4,5P2- and TORC2-signaling at the level of the Slm-Ypk complex, overriding some of its functions. Our results underscore the importance of phosphoinositide-dependent kinases as key actors in the homeostasis and dynamics of the PM.
Collapse
Affiliation(s)
- Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain.
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid and Instituto Ramón y Cajal de Investigaciones Sanitarias, Madrid, Spain
| |
Collapse
|
14
|
Lou Y, Zhang F, Luo Y, Wang L, Huang S, Jin F. Serum and Glucocorticoid Regulated Kinase 1 in Sodium Homeostasis. Int J Mol Sci 2016; 17:ijms17081307. [PMID: 27517916 PMCID: PMC5000704 DOI: 10.3390/ijms17081307] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/13/2022] Open
Abstract
The ubiquitously expressed serum and glucocorticoid regulated kinase 1 (SGK1) is tightly regulated by osmotic and hormonal signals, including glucocorticoids and mineralocorticoids. Recently, SGK1 has been implicated as a signal hub for the regulation of sodium transport. SGK1 modulates the activities of multiple ion channels and carriers, such as epithelial sodium channel (ENaC), voltage-gated sodium channel (Nav1.5), sodium hydrogen exchangers 1 and 3 (NHE1 and NHE3), sodium-chloride symporter (NCC), and sodium-potassium-chloride cotransporter 2 (NKCC2); as well as the sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) and type A natriuretic peptide receptor (NPR-A). Accordingly, SGK1 is implicated in the physiology and pathophysiology of Na+ homeostasis. Here, we focus particularly on recent findings of SGK1’s involvement in Na+ transport in renal sodium reabsorption, hormone-stimulated salt appetite and fluid balance and discuss the abnormal SGK1-mediated Na+ reabsorption in hypertension, heart disease, edema with diabetes, and embryo implantation failure.
Collapse
Affiliation(s)
- Yiyun Lou
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Department of Gynaecology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China.
| | - Fan Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Yuqin Luo
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Shisi Huang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, Zhejiang, China.
- Key Laboratory of Reproductive Genetics, National Ministry of Education (Zhejiang University), Women's Reproductive Healthy Laboratory of Zhejiang Province, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
15
|
New Insight Into the Roles of Membrane Microdomains in Physiological Activities of Fungal Cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:119-80. [PMID: 27241220 DOI: 10.1016/bs.ircmb.2016.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The organization of biological membranes into structurally and functionally distinct lateral microdomains is generally accepted. From bacteria to mammals, laterally compartmentalized membranes seem to be a vital attribute of life. The crucial fraction of our current knowledge about the membrane microdomains has been gained from studies on fungi. In this review we summarize the evidence of the microdomain organization of membranes from fungal cells, with accent on their enormous diversity in composition, temporal dynamics, modes of formation, and recognized engagement in the cell physiology. A special emphasis is laid on the fact that in addition to their other biological functions, membrane microdomains also mediate the communication among different membranes within a eukaryotic cell and coordinate their functions. Involvement of fungal membrane microdomains in stress sensing, regulation of lipid homeostasis, and cell differentiation is discussed more in detail.
Collapse
|
16
|
Douglas LM, Konopka JB. Plasma membrane organization promotes virulence of the human fungal pathogen Candida albicans. J Microbiol 2016; 54:178-91. [PMID: 26920878 DOI: 10.1007/s12275-016-5621-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 12/21/2022]
Abstract
Candida albicans is a human fungal pathogen capable of causing lethal systemic infections. The plasma membrane plays key roles in virulence because it not only functions as a protective barrier, it also mediates dynamic functions including secretion of virulence factors, cell wall synthesis, invasive hyphal morphogenesis, endocytosis, and nutrient uptake. Consistent with this functional complexity, the plasma membrane is composed of a wide array of lipids and proteins. These components are organized into distinct domains that will be the topic of this review. Some of the plasma membrane domains that will be described are known to act as scaffolds or barriers to diffusion, such as MCC/eisosomes, septins, and sites of contact with the endoplasmic reticulum. Other zones mediate dynamic processes, including secretion, endocytosis, and a special region at hyphal tips that facilitates rapid growth. The highly organized architecture of the plasma membrane facilitates the coordination of diverse functions and promotes the pathogenesis of C. albicans.
Collapse
Affiliation(s)
- Lois M Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, 11794-5222, USA.
| |
Collapse
|
17
|
Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 2016; 71:1438-50. [PMID: 26801081 DOI: 10.1093/jac/dkv445] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.
Collapse
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, PL 50-375, Wroclaw, Poland
| | - Marcin Kołaczkowski
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, PL50-368, Wroclaw, Poland
| |
Collapse
|
18
|
Olson DK, Fröhlich F, Farese RV, Walther TC. Taming the sphinx: Mechanisms of cellular sphingolipid homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:784-792. [PMID: 26747648 DOI: 10.1016/j.bbalip.2015.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 12/14/2015] [Accepted: 12/28/2015] [Indexed: 12/11/2022]
Abstract
Sphingolipids are important structural membrane components of eukaryotic cells, and potent signaling molecules. As such, their levels must be maintained to optimize cellular functions in different cellular membranes. Here, we review the current knowledge of homeostatic sphingolipid regulation. We describe recent studies in Saccharomyces cerevisiae that have provided insights into how cells sense changes in sphingolipid levels in the plasma membrane and acutely regulate sphingolipid biosynthesis by altering signaling pathways. We also discuss how cellular trafficking has emerged as an important determinant of sphingolipid homeostasis. Finally, we highlight areas where work is still needed to elucidate the mechanisms of sphingolipid regulation and the physiological functions of such regulatory networks, especially in mammalian cells. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
Affiliation(s)
- D K Olson
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Yale School of Medicine, United States
| | - F Fröhlich
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States
| | - R V Farese
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Harvard Medical School, United States; Broad Institute of Harvard and MIT, United States.
| | - T C Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, United States; Department of Cell Biology, Harvard Medical School, United States; Broad Institute of Harvard and MIT, United States; Howard Hughes Medical Institute, United States.
| |
Collapse
|
19
|
Teixeira V, Costa V. Unraveling the role of the Target of Rapamycin signaling in sphingolipid metabolism. Prog Lipid Res 2015; 61:109-33. [PMID: 26703187 DOI: 10.1016/j.plipres.2015.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 02/06/2023]
Abstract
Sphingolipids are important bioactive molecules that regulate basic aspects of cellular metabolism and physiology, including cell growth, adhesion, migration, senescence, apoptosis, endocytosis, and autophagy in yeast and higher eukaryotes. Since they have the ability to modulate the activation of several proteins and signaling pathways, variations in the relative levels of different sphingolipid species result in important changes in overall cellular functions and fate. Sphingolipid metabolism and their route of synthesis are highly conserved from yeast to mammalian cells. Studies using the budding yeast Saccharomyces cerevisiae have served in many ways to foster our understanding of sphingolipid dynamics and their role in the regulation of cellular processes. In the past decade, studies in S. cerevisiae have unraveled a functional association between the Target of Rapamycin (TOR) pathway and sphingolipids, showing that both TOR Complex 1 (TORC1) and TOR Complex 2 (TORC2) branches control temporal and spatial aspects of sphingolipid metabolism in response to physiological and environmental cues. In this review, we report recent findings in this emerging and exciting link between the TOR pathway and sphingolipids and implications in human health and disease.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Departamento de Biologia Molecular, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Characterization of AnNce102 and its role in eisosome stability and sphingolipid biosynthesis. Sci Rep 2015; 5:15200. [PMID: 26468899 PMCID: PMC4606592 DOI: 10.1038/srep15200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/21/2015] [Indexed: 12/26/2022] Open
Abstract
The plasma membrane is implicated in a variety of functions, whose coordination necessitates highly dynamic organization of its constituents into domains of distinct protein and lipid composition. Eisosomes, at least partially, mediate this lateral plasma membrane compartmentalization. In this work, we show that the Nce102 homologue of Aspergillus nidulans colocalizes with eisosomes and plays a crucial role in density/number of PilA/SurG foci in the head of germlings. In addition we demonstrate that AnNce102 and PilA negatively regulate sphingolipid biosynthesis, since their deletions partially suppress the thermosensitivity of basA mutant encoding sphingolipid C4-hydroxylase and the growth defects observed upon treatment with inhibitors of sphingolipid biosynthesis, myriocin and Aureobasidin A. Moreover, we show that YpkA repression mimics genetic or pharmacological depletion of sphingolipids, conditions that induce the production of Reactive Oxygen Species (ROS), and can be partially overcome by deletion of pilA and/or annce102 at high temperatures. Consistent with these findings, pilAΔ and annce102Δ also show differential sensitivity to various oxidative agents, while AnNce102 overexpression can bypass sphingolipid depletion regarding the PilA/SurG foci number and organization, also leading to the mislocalization of PilA to septa.
Collapse
|
21
|
Dominick G, Berryman DE, List EO, Kopchick JJ, Li X, Miller RA, Garcia GG. Regulation of mTOR activity in Snell dwarf and GH receptor gene-disrupted mice. Endocrinology 2015; 156:565-75. [PMID: 25456069 PMCID: PMC4298324 DOI: 10.1210/en.2014-1690] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The involvement of mammalian target of rapamycin (mTOR) in lifespan control in invertebrates, calorie-restricted rodents, and extension of mouse lifespan by rapamycin have prompted speculation that diminished mTOR function may contribute to mammalian longevity in several settings. We show here that mTOR complex-1 (mTORC1) activity is indeed lower in liver, muscle, heart, and kidney tissue of Snell dwarf and global GH receptor (GHR) gene-disrupted mice (GHR-/-), consistent with previous studies. Surprisingly, activity of mTORC2 is higher in fasted Snell and GHR-/- than in littermate controls in all 4 tissues tested. Resupply of food enhanced mTORC1 activity in both controls and long-lived mutant mice but diminished mTORC2 activity only in the long-lived mice. Mice in which GHR has been disrupted only in the liver do not show extended lifespan and also fail to show the decline in mTORC1 and increase in mTORC2 seen in mice with global loss of GHR. The data suggest that the antiaging effects in the Snell dwarf and GHR-/- mice are accompanied by both a decline in mTORC1 in multiple organs and an increase in fasting levels of mTORC2. Neither the lifespan nor mTOR effects appear to be mediated by direct GH effects on liver or by the decline in plasma IGF-I, a shared trait in both global and liver-specific GHR-/- mice. Our data suggest that a more complex pattern of hormonal effects and intertissue interactions may be responsible for regulating both lifespan and mTORC2 function in these mouse models of delayed aging.
Collapse
Affiliation(s)
- Graham Dominick
- Department of Molecular, Cellular, and Developmental Biology (G.D.), University of Michigan College of Literature, Science and the Arts, Ann Arbor, Michigan 48109; Edison Biotechnology Institute (D.E.B., E.O.L., J.J.K.), Ohio University, Athens, Ohio 45701; Department of Pathology (X.L., R.A.M., G.G.G.), University of Michigan School of Medicine Ann Arbor, Michigan 48109; and University of Michigan Geriatrics Center (R.A.M.), Ann Arbor, Michigan 48109
| | | | | | | | | | | | | |
Collapse
|
22
|
Olson DK, Fröhlich F, Christiano R, Hannibal-Bach HK, Ejsing CS, Walther TC. Rom2-dependent phosphorylation of Elo2 controls the abundance of very long-chain fatty acids. J Biol Chem 2014; 290:4238-47. [PMID: 25519905 DOI: 10.1074/jbc.m114.629279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.
Collapse
Affiliation(s)
- Daniel K Olson
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, the Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06150
| | - Florian Fröhlich
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Romain Christiano
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Hans K Hannibal-Bach
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 0230 Odense, Denmark
| | - Christer S Ejsing
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 0230 Odense, Denmark
| | - Tobias C Walther
- From the Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142
| |
Collapse
|
23
|
Muir A, Ramachandran S, Roelants FM, Timmons G, Thorner J. TORC2-dependent protein kinase Ypk1 phosphorylates ceramide synthase to stimulate synthesis of complex sphingolipids. eLife 2014; 3. [PMID: 25279700 PMCID: PMC4217029 DOI: 10.7554/elife.03779] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 10/02/2014] [Indexed: 12/14/2022] Open
Abstract
Plasma membrane lipid composition must be maintained during growth and under environmental insult. In yeast, signaling mediated by TOR Complex 2 (TORC2)-dependent protein kinase Ypk1 controls lipid abundance and distribution in response to membrane stress. Ypk1, among other actions, alleviates negative regulation of L-serine:palmitoyl-CoA acyltransferase, upregulating production of long-chain base precursors to sphingolipids. To explore other roles for TORC2-Ypk1 signaling in membrane homeostasis, we devised a three-tiered genome-wide screen to identify additional Ypk1 substrates, which pinpointed both catalytic subunits of the ceramide synthase complex. Ypk1-dependent phosphorylation of both proteins increased upon either sphingolipid depletion or heat shock and was important for cell survival. Sphingolipidomics, other biochemical measurements and genetic analysis demonstrated that these modifications of ceramide synthase increased its specific activity and stimulated channeling of long-chain base precursors into sphingolipid end-products. Control at this branch point also prevents accumulation of intermediates that could compromise cell growth by stimulating autophagy. DOI:http://dx.doi.org/10.7554/eLife.03779.001 Cells are enclosed by a plasma membrane that separates and protects each cell from its environment. These membranes are made of a variety of proteins and fatty molecules called lipids, which are carefully organized throughout the membrane. When cells experience stresses such as heat or excessive pressure, the plasma membrane changes to help protect the cell. In particular, more of a group of lipids called sphingolipids are incorporated into the membrane under stress conditions. In yeast cells, a protein called Ypk1 plays an important role in protecting the cell from stress. Ypk1 controls the activity of a number of proteins that are responsible for balancing the amounts of different types of lipids in cell membranes. The combined action of these Ypk1-dependent proteins leads to the remodelling of the cell membrane to protect against stress. While several proteins that work with Ypk1 are known, some of the changes that serve to protect the plasma membrane cannot be explained by the action of these proteins alone. To provide a more comprehensive picture of how Ypk1 helps cells to respond to changes in the environment, Muir et al. developed a new approach that combines biochemical, genetic and bioinformatics techniques to survey the yeast genome for proteins that could be Ypk1 targets. Muir et al. first produced a list of potential candidate proteins by searching for proteins with features similar to known Ypk1 targets, and then considered those that are known to be involved in processes that also involve Ypk1. To filter the potential targets further, Muir et al. performed experiments in yeast cells to see which proteins prevented normal cell growth if they were over-produced. Further experiments investigating which of these proteins interact with Ypk1 when purified identified 12 new proteins that are most likely targets of the Ypk1 protein. Two of these newly identified Ypk1 target proteins form part of an enzyme complex called ceramide synthase, which produces a family of waxy lipid molecules from which more complex sphingolipids are built. Muir et al. discovered that during stress, Ypk1 enhances the activity of the ceramide synthase enzyme, which increases lipid production and the amount of sphingolipid deposited in the cell membrane. If this process is interrupted at any stage, cells struggle to survive under stress conditions. The other candidate proteins identified by Muir et al. remain to be validated and characterized as Ypk1 targets. Nevertheless, the techniques used have conclusively identified some new Ypk1 targets and could also be applied to similar searches for proteins targeted in other biological processes. DOI:http://dx.doi.org/10.7554/eLife.03779.002
Collapse
Affiliation(s)
- Alexander Muir
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Subramaniam Ramachandran
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Françoise M Roelants
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Garrett Timmons
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
24
|
Surlow BA, Cooley BM, Needham PG, Brodsky JL, Patton-Vogt J. Loss of Ypk1, the yeast homolog to the human serum- and glucocorticoid-induced protein kinase, accelerates phospholipase B1-mediated phosphatidylcholine deacylation. J Biol Chem 2014; 289:31591-604. [PMID: 25258318 DOI: 10.1074/jbc.m114.581157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ypk1, the yeast homolog of the human serum- and glucocorticoid-induced kinase (Sgk1), affects diverse cellular activities, including sphingolipid homeostasis. We now report that Ypk1 also impacts the turnover of the major phospholipid, phosphatidylcholine (PC). Pulse-chase radiolabeling reveals that a ypk1Δ mutant exhibits increased PC deacylation and glycerophosphocholine production compared with wild type yeast. Deletion of PLB1, a gene encoding a B-type phospholipase that hydrolyzes PC, in a ypk1Δ mutant curtails the increased PC deacylation. In contrast to previous data, we find that Plb1 resides in the ER and in the medium. Consistent with a link between Ypk1 and Plb1, the levels of both Plb1 protein and PLB1 message are elevated in a ypk1Δ strain compared with wild type yeast. Furthermore, deletion of PLB1 in a ypk1Δ mutant exacerbates phenotypes associated with loss of YPK1, including slowed growth and sensitivity to cell wall perturbation, suggesting that increased Plb1 activity buffers against the loss of Ypk1. Because Plb1 lacks a consensus phosphorylation site for Ypk1, we probed other processes under the control of Ypk1 that might be linked to PC turnover. Inhibition of sphingolipid biosynthesis by the drug myriocin or through utilization of a lcb1-100 mutant results in increased PLB1 expression. Furthermore, we discovered that the increase in PLB1 expression observed upon inhibition of sphingolipid synthesis or loss of Ypk1 is under the control of the Crz1 transcription factor. Taken together, these results suggest a functional interaction between Ypk1 and Plb1 in which altered sphingolipid metabolism up-regulates PLB1 expression via Crz1.
Collapse
Affiliation(s)
- Beth A Surlow
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Benjamin M Cooley
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| | - Patrick G Needham
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jeffrey L Brodsky
- the Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jana Patton-Vogt
- From the Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 and
| |
Collapse
|
25
|
Affiliation(s)
- Lois M. Douglas
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| | - James B. Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York 11794; ,
| |
Collapse
|
26
|
Klug L, Daum G. Yeast lipid metabolism at a glance. FEMS Yeast Res 2014; 14:369-88. [DOI: 10.1111/1567-1364.12141] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 01/07/2023] Open
Affiliation(s)
- Lisa Klug
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| | - Günther Daum
- Institute of Biochemistry; Graz University of Technology; Graz Austria
| |
Collapse
|
27
|
Insight into Tor2, a budding yeast microdomain protein. Eur J Cell Biol 2014; 93:87-97. [DOI: 10.1016/j.ejcb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 11/20/2022] Open
|
28
|
Teixeira V, Medeiros TC, Vilaça R, Moradas-Ferreira P, Costa V. Reduced TORC1 signaling abolishes mitochondrial dysfunctions and shortened chronological lifespan of Isc1p-deficient cells. MICROBIAL CELL 2014; 1:21-36. [PMID: 28357207 PMCID: PMC5349163 DOI: 10.15698/mic2014.01.121] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The target of rapamycin (TOR) is an important signaling pathway on a hierarchical
network of interacting pathways regulating central biological processes, such as
cell growth, stress response and aging. Several lines of evidence suggest a
functional link between TOR signaling and sphingolipid metabolism. Here, we
report that the TORC1-Sch9p pathway is activated in cells lacking Isc1p, the
yeast orthologue of mammalian neutral sphingomyelinase 2. The deletion of
TOR1 or SCH9 abolishes the premature
aging, oxidative stress sensitivity and mitochondrial dysfunctions displayed by
isc1Δ cells and this is correlated with the suppression of
the autophagic flux defect exhibited by the mutant strain. The protective effect
of TOR1 deletion, as opposed to that of SCH9
deletion, is not associated with the attenuation of Hog1p hyperphosphorylation,
which was previously implicated in isc1Δ phenotypes. Our data
support a model in which Isc1p regulates mitochondrial function and
chronological lifespan in yeast through the TORC1-Sch9p pathway although Isc1p
and TORC1 also seem to act through independent pathways, as
isc1Δtor1Δ phenotypes are intermediate to
those displayed by isc1Δ and tor1Δ cells. We
also provide evidence that TORC1 downstream effectors, the type 2A protein
phosphatase Sit4p and the AGC protein kinase Sch9p, integrate nutrient and
stress signals from TORC1 with ceramide signaling derived from Isc1p to regulate
mitochondrial function and lifespan in yeast. Overall, our results show that
TORC1-Sch9p axis is deregulated in Isc1p-deficient cells, contributing to
mitochondrial dysfunction, enhanced oxidative stress sensitivity and premature
aging of isc1Δ cells.
Collapse
Affiliation(s)
- Vitor Teixeira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia C Medeiros
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Rita Vilaça
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Pedro Moradas-Ferreira
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Vítor Costa
- Instituto de Biologia Molecular e Celular, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal. ; Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Abstract
The target of rapamycin (TOR) is an evolutionarily conserved protein kinase that regulates cell growth in response to various environmental as well as intracellular cues through the formation of 2 distinct TOR complexes (TORC), TORC1 and TORC2. Dysregulation of TORC1 and TORC2 activity is closely associated with various diseases, including diabetes, cancer and neurodegenerative disorders. Over the past few years, new regulatory mechanisms of TORC1 and TORC2 activity have been elucidated. Furthermore, recent advances in the study of TOR inhibitors have revealed previously unrecognized cellular functions of TORC1. In this review, we briefly summarize the current understanding of the evolutionarily conserved TOR signalling from upstream regulators to downstream events.
Collapse
Affiliation(s)
- Terunao Takahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | |
Collapse
|