1
|
Almujri SS, Almalki WH. The paradox of autophagy in cancer: NEAT1's role in tumorigenesis and therapeutic resistance. Pathol Res Pract 2024; 262:155523. [PMID: 39173466 DOI: 10.1016/j.prp.2024.155523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Cancer remains a current active problem of modern medicine, a process during which cell growth and proliferation become uncontrolled. However, the role of autophagy in the oncological processes is counterintuitive and, at the same time, increasingly influential on the formation, development, and response to therapy of oncological diseases. Autophagy is a vital cellular process that removes defective proteins and organelles and supports cellular homeostasis. Autophagy can enhance the ability to form new tumors and suppress this formation in cancer. The dual potential of apoptosis may be the reason for this duality in either promoting or impeding the survival of cancer cells, depending on the situation, including starvation or treatment stress. Furthermore, long non-coding RNA NEAT1, which has been linked to several stages of carcinogenesis and in all forms of the illness, has drawn attention as a major player in cancer biology. NEAT1 is a structural portion of nuclear paraspeckles and has roles in deactivating expression in both transcriptional and post-transcriptional levels. NEAT1 acts in carcinogenesis in numerous ways, comprising interactions with microRNAs, the influence of gene articulation, regulation of epigenetics, and engagement in signalling cascades. In addition, the complexity of NEAT1's role in cancer occurrence is amplified by its place in regulating cancer stem cells and the tumor microenvironment. NEAT1's interaction with autophagy further complicates the already complicated function of this RNA in cancer biology. NEAT1 has been linked to autophagy in several types of cancer, influencing autophagy pathways and altering its stress response and tumor cell viability. Understanding the interrelation between NEAT1, autophagy, and cancer will enable practitioners to identify novel treatment targets and approaches to disrupt oncogenic processes, reduce the occurrence of treatment resistance, and increase patient survival rates. Specialized treatment strategies and regimens are thus achievable. In the present review, the authors analyze sophisticated relationship schemes in cancer: The NEAT1 pathway and the process of autophagy.
Collapse
Affiliation(s)
- Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Aseer 61421, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Soltaninezhad P, Arab F, Mohtasham N, FakherBaheri M, Kavishahi NN, Aghaee-Bakhtiari SH, Zare-Mahmoodabadi R, Pakfetrat A, Taban KI, Mohajertehran F. Unveiling the Potential of Serum MiR-483-5p: A Promising Diagnostic and Prognostic Biomarker in OLP and OSCC Patients by In silico Analysis of Differential Gene Expression. Curr Pharm Des 2024; 30:310-322. [PMID: 38310566 DOI: 10.2174/0113816128276149240108163407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) and oral lichen planus (OLP) are two separate conditions affecting the mouth and result in varying clinical outcomes and levels of malignancy. Achieving early diagnosis and effective therapy planning requires the identification of reliable diagnostic biomarkers for these disorders. MicroRNAs (miRNAs) have recently received attention as powerful biomarkers for various illnesses, including cancer. In particular, miR-483-5p is a promising diagnostic and prognostic biomarker in various cancers. Therefore, this study aimed to investigate the role of serum miR-483-5p in the diagnosis and prognosis of OLP and OSCC patients by in silico analysis of differential gene expression. METHODS GSE23558 and GSE52130 data sets were selected, and differential gene expression analysis was performed using microarray data from GSE52130 and GSE23558. The analysis focused on comparing OLP and OSCC samples with normal samples. The genes intersected through the differential gene expression analysis were then extracted to determine the overlapping genes among the upregulated or downregulated DEGs. The downregulated genes among the DEGs were subsequently imported into the miRWalk database to search for potential target genes of miRNA 483-5p that lacked validation. To gain insight into the biological pathways associated with the DEGs, we conducted pathway analysis utilizing tools, such as Enrichr. Additionally, the cellular components associated with these DEGs were investigated by analyzing the String database. On the other hand, blood serum samples were collected from 35 OSCC patients, 34 OLP patients, and 34 healthy volunteers. The expression level of miR-483-5p was determined using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The Kruskal-Wallis test was utilized to investigate the considerable correlation. Moreover, this study explored the prognostic value of miR-483-5p through its association with clinicopathological parameters in OSCC patients. RESULTS The results showed that serum expression of miR-483-5p was considerably higher in OSCC patients compared to OLP patients and healthy controls (p 0.0001) and that this difference was statistically significant. Furthermore, elevated miR-483-5p expression was associated with tumor size, lymph node metastasis, and stage of tumor nodal metastasis in OSCC patients (p 0.001, p 0.038, and p 0.0001, respectively). In silico analysis found 71 upregulated genes at the intersection of upregulated DEGs and 44 downregulated genes at the intersection of downregulated DEGs, offering insight into the potential underlying mechanisms of miR-483-5p's engagement in OSCC and OLP. The majority of these DEGs were found to be involved in autophagy pathways, but DEGs involved in the histidine metabolism pathway showed significant results. Most of these DEGs were located in the extracellular region. After screening for downregulated genes that were invalidated, miRNA 483-5p had 7 target genes. CONCLUSION This study demonstrates the potential of serum miR-483-5p as a promising diagnostic and prognostic biomarker in OSCC and OLP patients. Its upregulation in OSCC patients and its association with advanced tumor stage and potential metastasis suggest the involvement of miR-483-5p in critical signaling pathways involved in cell proliferation, apoptosis, and cell cycle regulation, making it a reliable indicator of disease progression. Nevertheless, additional experimental studies are essential to validate these findings and establish a foundation for the advancement of targeted therapies and personalized treatment approaches.
Collapse
MESH Headings
- Humans
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/pathology
- Computer Simulation
- Gene Expression Regulation, Neoplastic
- Lichen Planus, Oral/genetics
- Lichen Planus, Oral/blood
- Lichen Planus, Oral/diagnosis
- MicroRNAs/blood
- MicroRNAs/genetics
- Mouth Neoplasms/genetics
- Mouth Neoplasms/blood
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/pathology
- Prognosis
Collapse
Affiliation(s)
| | - Fatemeh Arab
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadhossein FakherBaheri
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nima Nikbin Kavishahi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Reza Zare-Mahmoodabadi
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atessa Pakfetrat
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Izadi Taban
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farnaz Mohajertehran
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Habault J, Thonnart N, Ram-Wolff C, Bagot M, Bensussan A, Poyet JL, Marie-Cardine A. Validation of AAC-11-Derived Peptide Anti-Tumor Activity in a Single Graft Sézary Patient-Derived Xenograft Mouse Model. Cells 2022; 11:cells11192933. [PMID: 36230895 PMCID: PMC9564267 DOI: 10.3390/cells11192933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Sézary syndrome (SS) is an aggressive cutaneous T cell lymphoma with poor prognosis mainly characterized by the expansion of a tumor CD4+ T cell clone in both skin and blood. So far, the development of new therapeutic strategies has been hindered by a lack of reproducible in vivo models closely reflecting patients’ clinical features. We developed an SS murine model consisting of the intravenous injection of Sézary patients’ PBMC, together with a mixture of interleukins, in NOD-SCID-gamma mice. Thirty-four to fifty days after injection, mice showed skin disorders similar to that observed in patients, with the detection of epidermis thickening and dermal tumor T cell infiltrates. Although experimental variability was observed, Sézary cells could be tracked in the blood stream, confirming that our model could efficiently exhibit both skin and blood involvement. Using this model, we evaluated the therapeutic potential of RT39, a cell-penetrating peptide derived from the survival protein anti-apoptosis clone 11 (AAC-11), that we previously characterized as specifically inducing apoptosis of Sézary patients’ malignant clone ex vivo. Systemic administration of RT39 led to cutaneous tumor T cells depletion, demonstrating efficient malignant cells’ targeting and a favorable safety profile. These preclinical data confirmed that RT39 might be an innovative therapeutic tool for Sézary syndrome.
Collapse
Affiliation(s)
- Justine Habault
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Nicolas Thonnart
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Caroline Ram-Wolff
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Department of Dermatology, Saint Louis Hospital, AP-HP, 75010 Paris, France
| | - Martine Bagot
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Department of Dermatology, Saint Louis Hospital, AP-HP, 75010 Paris, France
| | - Armand Bensussan
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
| | - Anne Marie-Cardine
- INSERM U976 Team 1, Onco-Dermatology and Therapies, 75010 Paris, France
- Saint Louis Research Institute, Université Paris Cité, 75010 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Lu J, Fang Q, Ge X. Role and Mechanism of mir-5189-3p in Deep Vein Thrombosis of Lower Extremities. Ann Vasc Surg 2021; 77:288-295. [PMID: 34416282 DOI: 10.1016/j.avsg.2021.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study is to investigate the role and mechanism of mir-5189-3p in deep vein thrombosis (DVT) in lower extremity. METHODS The blood samples were collected from Kazakh patients with DVT in lower extremity and were subjected to microRNA sequencing. Bioinformatics were used to identify mir-5189-3p and its target genes. Dual luciferase reporter assay was used to determine the regulatory effect of mir-5189-3p on JAG1. SD rats were randomly divided into normal control, DVT model, hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups. HE staining was used to observe the pathological changes. TUNEL method was used to observe apoptosis. Western blot was used to detect Bax and Bcl-2 protein expression. Real-time quantitative PCR was used to detect JAG1, Notch1 and Hes1 mRNA. RESULTS The target of Has-miR-5189-3p was JAG1. Co-transfection of miR-5189-3p mimics and pmirGLO/JAG1 wild-type plasmid induced significantly decreased luciferase activity. In hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups, there were more nucleated cells in the thrombus tissues, and the organization degree obviously increased. Signs of blood flow recanalization were observed. The apoptosis of hsa-miR-5189-3p mimics and hsa-miR-5189-3p negative control groups was lower than that in DVT model group. Furthermore, mir-5189-3p mimics significantly increased the mRNA levels of JAG1, Notch1 and Hes1. Additionally, mir-5189-3p mimics significantly increased Bcl-2 while decreased Bax protein. CONCLUSIONS mir-5189-3p could inhibit apoptosis and promote thrombus organization in DVT possibly via Notch signaling pathway. Mir-5189-3p can be used as a potential target for DVT treatment.
Collapse
Affiliation(s)
- Jing Lu
- Xinjiang Medical University, Urumqi, China
| | - Qingbo Fang
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohu Ge
- Department of Vascular Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.
| |
Collapse
|
5
|
Fu Z, Wang L, Li S, Chen F, Au-Yeung KKW, Shi C. MicroRNA as an Important Target for Anticancer Drug Development. Front Pharmacol 2021; 12:736323. [PMID: 34512363 PMCID: PMC8425594 DOI: 10.3389/fphar.2021.736323] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer has become the second greatest cause of death worldwide. Although there are several different classes of anticancer drugs that are available in clinic, some tough issues like side-effects and low efficacy still need to dissolve. Therefore, there remains an urgent need to discover and develop more effective anticancer drugs. MicroRNAs (miRNAs) are a class of small endogenous non-coding RNAs that regulate gene expression by inhibiting mRNA translation or reducing the stability of mRNA. An abnormal miRNA expression profile was found to exist widely in cancer cell, which induces limitless replicative potential and evading apoptosis. MiRNAs function as oncogenes (oncomiRs) or tumor suppressors during tumor development and progression. It was shown that regulation of specific miRNA alterations using miRNA mimics or antagomirs can normalize the gene regulatory network and signaling pathways, and reverse the phenotypes in cancer cells. The miRNA hence provides an attractive target for anticancer drug development. In this review, we will summarize the latest publications on the role of miRNA in anticancer therapeutics and briefly describe the relationship between abnormal miRNAs and tumorigenesis. The potential of miRNA-based therapeutics for anticancer treatment has been critically discussed. And the current strategies in designing miRNA targeting therapeutics are described in detail. Finally, the current challenges and future perspectives of miRNA-based therapy are conferred.
Collapse
Affiliation(s)
- Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Liu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Shijun Li
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | - Fen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| | | | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, China
| |
Collapse
|
6
|
McFee RM, Romereim SM, Snider AP, Summers AF, Pohlmeier WE, Kurz SG, Cushman RA, Davis JS, Wood JR, Cupp AS. A high-androgen microenvironment inhibits granulosa cell proliferation and alters cell identity. Mol Cell Endocrinol 2021; 531:111288. [PMID: 33905753 DOI: 10.1016/j.mce.2021.111288] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022]
Abstract
A naturally occurring bovine model with excess follicular fluid androstenedione (High A4), reduced fertility, and polycystic ovary syndrome (PCOS)-like characteristics has been identified. We hypothesized High A4 granulosa cells (GCs) would exhibit altered cell proliferation and/or steroidogenesis. Microarrays of Control and High A4 GCs combined with Ingenuity Pathway Analysis indicated that High A4 GCs had cell cycle inhibition and increased expression of microRNAs that inhibit cell cycle genes. Granulosa cell culture confirmed that A4 treatment decreased GC proliferation, increased anti-Müllerian hormone, and increased mRNA for CTNNBIP1. Increased CTNNBIP1 prevents CTNNB1 from interacting with members of the WNT signaling pathway thereby inhibiting the cell cycle. Expression of CYP17A1 was upregulated in High A4 GCs presumably due to reduced FOS mRNA expression compared to Control granulosa cells. Furthermore, comparisons of High A4 GC with thecal and luteal cell transcriptomes indicated an altered cellular identity and function contributing to a PCOS-like phenotype.
Collapse
Affiliation(s)
- Renee M McFee
- University of Nebraska-Lincoln, School of Veterinary Medicine and Biomedical Sciences, P.O. Box 830905, Lincoln, NE, 68583-0905, USA
| | - Sarah M Romereim
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Alexandria P Snider
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Adam F Summers
- New Mexico State University, Animal and Range Sciences, Knox Hall Room 202, MSC 3-I Las Cruces, NM 88003, USA
| | - William E Pohlmeier
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Scott G Kurz
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Robert A Cushman
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, Clay Center, NE, 68933, USA
| | - John S Davis
- University of Nebraska Medical Center, Olson Center for Women's Health, 983255 Nebraska Medical Center, Omaha, NE, 68198-3255, USA; VA Nebraska-Western Iowa Health Care System, Omaha, NE, 68105, USA
| | - Jennifer R Wood
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA
| | - Andrea S Cupp
- University of Nebraska-Lincoln, Department of Animal Science, 3940 Fair Street, Lincoln, NE, 68583-0908, USA.
| |
Collapse
|
7
|
Habault J, Thonnart N, Pasquereau-Kotula E, Bagot M, Bensussan A, Villoutreix BO, Marie-Cardine A, Poyet JL. PAK1-Dependent Antitumor Effect of AAC-11‒Derived Peptides on Sézary Syndrome Malignant CD4 + T Lymphocytes. J Invest Dermatol 2021; 141:2261-2271.e5. [PMID: 33745910 DOI: 10.1016/j.jid.2021.01.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/10/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023]
Abstract
Sézary syndrome is an aggressive form of cutaneous T-cell lymphoma characterized by the presence of a malignant CD4+ T-cell clone in both blood and skin. Its pathophysiology is still poorly understood, and the development of targeted therapies is hampered by the absence of specific target proteins. AAC-11 plays important roles in cancer cell progression and survival and thus has been considered as an anticancer therapeutic target. In this study, we show that a peptide called RT39, comprising a portion of AAC-11‒binding site to its protein partners coupled to the penetratin sequence, induces the specific elimination of the malignant T-cell clone both ex vivo on the circulating cells of patients with Sézary syndrome and in vivo in a subcutaneous xenograft mouse model. RT39 acts by direct binding to PAK1 that is overexpressed, located in the plasma membrane, and constitutively activated in Sézary cells, resulting in their selective depletion by membranolysis. Along with the absence of toxicity, our preclinical efficacy evidence suggests that RT39 might represent a promising alternative therapeutic tool for Sézary syndrome because it spares the nonmalignant immune cells and, contrary to antibody-based immunotherapies, does not require the mobilization of the cellular immunity that shows heavy deficiencies at advanced stages of the disease.
Collapse
Affiliation(s)
- Justine Habault
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Nicolas Thonnart
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Ewa Pasquereau-Kotula
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Martine Bagot
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France; Département de Dermatologie, Hôpital Saint Louis, AP-HP, Paris, France
| | - Armand Bensussan
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Bruno O Villoutreix
- INSERM U1141, NeroDiderot, Hôpital Robert-Debré, Paris, France; c-Dithem, Inserm Consortium for Discovery and Innovation in Therapy and Medicine, Paris, France
| | - Anne Marie-Cardine
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Jean-Luc Poyet
- Onco-Dermatology and Therapies, INSERM UMRS976, Hôpital Saint Louis, Paris, France; Institut de Recherche Saint Louis, Université de Paris, Paris, France; c-Dithem, Inserm Consortium for Discovery and Innovation in Therapy and Medicine, Paris, France.
| |
Collapse
|
8
|
Wang Q, Zhu Q, Ye Q, Wang J, Dong Q, Chen Y, Wang M, Fu Y, Wu R, Wu T. STAT3 Suppresses Cardiomyocytes Apoptosis in CVB3-Induced Myocarditis Via Survivin. Front Pharmacol 2021; 11:613883. [PMID: 33658937 PMCID: PMC7919905 DOI: 10.3389/fphar.2020.613883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Viral myocarditis (VMC) is a common inflammatory cardiovascular disease with unclear mechanisms, which mainly affects children and adolescents. Apoptosis is the key to CVB3-induced myocarditis, and blocking this process may be beneficial to the therapy of VMC. Hence, this study aimed to explore the protective function of STAT3 on cardiomyocyte apoptosis of VMC and its underlying mechanisms. Methods and Results: In this research, we confirmed that STAT3 was significantly activated in both animal and cell models of VMC. To further clarify what role did STAT3 play in VMC, AG490, an inhibitor of STAT3, was used to suppress p-STAT3. Our results demonstrated that decreased expression of p-STAT3 caused by AG490 significantly aggravated severity of VMC with elevated myocardial inflammation, deteriorative ventricular systolic function and increased mortality. It suggested that STAT3 plays a protective role in VMC. To further identify the anti-apoptosis impact that activated STAT3 made, we constructed lentivirus to regulate the expression of STAT3 in NMCs. We found that up-regulated activated STAT3 attenuated cardiomyocyte apoptosis, but down-regulated one aggravated that, which verified activated STAT3 played an anti-apoptosis role in VMC. Following that, we explored what elements are involved in the anti-apoptotic mechanism of activated STAT3 by using survivin inhibitor YM155. The result showed the anti-apoptotic effect of activated STAT3 does not work in the case of survivin inhibition. Conclusion: Our findings demonstrated STAT3 by targeting survivin alleviated cardiomyocyte apoptosis in CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Qiaoyu Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiongjun Zhu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qiaofang Ye
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiajun Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qianqian Dong
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Youran Chen
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Minna Wang
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yu Fu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Rongzhou Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Tingting Wu
- Children's Heart Center, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Feng H, Song Z. Identification of core miRNAs and regulatory pathways in breast cancer by integrated bioinformatics analysis. Mol Omics 2021; 17:277-287. [PMID: 33462573 DOI: 10.1039/d0mo00171f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Breast cancer (BC) ranks first among malignancies in the female population due to its complicated pathological progression and poor prognosis. Hence, the aim of the present study was to identify potential molecular prognostic biomarkers able to predict the prognosis of BC patients. We integrated two microRNA (miRNA) expression microarrays and three gene microarrays related to BC from the NCBI Gene Expression Comprehensive (GEO) database to screen for differentially expressed miRNAs and identify their regulatory networks. The Kaplan-Meier plotter online analysis tool was used to assess the overall survival value of miRNAs expression in BC patients. The LinkedOmics online tool was used to analyze genes correlated with miRNAs expression. To clarify the upstream regulation mechanism of genes, we used ChIP-Atlas to identify and screen for transcription factors and visually verify them using the Integrative Genomics Viewer. To further analyze the downstream regulatory mechanism of miRNA in BC, we verified differentially expressed genes (DEGs) correlated to miRNAs in three GEO gene microarrays and the gene set predicted by miRWalk. The open access Metascape program allowed analysis of Gene Ontology (GO) processes, KEGG pathways and GO enrichment was performed on the DEGs. To further identify hub genes, Cytoscape software and its plug-in were applied to construct protein-protein interaction networks. In the present study, several possible molecules and related pathways related to miR-483 were identified by bioinformatics analysis. These molecules and pathways might represent key mechanisms involved in BC progression and development. This work provides a novel view and insight in the pathogenesis, treatment and prognosis for BC.
Collapse
Affiliation(s)
- Haizhou Feng
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China.
| | - Zhenhui Song
- Department of Veterinary Medicine, Southwest University, Chongqing 402460, China.
| |
Collapse
|
10
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
11
|
Zhao L, Chen T, Tang X, Li S, Liang R, Wang Y. Medulloblastoma malignant biological behaviors are associated with HOTAIR/miR-483-3p/CDK4 axis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:886. [PMID: 32793730 PMCID: PMC7396793 DOI: 10.21037/atm-20-5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 11/06/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Although the 5-year survival rate is high, patients with relapsed medulloblastoma have a guarded prognosis. HOX transcript antisense RNA (HOTAIR) has been proved to be related to the metastasis of various tumors. Therefore, the molecular mechanism of HOTAIR in medulloblastoma cells was investigated in this study. METHODS HOTAIR was stably silenced in medulloblastoma cells (Daoy and D341). Cell proliferation and apoptosis were detected by 5'-Bromo-2'-deoxyuridine (BrdU) staining, Hoechst 33342 staining, immunohistochemical (IHC), Terminal-deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) and flow cytometry, respectively. The targeted relationship between HOTAIR/Cyclin-dependent kinase 4 (CDK4) and miR-483-3p were predicted by bioinformatics and confirmed by luciferase reporter assay. Balb/C nude mice were inoculated with shRNA-HOTAIR transfected Daoy cells. RESULTS We found that the down-regulation of HOTAIR inhibited proliferation and induced apoptosis. Sh-RNA-HOTAIR also inhibited the expression of CKD4. The CDK4 dependent increase of cell proliferation and decrease of cell apoptosis were reversed by shRNA-HOTAIR. Finally, a xenograft model of medulloblastoma in nude mice was built, and the effect of shRNA-HOTAIR on the growth of tumors was analyzed by RT-PCR, immunofluorescence staining, and TUNEL staining. The data suggested interference of HOTAIR inhibited the growth, tumor weight, cell proliferation, and promoted cell apoptosis. CONCLUSIONS Our study altogether demonstrated HOTAIR influence cell proliferation and apoptosis by regulation of miR-483-3p and CDK4 in medulloblastoma cells. HOTAIR can be used as a candidate for potential applications in the treatment of medulloblastoma.
Collapse
Affiliation(s)
- Long Zhao
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tao Chen
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurosurgery, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaoping Tang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shun Li
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Ruofei Liang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yuanchuan Wang
- Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
12
|
Xiao Y, Guo Q, Jiang TJ, Yuan Y, Yang L, Wang GW, Xiao WF. miR‑483‑3p regulates osteogenic differentiation of bone marrow mesenchymal stem cells by targeting STAT1. Mol Med Rep 2019; 20:4558-4566. [PMID: 31702021 PMCID: PMC6797999 DOI: 10.3892/mmr.2019.10700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/15/2019] [Indexed: 01/14/2023] Open
Abstract
Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is regulated by a variety of intracellular regulatory factors including osterix, runt-related transcription factor 2 (RUNX2), bone morphogenetic proteins and transforming growth factorβ. Recent studies have shown that microRNAs (miRs) serve a crucial role in this process. In the present study, miR-483-3p levels were significantly increased during osteogenic differentiation of mouse and human BMSCs. Overexpression of miR-483-3p promoted osteogenic differentiation, whereas inhibition of miR-483-3p reversed these effects. miR-483-3p regulated osteogenic differentiation of BMSCs by targeting STAT1, and thus enhancing RUNX2 transcriptional activity and RUNX2 nuclear translocation. In vivo, overexpression of miR-483-3p using a BMSC-specific aptamer delivery system stimulated bone formation in aged mice. Therefore, the present study suggested that miR-483-3p promoted osteogenic differentiation of BMSCs by targeting STAT1, and miR-483-3 prepresent a potential therapeutic target for age-related bone loss.
Collapse
Affiliation(s)
- Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Tie-Jian Jiang
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ying Yuan
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Li Yang
- Department of Endocrinology, Endocrinology Research Center, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guang-Wei Wang
- Department of Medicine, Hunan University of Medicine, Huaihua, Hunan 418000, P.R. China
| | - Wen-Feng Xiao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
13
|
Liang H, Xu Y, Zhang Q, Yang Y, Mou Y, Gao Y, Chen R, Chen C, Dai P. MiR-483-3p regulates oxaliplatin resistance by targeting FAM171B in human colorectal cancer cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:725-736. [PMID: 30861353 DOI: 10.1080/21691401.2019.1569530] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxaliplatin resistance limits the efficiency of treatment for colorectal cancer (CRC). Studies have shown that abnormal expression of microRNAs (miRNAs) were associated with tumorigenesis, cancer development and chemoresistance. The purpose of this study was to identify potential miRNAs related to oxaliplatin resistance in CRC cells. In this work, using small RNA sequencing (small RNA-Seq) and transcriptome sequencing (RNA-Seq), we found that down-regulated miR-483-3p was concurrent with up-regulated FAM171B in oxaliplatin-resistant colorectal cancer cell line HCT116/L as compared with its parental cell line HCT116. Transient transfection of miR-483-3p mimics markedly decreased the levels of FAM171B and restored oxaliplatin responsiveness of HCT116/L cells, and this alteration enhanced cell apoptosis and weakened cell migration. Whereas miR-483-3p inhibitor dramatically promoted the expression of FAM171B and enhanced oxaliplatin resistance of HCT116 cells by repressing cell apoptosis. Furthermore, knockdown of FAM171B in HCT116/L cells could also sensitize its reaction of the treatment with oxaliplatin, which was verified by the reduced cell migration. These findings demonstrate that FAM171B is a functional target of miR-483-3p in the regulation of oxaliplatin resistance in human CRC cells.
Collapse
Affiliation(s)
- Hui Liang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yisong Xu
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Qiang Zhang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yu Yang
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yueyang Mou
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Yingchun Gao
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Rui Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Chao Chen
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| | - Penggao Dai
- a National Engineering Research Center for Miniaturized Detection Systems, School of Life Sciences , Northwest University , Xi'an , China
| |
Collapse
|
14
|
A comprehensive analysis of core polyadenylation sequences and regulation by microRNAs in a set of cancer predisposition genes. Gene 2019; 712:143943. [PMID: 31229581 DOI: 10.1016/j.gene.2019.143943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/27/2022]
Abstract
Two core polyadenylation elements (CPE) located in the 3' untranslated region of eukaryotic pre-mRNAs play an essential role in their processing: the polyadenylation signal (PAS) AAUAAA and the cleavage site (CS), preferentially a CA dinucleotide. Herein, we characterized PAS and CS sequences in a set of cancer predisposition genes (CPGs) and performed an in silico investigation of microRNAs (miRNAs) regulation to identify potential tumor-suppressive and oncogenic miRNAs. NCBI and alternative polyadenylation databases were queried to characterize CPE sequences in 117 CPGs, including 81 and 17 known tumor suppressor genes and oncogenes, respectively. miRNA-mediated regulation analysis was performed using predicted and validated data sources. Based on NCBI analyses, we did not find an established PAS in 21 CPGs, and verified that the majority of PAS already described (74.4%) had the canonical sequence AAUAAA. Interestingly, "AA" dinucleotide was the most common CS (37.5%) associated with this set of genes. Approximately 90% of CPGs exhibited evidence of alternative polyadenylation (more than one functional PAS). Finally, the mir-192 family was significantly overrepresented as regulator of tumor suppressor genes (P < 0.01), which suggests a potential oncogenic function. Overall, this study provides a landscape of CPE in CPGs, which might be useful in development of future molecular analyses covering these frequently neglected regulatory sequences.
Collapse
|
15
|
Khosravi L, Sajjad Sisakhtnezhad, Akrami H. Placenta Growth Factor Influences miR-483-5p, miR-483-3p, miR-4669 and miR-16-5p Expression in MKN-45-Derived Spheroid Body-Forming Cells. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Esmerats JF, Villa-Roel N, Kumar S, Gu L, Salim MT, Ohh M, Taylor WR, Nerem RM, Yoganathan AP, Jo H. Disturbed Flow Increases UBE2C (Ubiquitin E2 Ligase C) via Loss of miR-483-3p, Inducing Aortic Valve Calcification by the pVHL (von Hippel-Lindau Protein) and HIF-1α (Hypoxia-Inducible Factor-1α) Pathway in Endothelial Cells. Arterioscler Thromb Vasc Biol 2019; 39:467-481. [PMID: 30602302 PMCID: PMC6393167 DOI: 10.1161/atvbaha.118.312233] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022]
Abstract
Objective- Calcific aortic valve (AV) disease, characterized by AV sclerosis and calcification, is a major cause of death in the aging population; however, there are no effective medical therapies other than valve replacement. AV calcification preferentially occurs on the fibrosa side, exposed to disturbed flow (d-flow), whereas the ventricularis side exposed to predominantly stable flow remains protected by unclear mechanisms. Here, we tested the role of novel flow-sensitive UBE2C (ubiquitin E2 ligase C) and microRNA-483-3p (miR-483) in flow-dependent AV endothelial function and AV calcification. Approach and Results- Human AV endothelial cells and fresh porcine AV leaflets were exposed to stable flow or d-flow. We found that UBE2C was upregulated by d-flow in human AV endothelial cells in the miR-483-dependent manner. UBE2C mediated OS-induced endothelial inflammation and endothelial-mesenchymal transition by increasing the HIF-1α (hypoxia-inducible factor-1α) level. UBE2C increased HIF-1α by ubiquitinating and degrading its upstream regulator pVHL (von Hippel-Lindau protein). These in vitro findings were corroborated by immunostaining studies using diseased human AV leaflets. In addition, we found that reduction of miR-483 by d-flow led to increased UBE2C expression in human AV endothelial cells. The miR-483 mimic protected against endothelial inflammation and endothelial-mesenchymal transition in human AV endothelial cells and calcification of porcine AV leaflets by downregulating UBE2C. Moreover, treatment with the HIF-1α inhibitor (PX478) significantly reduced porcine AV calcification in static and d-flow conditions. Conclusions- These results suggest that miR-483 and UBE2C and pVHL are novel flow-sensitive anti- and pro-calcific AV disease molecules, respectively, that regulate the HIF-1α pathway in AV. The miR-483 mimic and HIF-1α pathway inhibitors may serve as potential therapeutics of calcific AV disease.
Collapse
Affiliation(s)
- Joan Fernandez Esmerats
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Nicolas Villa-Roel
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Sandeep Kumar
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Lina Gu
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
| | - Md Tausif Salim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Michael Ohh
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, CA
| | - W. Robert Taylor
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| | - Robert M. Nerem
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology. Atlanta, GA, USA
| | - Ajit P. Yoganathan
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Institute of Technology and Emory University
- Division of Cardiology, Department of Medicine, Emory University
| |
Collapse
|
17
|
Zhi Z, Zhu H, Lv X, Lu C, Li Y, Wu F, Zhou L, Li H, Tang W. IGF2-derived miR-483-3p associated with Hirschsprung's disease by targeting FHL1. J Cell Mol Med 2018; 22:4913-4921. [PMID: 30073757 PMCID: PMC6156468 DOI: 10.1111/jcmm.13756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/09/2018] [Indexed: 01/17/2023] Open
Abstract
HSCR (Hirschsprung's disease) is a serious congenital defect, and the aetiology of it remains unclear. Many studies have highlighted the significant roles of intronic miRNAs and their host genes in various disease, few was mentioned in HSCR although. In this study, miR-483-3p along with its host gene IGF2 (Insulin-like growth factor 2) was found down-regulated in 60 HSCR aganglionic colon tissues compared with 60 normal controls. FHL1 (Four and a half LIM domains 1) was determined as a target gene of miR-483-3p via dual-luciferase reporter assay, and its expression was at a higher level in HSCR tissues. Here, we study cell migration and proliferation in human 293T and SH-SY5Y cell lines by performing Transwell and CCK8 assays. In conclusion, the knockdown of miR-483-3p and IGF2 both suppressed cell migration and proliferation, while the loss of FHL1 leads to opposite outcome. Furthermore, miR-483-3p mimics could rescue the negative effects on cell proliferation and migration caused by silencing IGF2, while the FHL1 siRNA may inverse the function of miR-483-3p inhibitor. This study revealed that miR-483-3p derived from IGF2 was associated with Hirschsprung's disease by targeting FHL1 and may provide a new pathway to understand the aetiology of HSCR.
Collapse
Affiliation(s)
- Zhengke Zhi
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hairong Zhu
- Department of Gastroenterology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Xiaofeng Lv
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Changgui Lu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yang Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Wu
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lingling Zhou
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weibing Tang
- Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Liu P, Yang X, Zhang H, Pu J, Wei K. Analysis of change in microRNA expression profiles of lung cancer A549 cells treated with Radix tetrastigma hemsleyani flavonoids. Onco Targets Ther 2018; 11:4283-4300. [PMID: 30100735 PMCID: PMC6065472 DOI: 10.2147/ott.s164276] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background The aim of this study was to determine the inhibition effects of Radix tetrastigma hemsleyani (RTH) flavonoids on human lung adenocarcinoma A549 cells and the underlying molecular mechanism. RTH is an important Chinese traditional herb that has been widely used in cancer therapy. As an important type of active substance, RTH flavones (RTHF) have been shown to have good antiproliferative effects on various cancer cells. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play important roles in cancer progression and prevention. However, the miRNA profile of RTHF-treated A549 cells has not yet been studied. Materials and methods The miRNA expression profile changes of A549 cell treated with RTHF were determined using the miRNA-seq analysis. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed miRNAs' (DE-miRNAs) target genes were carried out. Results In this study, we identified 162 miRNAs that displayed expression changes >1.2-fold in RTHF-treated A549 cells. GO analysis results showed that target genes of DE-miRNAs were significantly enriched in protein binding, binding, cell, cell part, intracellular, cellular process, single-organism process, and single-organism cellular process. Pathway analysis illustrated that target genes of DE-miRNAs are mainly involved in endocytosis, axon guidance, lysosome, melanogenesis, and acute myeloid leukemia pathway. Conclusion These results may assist in the better understanding of the anticancer effects of RTHF in A549 cells.
Collapse
Affiliation(s)
- Peigang Liu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, People's Republic of China,
| | - Xu Yang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, People's Republic of China,
| | - Hongjian Zhang
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, People's Republic of China,
| | - Jinbao Pu
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, People's Republic of China,
| | - Kemin Wei
- Center for Medicinal Resources Research, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou 310007, People's Republic of China,
| |
Collapse
|
19
|
Sundaram GM, Quah S, Sampath P. Cancer: the dark side of wound healing. FEBS J 2018; 285:4516-4534. [PMID: 29905002 DOI: 10.1111/febs.14586] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
Complex multicellular organisms have evolved sophisticated mechanisms to rapidly resolve epithelial injuries. Epithelial integrity is critical to maintaining internal homeostasis. An epithelial breach represents the potential for pathogen ingress and fluid loss, both of which may have severe consequences if not limited. The mammalian wound healing response involves a finely tuned, self-limiting series of cellular and molecular events orchestrated by the transient activation of specific signalling pathways. Accurate regulation of these events is essential; failure to initiate key steps at the right time delays healing and leads to chronic wounds, while aberrant initiation of wound healing processes may produce cell behaviours that promote cancer progression. In this review, we discuss how wound healing pathways co-opted in cancer lose their stringent regulation and become compromised in their reversibility. We hypothesize on how the commandeering of wound healing 'master regulators' is involved in this process, and also highlight the implications of these findings in the treatment of both chronic wounds and cancer.
Collapse
Affiliation(s)
- Gopinath M Sundaram
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Shan Quah
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, Agency for Science Technology & Research (A*STAR), Singapore City, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
20
|
The Glucose-Regulated MiR-483-3p Influences Key Signaling Pathways in Cancer. Cancers (Basel) 2018; 10:cancers10060181. [PMID: 29867024 PMCID: PMC6025222 DOI: 10.3390/cancers10060181] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 02/06/2023] Open
Abstract
The hsa-mir-483 gene, located within the IGF2 locus, transcribes for two mature microRNAs, miR-483-5p and miR-483-3p. This gene, whose regulation is mediated by the the CTNNB1/USF1 complex, shows an independent expression from its host gene IGF2. The miR-483-3p affects the Wnt/β-catenin, the TGF-β, and the TP53 signaling pathways by targeting several genes as CTNNB1, SMAD4, IGF1, and BBC3. Accordingly, miR-483-3p is associated with various tissues specific physiological properties as insulin and melanin production, as well as with cellular physiological functions such as wounding, differentiation, proliferation, and survival. Deregulation of miR-483-3p is observed in different types of cancer, and its overexpression can inhibit the pro-apoptotic pathway induced by the TP53 target effectors. As a result, the oncogenic characteristics of miR-483-3p are linked to the effect of some of the most relevant cancer-related genes, TP53 and CTNNB1, as well as to one of the most important cancer hallmark: the aberrant glucose metabolism of tumor cells. In this review, we summarize the recent findings regarding the miR-483-3p, to elucidate its functional role in physiological and pathological contexts, focusing overall on its involvement in cancer and in the TP53 pathway.
Collapse
|
21
|
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37:4300-4312. [PMID: 29717264 PMCID: PMC6072709 DOI: 10.1038/s41388-018-0276-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
All lung cancers patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) is a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In those tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
|
22
|
Tissue miRNA 483-3p expression predicts tumor recurrence after surgical resection in histologically advanced hepatocellular carcinomas. Oncotarget 2018; 9:17895-17905. [PMID: 29707155 PMCID: PMC5915163 DOI: 10.18632/oncotarget.24860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/27/2018] [Indexed: 02/07/2023] Open
Abstract
The choice of surgical treatment for hepatocellular carcinoma (HCC) depends on several prognostic variables, among which histological features, like microvascular invasion and tumor grade, are well established. This study aims to identify the tissue miRNAs predictive of recurrence after liver resection in "histologically advanced" HCC. We selected 54 patients: 15 retrospective resected patients without recurrence (group A), 19 retrospective resected patients with HCC recurrence (group B), and 20 prospective patients (group C), with 4 recurrence cases. All selected HCC were "histologically advanced" (high Edmondson grade and/or presence of microvascular invasion). A wide spectrum of miRNAs was studied with TaqMan Human microRNA Arrays; qRT-PCR assays were used to validate results on selected miRNAs; immunohistochemistry for IGF2 was applied to study the mechanism of miR-483-3p. As a result, a significant differential expression between group A and B was found for 255 miRNAs. Among them we selected miR-483-3p and miR-548e (P<0.001). As a single variable (group C), HCC with miR-483-3p downregulation (mean fold increase 0.21) had 44.4% of recurrence cases; HCC with miR-483-3p upregulation (mean fold increase 5.94) showed no recurrence cases (P=0.011). At immunohistochemistry (group C), the HCC with loss of cytoplasmic IGF2 expression showed a down-regulation of miR-483-3p (fold increase 0.57). In conclusion, in patients with "histologically advanced" HCC, the analysis of specific tissue miRNAs (particularly miR-483-3p) could help identify the recurrence risk and choose which treatment algorithm to implement (follow-up, resection or transplantation). This could have an important impact on patient survival and transplantation outcome, improving organ allocation.
Collapse
|
23
|
Wu K, Wang J, He J, Chen Q, Yang L. miR-483-3p promotes proliferation and migration of neuroblastoma cells by targeting PUMA. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:490-501. [PMID: 31938135 PMCID: PMC6958035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 06/10/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in infants and children and accounts for about 15% of deaths from childhood cancers. MicroRNAs (miRNAs) have been shown to play an important role in several cellular processes, such as cell proliferation, apoptosis, invasion, metastasis and angiogenesis, and therefore have been implicated in cancer progression. miR-483-3p is associated with neuroblastoma and is found to function as an 'onco-miR' in some malignancies. However, its role in neuroblastoma remains poorly understood. In this study, we confirmed that miR-483-3p is overexpressed in neuroblastoma tissue when compared with normal tissue and miR-483-3p expression is also associated with tumor stage. Overexpression of miR-483-3p substantially enhanced cell proliferation, migration, and invasion of neuroblastoma cells. miR-483-3p also promoted tumor growth of neuroblastoma in vivo. Both in vivo and in vitro experiments showed that the tumor suppressor PUMA was a target of miR-483-3p. Furthermore, down-regulation of PUMA by small interfering RNA (siRNA) exhibited similar effects to those observed as a result of overexpression of miR-483-3p. Our results indicate that miR-483-3p could function as an 'onco-miR' in human neuroblastoma and reveal a new and potentially important target for neuroblastoma anticancer therapy.
Collapse
Affiliation(s)
- Kai Wu
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong, China
| | - Jianjun Wang
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong, China
| | - Jixian He
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong, China
| | - Qinming Chen
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong, China
| | - Liucheng Yang
- Department of Surgery, Zhujiang Hospital, Southern Medical University Guangzhou, Guangdong, China
| |
Collapse
|
24
|
Liu OG, Xiong XY, Li CM, Zhou XS, Li SS. Role of Xeroderma Pigmentosum Group D in Cell Cycle and Apoptosis in Cutaneous Squamous Cell Carcinoma A431 Cells. Med Sci Monit 2018; 24:453-460. [PMID: 29362353 PMCID: PMC5791386 DOI: 10.12659/msm.905319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is the second most widespread cancer in humans and its incidence is rising. Novel therapy with better efficacy is needed for clinical treatment of cSCC. Many studies have shown the importance of DNA repair pathways during the development of cancer. A key nucleotide excision repair (NER) protein, xeroderma pigmentosum group D (XPD), is responsible for the excision of a large variety of bulky DNA lesions. MATERIAL AND METHODS To explore the role of XPD in A431 cells, we overexpressed XPD in A431 cells and performed MTT assay, flow cytometry, and Western blot analysis to examine cell proliferation, cell apoptosis, and genes expression. RESULTS We found that the overexpression of XPD suppressed cell viability, induced cell cycle arrest at G1 phase, and promoted cell apoptosis. Additionally, XPD blocked the expression of c-myc, cdc25A, and cdk2, and improved the levels of HIPK2 and p53. CONCLUSIONS These results provide new evidence to reveal the role of XPD in cSCC A431 cells and suggest that XPD may serve as an anti-oncogene during cSCC development.
Collapse
Affiliation(s)
- Ou-Gen Liu
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Yan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Chun-Ming Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xian-Sheng Zhou
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Si-Si Li
- Department of Dermatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
25
|
Anderson BA, McAlinden A. miR-483 targets SMAD4 to suppress chondrogenic differentiation of human mesenchymal stem cells. J Orthop Res 2017; 35:2369-2377. [PMID: 28244607 PMCID: PMC5573664 DOI: 10.1002/jor.23552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/18/2017] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) can regulate cellular differentiation processes by modulating multiple pathways simultaneously. Previous studies to analyze in vivo miRNA expression patterns in developing human limb cartilage tissue identified significant downregulation of miR-483 in hypertrophic chondrocytes relative to proliferating and differentiated chondrocytes. To test the function of miR-483 during chondrogenesis, lentiviral strategies were used to overexpress miR-483 during in vitro chondrogenesis of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). While the in vivo expression patterns led us to hypothesize that miR-483 may enhance chondrogenesis or suppress hypertrophic marker expression, surprisingly, miR-483 overexpression reduced chondrocyte gene expression and cartilage matrix production. In addition, cell death was induced at later stages of the chondrogenesis assay. Mechanistic studies revealed that miR-483 overexpression resulted in downregulation of the TGF-β pathway member SMAD4, a known direct target of miR-483-3p. From these studies, we conclude that constitutive overexpression of miR-483 in hBM-MSCs inhibits chondrogenesis of these cells and does not represent an effective strategy to attempt to enhance chondrocyte differentiation and anabolism in this system in vitro. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2369-2377, 2017.
Collapse
Affiliation(s)
- Britta A. Anderson
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, 600 S. Euclid Ave., St. Louis, MO 63110,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO,Corresponding author:: , Phone: (314) 454-8860
| |
Collapse
|
26
|
Abstract
BACKGROUND miRNA deregulation and vascular modifications constitute promising predictors in the study of hepatocellular carcinoma (HCC). In the literature, the relative miRNA abundance in HCC is usually determined using as control non-matched tumoral tissue, healthy liver, or cirrhotic liver. However, a common standard RNA control for the normalization toward the tissue gene expression was not settled yet. AIM To assess the differences existing in the quantitative miRNA gene expression in HCC on tissue according to two different liver controls. METHODS A wide array of miRNAs was analyzed on 22 HCCs arisen in cirrhotic and non-cirrhotic livers by means of microfluidic cards. Control samples included total RNA extracted from healthy and cirrhotic livers. Immunohistochemistry for CD34 and Nestin was performed to assess the pattern of intratumoral vascular modifications. RESULTS Six miRNAs were deregulated in HCCs using either controls: miR-532, miR-34a, miR-93, miR-149#, miR-7f-2#, and miR-30a-5p. Notably, the miRNA expression changed significantly between HCCs arisen in cirrhotic and non-cirrhotic livers, according to the control used for normalization. Different miRNA profiles were found also in HCCs with different vascular patterns, according to the control used for normalization. CONCLUSIONS Our data confirm that the choice of the methodology, and particularly the control used for normalization, represents the main concern in miRNA evaluation, particularly in a heterogeneous model such as liver pathology. Still we observed the deregulation of some common miRNAs as promising in HCC cancerogenesis and progression. A standardized control will be a crucial achievement to compare miRNA expression among different laboratories.
Collapse
|
27
|
Arrighetti N, Cossa G, De Cecco L, Stucchi S, Carenini N, Corna E, Gandellini P, Zaffaroni N, Perego P, Gatti L. PKC-alpha modulation by miR-483-3p in platinum-resistant ovarian carcinoma cells. Toxicol Appl Pharmacol 2016; 310:9-19. [DOI: 10.1016/j.taap.2016.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/27/2016] [Accepted: 08/05/2016] [Indexed: 12/19/2022]
|
28
|
Xiang Y, Song Y, Li Y, Zhao D, Ma L, Tan L. miR-483 is Down-Regulated in Polycystic Ovarian Syndrome and Inhibits KGN Cell Proliferation via Targeting Insulin-Like Growth Factor 1 (IGF1). Med Sci Monit 2016; 22:3383-3393. [PMID: 27662007 PMCID: PMC5040236 DOI: 10.12659/msm.897301] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Polycystic ovarian syndrome (PCOS) is a common metabolic disorder in premenopausal woman, characterized by hyperandrogenism, oligoanovulation, and insulin resistance. microRNAs play pivotal roles in regulating key factors of PCOS. However, relevant research remains limited. This study aimed to reveal the role and potential mechanism of miR-483 in PCOS. Material/Methods PCOS patients (n=20) were recruited for detecting miR-483 expression in lesion and normal ovary cortex. Human granulosa-like tumor cell line KGN was used to alter miR-483 expression by cell transfection. Cell viability and proliferation were analyzed by MTT assay and colony formation assay, and cell cycle was detected by flow cytometry. Interaction between miR-483 and IGF1 was verified by luciferase reporter assay. KGN cells were further treated by insulin to investigate the relationship between miR-483 and insulin. Results miR-483 was significantly down-regulated in lesion ovary cortex from PCOS patients (P<0.001). In KGN cells, overexpression of miR-483 inhibited cell viability and proliferation, and induced cell cycle arrest. miR-483 also inhibited CCNB1, CCND1, and CDK2. miR-483 sponge induced the opposite effects. miR-483 directly targeted IGF1 3′UTR, and IGF1 promoted KGN cell proliferation and reversed miR-483-inhibited cell viability. Insulin treatment in KGN cells inhibited miR-483, and promoted IGF1 and cell proliferation. Conclusions These results suggest that miR-483 is a PCOS suppressor inhibiting cell proliferation, possibly via targeting IGF1, and that it is involved in insulin-induced cell proliferation. miR-483 is a potential alternative for diagnosing and treating PCOS.
Collapse
Affiliation(s)
- Yungai Xiang
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yuxia Song
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Yan Li
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Dongmei Zhao
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Liying Ma
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| | - Li Tan
- Department of Reproductive Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China (mainland)
| |
Collapse
|
29
|
Degueurce G, D'Errico I, Pich C, Ibberson M, Schütz F, Montagner A, Sgandurra M, Mury L, Jafari P, Boda A, Meunier J, Rezzonico R, Brembilla NC, Hohl D, Kolios A, Hofbauer G, Xenarios I, Michalik L. Identification of a novel PPARβ/δ/miR-21-3p axis in UV-induced skin inflammation. EMBO Mol Med 2016; 8:919-36. [PMID: 27250636 PMCID: PMC4967944 DOI: 10.15252/emmm.201505384] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARβ/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARβ/δ-dependent molecular cascade involving TGFβ1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.
Collapse
Affiliation(s)
- Gwendoline Degueurce
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Ilenia D'Errico
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Christine Pich
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mark Ibberson
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Alexandra Montagner
- INRA ToxAlim, Integrative Toxicology and Metabolism, UMR1331, Toulouse, France
| | - Marie Sgandurra
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lionel Mury
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Paris Jafari
- Department of Musculoskeletal Medicine, Service of Plastic and Reconstructive Surgery CHUV, Epalinges, Switzerland
| | - Akash Boda
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julien Meunier
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Roger Rezzonico
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, UMR 7275, Valbonne, France
| | - Nicolò Costantino Brembilla
- Dermatology, University Hospital and School of Medicine, Geneva, Switzerland Immunology and Allergy, University Hospital and School of Medicine, Geneva Switzerland
| | - Daniel Hohl
- Service de dermatologie et venereology, Hôpital de Beaumont CHUV, Lausanne, Switzerland
| | - Antonios Kolios
- Department of Immunology, University Hospital, University of Zürich, Zürich, Switzerland Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Günther Hofbauer
- Department of Dermatology, University Hospital, University of Zürich, Zürich, Switzerland
| | - Ioannis Xenarios
- SIB Swiss Institute of Bioinformatics University of Lausanne, Lausanne, Switzerland
| | - Liliane Michalik
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
30
|
Jagot-Lacoussiere L, Kotula E, Villoutreix BO, Bruzzoni-Giovanelli H, Poyet JL. A Cell-Penetrating Peptide Targeting AAC-11 Specifically Induces Cancer Cells Death. Cancer Res 2016; 76:5479-90. [DOI: 10.1158/0008-5472.can-16-0302] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/24/2016] [Indexed: 11/16/2022]
|
31
|
Epithelial Cell Transforming 2 and Aurora Kinase B Modulate Formation of Stress Granule–Containing Transcripts from Diverse Cellular Pathways in Astrocytoma Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1674-87. [DOI: 10.1016/j.ajpath.2016.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 01/26/2016] [Accepted: 02/18/2016] [Indexed: 12/12/2022]
|
32
|
Tomé-Carneiro J, Crespo MC, Iglesias-Gutierrez E, Martín R, Gil-Zamorano J, Tomas-Zapico C, Burgos-Ramos E, Correa C, Gómez-Coronado D, Lasunción MA, Herrera E, Visioli F, Dávalos A. Hydroxytyrosol supplementation modulates the expression of miRNAs in rodents and in humans. J Nutr Biochem 2016; 34:146-55. [PMID: 27322812 DOI: 10.1016/j.jnutbio.2016.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 04/04/2016] [Accepted: 05/19/2016] [Indexed: 12/19/2022]
Abstract
Dietary microRNAs (miRNAs) modulation could be important for health and wellbeing. Part of the healthful activities of polyphenols might be due to a modulation of miRNAs' expression. Among the most biologically active polyphenols, hydroxytyrosol (HT) has never been studied for its actions on miRNAs. We investigated whether HT could modulate the expression of miRNAs in vivo. We performed an unbiased intestinal miRNA screening in mice supplemented (for 8 weeks) with nutritionally relevant amounts of HT. HT modulated the expression of several miRNAs. Analysis of other tissues revealed consistent HT-induced modulation of only few miRNAs. Also, HT administration increased triglycerides levels. Acute treatment with HT and in vitro experiments provided mechanistic insights. The HT-induced expression of one miRNA was confirmed in healthy volunteers supplemented with HT in a randomized, double-blind and placebo-controlled trial. HT consumption affects specific miRNAs' expression in rodents and humans. Our findings suggest that the modulation of miRNAs' action through HT consumption might partially explain its healthful activities and might be pharmanutritionally exploited in current therapies targeting endogenous miRNAs. However, the effects of HT on triglycerides warrant further investigations.
Collapse
Affiliation(s)
- Joao Tomé-Carneiro
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - María Carmen Crespo
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Eduardo Iglesias-Gutierrez
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain; Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Roberto Martín
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Judit Gil-Zamorano
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain
| | - Cristina Tomas-Zapico
- Department of Functional Biology (Physiology), University of Oviedo, Oviedo 33003, Spain
| | - Emma Burgos-Ramos
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Área de Bioquímica, Universidad de Castilla-La-Mancha, Toledo 45071, Spain
| | - Carlos Correa
- Unidad de Cirugía Experimental, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain
| | - Diego Gómez-Coronado
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Miguel A Lasunción
- Servicio de Bioquímica Investigación, Hospital Universitario Ramón y Cajal, IRYCIS, Madrid 28034, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Emilio Herrera
- Department of Biochemistry and Chemistry, Faculties of Pharmacy and Medicine, Universidad San Pablo CEU, Madrid 28668, Spain
| | - Francesco Visioli
- Laboratory of Functional Foods, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain; Department of Molecular Medicine, University of Padova, Padova 35121, Italy.
| | - Alberto Dávalos
- Laboratory of Disorders of Lipid Metabolism and Molecular Nutrition, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM+CSIC, Madrid 28049, Spain.
| |
Collapse
|
33
|
Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X, Li C. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med 2016; 14:23. [PMID: 26801758 PMCID: PMC4724160 DOI: 10.1186/s12967-016-0775-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) contribute to recanalization of deep vein thrombosis (DVT). This study aimed to detect miRNA expression profiles in EPCs from patients with DVT and characterize the role of miRNA in EPCs dysfunction. Methods EPCs was isolated from DVT patients and control subjects, and miRNA expression profiles were compared to screen differential miRNAs. The candidate miRNAs were confirmed by RT-PCR analysis. The targets of miRNA were identified by bioinformatics analyses, luciferase reporter assay and gene expression analyses. The apoptosis, migration and tube formation of EPCs were examined by flow cytometry, transwell assay and matrigel tube formation assay. A rat model of venous thrombosis was established as in vivo model. Results We identified miR-483-3p as a candidate miRNA upregulated in EPCs from DVT patients. By using miR-483-3p agomir and antagomir, we demonstrated that miR-483-3p decreased the migration and tube formation while increased the apoptosis of EPCs. Moreover, we identified serum response factor (SRF) as the target of miR-483-3p, and showed that SRF knockdown decreased the migration and tube formation while increased the apoptosis of EPCs. In addition, miR-483-3p inhibition led to enhanced ability of homing and thrombus resolution of EPCs in rat model of venous thrombosis. Conclusions miR-483-3p is upregulated in EPCs from DVT patients, and it targets SRF to decrease EPCs migration and tube formation and increase apoptosis in vitro, while decrease EPCs homing and thrombus resolution in vivo. MiR-483-3p is a potential therapeutic target in DVT treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0775-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lingshang Kong
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Nan Hu
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Xiaolong Du
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Wenbin Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Hong Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Wendong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Sen Wei
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Hao Zhuang
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, No.1055, Sanxiang Rd, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
34
|
Ying Z, Li X, Dang H, Wang F, Xu X. Effect of Hath1 on the proliferation and apoptosis of cutaneous squamous cell carcinoma in vitro. Mol Med Rep 2015; 12:7845-50. [PMID: 26648003 PMCID: PMC4758284 DOI: 10.3892/mmr.2015.4463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Increasing evidence has demonstrated that the tumor suppressor gene Hath1 is implicated in the development and progression of tumors and is verified to be downregulated in several types of tumor. However, the roles and precise molecular mechanisms of Hath1 in cutaneous squamous cell carcinoma (SCC) remain to be elucidated. In the present study, two approaches were used to investigate the tumor-suppressing effect of Hath1 in cutaneous SCC. Firstly, the effect of inhibiting Hath1 expression with short hairpin RNA (shRNA) on tumor growth and apoptosis was investigated. KUMA5 cells were stably transfected with a plasmid expressing Hath1 shRNA (pGenesil-1-Hath1). Secondly, the anti-tumor effect of Hath1 was investigated in KUMA5 cells following transfection with pcDNA3.1-Hath1. The mRNA and protein expression of Hath1 was detected by reverse transcription quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation in vitro was assessed using an MTT assay. Flow cytometry was used to detect cell apoptosis. The results demonstrated that compared with the control groups, the expression of Hath1 was significantly reduced in the KUMA5/pGenesil-1-Hath1 cells and markedly increased in the KUMA5/pcDNA3.1-Hath1 cells. Cell proliferation was markedly increased in the KUMA5/pGen-esil-1-Hath1 cells in a time-dependent manner; however, it was markedly inhibited in the KUMA5/pcDNA3.1-Hath1 cells. Flow cytometry revealed that apoptosis decreased in KUMA5/pGenesil-1-Hath1 cells and increased in KUMA5/pcDNA3.1-Hath1 cells. Downregulation of Hath1 expression promoted the proliferation and reduced the apoptosis of KUMA5 cells. By contrast, overexpression of Hath1 inhibited proliferation and induced the apoptosis of KUMA5 cells. These findings provide possible new strategies and therapeutic targets for the treatment and diagnosis of cutaneous SCC.
Collapse
Affiliation(s)
- Zuolin Ying
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaojie Li
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Hong Dang
- Department of Dermatology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Feng Wang
- Experimental Research Center, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| | - Xiaoyan Xu
- Experimental Research Center, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P.R. China
| |
Collapse
|
35
|
Mira JC, Szpila BE, Nacionales DC, Lopez MC, Gentile LF, Mathias BJ, Vanzant EL, Ungaro R, Holden D, Rosenthal MD, Rincon J, Verdugo PT, Larson SD, Moore FA, Brakenridge SC, Mohr AM, Baker HV, Moldawer LL, Efron PA. Patterns of gene expression among murine models of hemorrhagic shock/trauma and sepsis. Physiol Genomics 2015; 48:135-44. [PMID: 26578697 DOI: 10.1152/physiolgenomics.00072.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/13/2015] [Indexed: 01/22/2023] Open
Abstract
Controversy remains whether the leukocyte genomic response to trauma or sepsis is dependent upon the initiating stimulus. Previous work illustrated poor correlations between historical models of murine trauma and sepsis (i.e., trauma-hemorrhage and lipopolysaccharide injection, respectively). The aim of this study is to examine the early genomic response in improved murine models of sepsis [cecal ligation and puncture (CLP)] and trauma [polytrauma (PT)] with and without pneumonia (PT+Pp). Groups of naïve, CLP, PT, and PT+Pp mice were killed at 2 h, 1 or 3 days. Total leukocytes were isolated for genome-wide expression analysis, and genes that were found to differ from control (false discovery rate adjusted P < 0.001) were assessed for fold-change differences. Spearman correlations were also performed. For all time points combined (CLP, PT, PT+Pp), there were 10,426 total genes that were found to significantly differ from naïve controls. At 2 h, the transcriptomic changes between CLP and PT showed a positive correlation (rs) of 0.446 (P < 0.0001) but were less positive thereafter. Correlations were significantly improved when we limited the analysis to common genes whose expression differed by a 1.5 fold-change. Both pathway and upstream analyses revealed the activation of genes known to be associated with pathogen-associated and damage-associated molecular pattern signaling, and early activation patterns of expression were very similar between polytrauma and sepsis at the earliest time points. This study demonstrates that the early leukocyte genomic response to sepsis and trauma are very similar in mice.
Collapse
Affiliation(s)
- Juan C Mira
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Benjamin E Szpila
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Dina C Nacionales
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Maria-Cecilia Lopez
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
| | - Lori F Gentile
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Brittany J Mathias
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Erin L Vanzant
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Ricardo Ungaro
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - David Holden
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Martin D Rosenthal
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Jaimar Rincon
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Patrick T Verdugo
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Henry V Baker
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, Florida; and
| |
Collapse
|
36
|
Yu X, Li Z. The role of miRNAs in cutaneous squamous cell carcinoma. J Cell Mol Med 2015; 20:3-9. [PMID: 26508273 PMCID: PMC4717857 DOI: 10.1111/jcmm.12649] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRs) are small, noncoding RNAs that negatively regulate gene expressions at posttranscriptional level. Each miR can control hundreds of gene targets and play important roles in various biological and pathological processes such as hematopoiesis, organogenesis, cell apoptosis and proliferation. Aberrant miR expression contributes to initiation and cell progression of cancers. Accumulating studies have found that miRs play a significant role in cutaneous squamous cell carcinoma (cSCC). Deregulations of miRs may contribute to cSCC carcinogenesis is through acting as oncogenic or tumour suppressive miRs. In this study, we summarized the recent data available on cSCC‐associated miRs. In particular, we will discuss the contribution of miR to the initiation and progression of cSCCs. Although there are many obstacles to be overcome, clinical use of miRs as biomarkers for diagnosis, prediction of prognosis and target for therapies, will be a promising area in the future with more expression and functional role of miRs revealed.
Collapse
Affiliation(s)
- Xin Yu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
37
|
MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:186904. [PMID: 26504785 PMCID: PMC4609509 DOI: 10.1155/2015/186904] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/14/2015] [Accepted: 05/18/2015] [Indexed: 12/18/2022]
Abstract
Oral cancer, represented mainly by oral squamous cell carcinoma (OSCC), is the eighth most common type of human cancer worldwide. The number of new OSCC cases is increasing worldwide, especially in the low-income countries, and the prognosis remains poor in spite of recent advances in the diagnostic and therapeutic modalities. MicroRNAs (miRNAs), 18–25 nucleotides long noncoding RNA molecules, have recently gained significant attention as potential regulators and biomarkers for carcinogenesis. Recent data show that several miRNAs are deregulated in OSCC, and they have either a tumor suppressive or an oncogenic role in oral carcinogenesis. This review summarizes current knowledge on the role of miRNAs as tumor promotors or tumor suppressors in OSCC development and discusses their potential value as diagnostic and prognostic markers in OSCC.
Collapse
|
38
|
Liu H, French BA, Li J, Tillman B, French SW. Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice. Exp Mol Pathol 2015; 99:552-7. [PMID: 26403328 DOI: 10.1016/j.yexmp.2015.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/18/2015] [Indexed: 01/05/2023]
Abstract
MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.
Collapse
Affiliation(s)
- Hui Liu
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Barbara A French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Jun Li
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Brittany Tillman
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA
| | - Samuel W French
- Department of Pathology, LABioMed at Harbor UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA.
| |
Collapse
|
39
|
Saddic LA, Chang TW, Sigurdsson MI, Heydarpour M, Raby BA, Shernan SK, Aranki SF, Body SC, Muehlschlegel JD. Integrated microRNA and mRNA responses to acute human left ventricular ischemia. Physiol Genomics 2015; 47:455-62. [PMID: 26175501 DOI: 10.1152/physiolgenomics.00049.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/08/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) play a significant role in ischemic heart disease. Animal models of left ventricular (LV) ischemia demonstrate a unique miRNA profile; however, these models have limitations in describing human disease. In this study, we performed next-generation miRNA and mRNA sequencing on LV tissue from nine patients undergoing cardiac surgery with cardiopulmonary bypass and cardioplegic arrest. Samples were obtained immediately after aortic cross clamping (baseline) and before aortic cross clamp removal (postischemic). Of 1,237 identified miRNAs, 21 were differentially expressed between baseline and postischemic LV samples including the upregulated miRNAs miR-339-5p and miR-483-3p and the downregulated miRNA miR-139-5p. Target prediction analysis of these miRNAs was integrated with mRNA expression from the same LV samples to identify anticorrelated miRNA-mRNA pairs. Gene enrichment studies of candidate mRNA targets demonstrated an association with cardiovascular disease, cell death, and metabolism. Therapeutics that intervene on these miRNAs and their downstream targets may lead to novel mechanisms of mitigating the damage caused by ischemic insults on the human heart.
Collapse
Affiliation(s)
- Louis A Saddic
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzuu-Wang Chang
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Martin I Sigurdsson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mahyar Heydarpour
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Benjamin A Raby
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; and
| | - Stanton K Shernan
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sary F Aranki
- Division of Cardiac Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Simon C Body
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jochen D Muehlschlegel
- Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
40
|
Assumpção MB, Moreira FC, Hamoy IG, Magalhães L, Vidal A, Pereira A, Burbano R, Khayat A, Silva A, Santos S, Demachki S, Ribeiro-Dos-Santos Â, Assumpção P. High-Throughput miRNA Sequencing Reveals a Field Effect in Gastric Cancer and Suggests an Epigenetic Network Mechanism. Bioinform Biol Insights 2015; 9:111-7. [PMID: 26244015 PMCID: PMC4496000 DOI: 10.4137/bbi.s24066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/29/2015] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
Field effect in cancer, also called "field cancerization", attempts to explain the development of multiple primary tumors and locally recurrent cancer. The concept of field effect in cancer has been reinforced, since molecular alterations were found in tumor-adjacent tissues with normal histopatho-logical appearances. With the aim of investigating field effects in gastric cancer (GC), we conducted a high-throughput sequencing of the miRnome of four GC samples and their respective tumor-adjacent tissues and compared them with the miRnome of a gastric antrum sample from patients without GC, assuming that tumor-adjacent tissues could not be considered as normal tissues. The global number of miRNAs and read counts was highest in tumor samples, followed by tumor-adjacent and normal samples. Analyzing the miRNA expression profile of tumor-adjacent miRNA, hsa-miR-3131, hsa-miR-664, hsa-miR-483, and hsa-miR-150 were significantly downregulated compared with the antrum without tumor tissue (P-value < 0.01; fold-change <5). Additionally, hsa-miR-3131, hsa-miR-664, and hsa-miR-150 were downregulated (P-value < 0.001) in all paired samples of tumor and tumor-adjacent tissues, compared with antrum without tumor mucosa. The field effect was clearly demonstrated in gastric carcinogenesis by an epigenetics-based approach, and potential biomarkers of the GC field effect were identified. The elevated expression of miRNAs in adjacent tissues and tumors tissues may indicate that a cascade of events takes place during gastric carcinogenesis, reinforcing the notion of field effects. This phenomenon seems to be linked to DNA methylation patterns in cancer and suggests the involvement of an epigenetic network mechanism.
Collapse
Affiliation(s)
- Monica B Assumpção
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil
| | - Fabiano C Moreira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Centro Universitário do Estado do Pará, Belém, Pará, Brazil
| | - Igor G Hamoy
- Universidade Federal Rural da Amazônia, Capanema, PA, Brazil
| | - Leandro Magalhães
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Vidal
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Adenilson Pereira
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Rommel Burbano
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - André Khayat
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Artur Silva
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Sidney Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Samia Demachki
- Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil. ; Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, PA, Brazil
| | - Ândrea Ribeiro-Dos-Santos
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| | - Paulo Assumpção
- Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, PA, Brazil. ; Núcleo de Pesquisa em Oncologia, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
41
|
Wang C, Sun Y, Wu H, Yu S, Zhang L, Meng Y, Liu M, Yang H, Liu P, Mao X, Lu Z, Chen J. Elevated miR-483-3p expression is an early event and indicates poor prognosis in pancreatic ductal adenocarcinoma. Tumour Biol 2015; 36:9447-56. [PMID: 26124009 DOI: 10.1007/s13277-015-3690-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023] Open
Abstract
MiR-483-3p has been reported to be widely involved in diverse human malignancies. However, the exact role of miR-483-3p remains elusive in pancreatic ductal adenocarcinoma (PDAC). The objective of this study is to determine the expression pattern and clinical implications of miR-483-3p in PDAC. MiR-483-3p levels were evaluated by locked nucleic acid-in situ hybridization (LNA-ISH) in a tissue microarray including 63 PDAC tumors and 10 normal pancreatic tissues, followed by evaluation in an independent set of 117 pairs of matched PDAC tumors and adjacent tumor-free pancreatic tissues. Expression of miR-483-3p was further evaluated in pancreatic intra-epithelial neoplasias (PanINs) and chronic pancreatitis (CP). The impact of miR-483-3p on cell proliferation, growth, and anchorage-independent colony formation was also assessed in vitro and in vivo. Microarray analysis revealed that miR-483-3p was positively stained in 61 (96.8 %) PDAC samples, but not detectable in normal pancreatic duct tissue. In the 117 PDAC samples, 100 % were miR-483-3p positive, with 55.6 % (65/117) strongly positive, compared to only 13.7 % (16/117) weakly positive in adjacent normal pancreatic duct tissues. MiR-483-3p expression was associated with tumor grading (p < 0.05) and was an independent predictor of poor overall survival in multivariate analysis (HR = 2.584; 95 % CI = 1.268-5.264). Moreover, from PanIN1 to PanIN3, the rate of strong miR-483-3p-positive staining was 0 % (0/39), 14.8 % (4/27), and 87.5 % (14/16), respectively. Six (54.5 %) CP samples were only weakly stained for miR-483-3p. Inhibition of miR-483-3p suppressed cell proliferation, growth, and colony formation in vitro and decreased tumor cell growth in nude mouse xenografts in vivo. These results suggest that aberrant miR-483-3p expression is an early event in PDAC tumorigenesis and is associated with tumor differentiation and prognosis. It also may be a potential target for PDAC molecular therapeutics.
Collapse
Affiliation(s)
- Cuiping Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.,Department of Pathology, Beijing Tsinghua Changgung Hospital, Medical Center, Tsinghua University, No. 168 Litang Road, Changping District, Beijing, 100730, China
| | - Yang Sun
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Li Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Mingyang Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Haiyan Yang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Pingping Liu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuai Fu Yuan, Hu Tong, Beijing, 100730, China.
| |
Collapse
|
42
|
Veselá B, Matalová E. Expression of apoptosis-related genes in the mouse skin during the first postnatal catagen stage, focused on localization of Bnip3L and caspase-12. Connect Tissue Res 2015; 56:326-35. [PMID: 25943459 DOI: 10.3109/03008207.2015.1040546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hair follicles undergo repetitive stages of cell proliferation and programmed cell death. The catagen stage of physiological apoptosis is connected with dynamic changes in morphology and alterations in gene expression. However, hair follicle apoptosis must be in balance with events in surrounding tissues, such as keratinocyte cornification, to maintain complex skin homeostasis. Several pro- and anti-apoptotic molecules in the skin have been reported but mainly in pathological states. In this investigation, apoptosis-related gene expression was examined during the first catagen stage of mouse hair follicle development by PCR arrays under physiological conditions. Postnatal stages P15 and P17, representing early and late catagen stages, were evaluated relatively to stage P6, representing the hair follicle growing phase, to demonstrate dynamics of gene activation during the catagen. Several statistically significant alterations were observed at P15 and particularly at P17. Bnip3L and caspase-12 identified by the PCR arrays at both catagen stages were additionally localized using immunofluorescence and were reported in physiological hair development for the first time.
Collapse
Affiliation(s)
- Barbora Veselá
- Institute of Animal Physiology and Genetics AS CR , Brno , Czech Republic
| | | |
Collapse
|
43
|
Irimie AI, Braicu C, Cojocneanu-Petric R, Berindan-Neagoe I, Campian RS. Novel technologies for oral squamous carcinoma biomarkers in diagnostics and prognostics. Acta Odontol Scand 2015; 73:161-8. [PMID: 25598447 DOI: 10.3109/00016357.2014.986754] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a highly prevalent malignant pathology of the oral cavity. Despite the significant progress accomplished in the field of OSCC, the diagnosis is performed mostly in advanced stages; thus, novel biomarkers need to be developed for the diagnostic and prognostic of this malignancy. Many new technologies are used to provide indispensable information related to the pathogenesis of OSCC. The molecular profiling studies that incorporate genetic and epigenetic alterations need to be integrated in clinical practice as routine approaches to facilitate a better diagnostic and prognostic. REVIEW In this review, the authors present a summary of these novel technologies in the field of genomics, transcriptomics or proteomics, capable of generating data related to personalized diagnostic and treatment.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthodontics and Dental Materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | | | | | | |
Collapse
|
44
|
Li T, Li L, Li D, Wang S, Sun J. MiR-34a inhibits oral cancer progression partially by repression of interleukin-6-receptor. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1364-1373. [PMID: 25973020 PMCID: PMC4396206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
Previous reports revealed that a significant decrease of miR-34a in oral cancer. But the role of miR-34a in oral cancer needs further research. In the present study, we will investigate the effect of miR-34a on oral cancer cell phenotypes. First, it was verified that miR-34a expression was lower in oral cancer tissues compared with their normal controls, so did the oral cancer cells. Next, it was showed that miR-34a overexpression in oral cancer cells could inhibit cell proliferation, G1 phase arrest, metastasis and epithelial mesenchymal transition. It was predicted that interleukin-6-receptor (IL6R) was a potential target gene of miR-34a by bioinformatics analysis and identified by luciferase assay. It was further showed that miR-34a inhibited oral cancer progression via IL6R. Collectively, our findings suggested that miR-34a may function as a tumor suppressor in oral cancer by targeting IL6R.
Collapse
Affiliation(s)
- Ting Li
- Department of Oral Medicine, School of Stomatology Xuzhou Medical CollegeXuzhou, China
| | - Lichu Li
- Department of Oral and Maxillofacial Surgery, Collage of Stomatology, Guangxi Medical UniversityNanning, China
| | - Dongshuang Li
- Department of Oral and Maxillofacial Surgery, Collage of Stomatology, Guangxi Medical UniversityNanning, China
| | - Shuting Wang
- Department of Oral and Maxillofacial Surgery, Collage of Stomatology, Guangxi Medical UniversityNanning, China
| | - Jinhu Sun
- Department of Oral Medicine, School of Stomatology Xuzhou Medical CollegeXuzhou, China
- Department of Oral and Maxillofacial Surgery, School of Stomatology Xuzhou Medical College, and Department of Stomatology, The Affiliated Hospital of Xuzhou Medical CollegeXuzhou, China
| |
Collapse
|
45
|
Igaz P, Igaz I, Nagy Z, Nyírő G, Szabó PM, Falus A, Patócs A, Rácz K. MicroRNAs in adrenal tumors: relevance for pathogenesis, diagnosis, and therapy. Cell Mol Life Sci 2015; 72:417-428. [PMID: 25297921 PMCID: PMC11114066 DOI: 10.1007/s00018-014-1752-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 12/11/2022]
Abstract
Several lines of evidence support the relevance of microRNAs in both adrenocortical and adrenomedullary (pheochromocytomas) tumors. Significantly differentially expressed microRNAs have been described among benign and malignant adrenocortical tumors and different forms of pheochromocytomas that might affect different pathogenic pathways. MicroRNAs can be exploited as markers of malignancy or disease recurrence. Besides tissue microRNAs, novel data show that microRNAs are released in body fluids, and blood-borne microRNAs can be envisaged as minimally invasive markers of malignancy or prognosis. MicroRNAs might even serve as treatment targets that could expand the rather-limited therapeutic repertoire in the field of adrenal tumors. In this review, we present a critical synopsis of the recent observations made in the field of adrenal tumor-associated microRNAs regarding their pathogenic, diagnostic, and potential therapeutic relevance.
Collapse
Affiliation(s)
- Peter Igaz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary.
| | - Ivan Igaz
- Department of Gastroenterology, Szent Imre Teaching Hospital, Tétényi str. 12-16, 1115, Budapest, Hungary
| | - Zoltán Nagy
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
| | - Gábor Nyírő
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
| | - Peter M Szabó
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
| | - András Falus
- Department of Genetics Cell- and Immunobiology, Faculty of Medicine, Semmelweis University, Nagyvárad sq. 4, 1089, Budapest, Hungary
| | - Attila Patócs
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
- "Lendület-2013" Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
| | - Károly Rácz
- 2nd Department of Medicine, Faculty of Medicine, Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
- Molecular Medicine Research Group, Hungarian Academy of Sciences and Semmelweis University, Szentkirályi str. 46, 1088, Budapest, Hungary
| |
Collapse
|
46
|
Syed DN, Lall RK, Mukhtar H. MicroRNAs and Photocarcinogenesis. Photochem Photobiol 2014; 91:173-87. [DOI: 10.1111/php.12346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 09/08/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Deeba N. Syed
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Rahul K. Lall
- Department of Dermatology; University of Wisconsin; Madison WI
| | - Hasan Mukhtar
- Department of Dermatology; University of Wisconsin; Madison WI
| |
Collapse
|
47
|
Duregon E, Rapa I, Votta A, Giorcelli J, Daffara F, Terzolo M, Scagliotti GV, Volante M, Papotti M. MicroRNA expression patterns in adrenocortical carcinoma variants and clinical pathologic correlations. Hum Pathol 2014; 45:1555-62. [DOI: 10.1016/j.humpath.2014.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 04/02/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
48
|
Zhou J, Liu R, Luo C, Zhou X, Xia K, Chen X, Zhou M, Zou Q, Cao P, Cao K. MiR-20a inhibits cutaneous squamous cell carcinoma metastasis and proliferation by directly targeting LIMK1. Cancer Biol Ther 2014; 15:1340-9. [PMID: 25019203 DOI: 10.4161/cbt.29821] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND MicroRNA-20a (miR-20a) plays a key role in tumorigenesis and progression. But its function is reverse in different kinds of malignant tumor, and its role and mechanism in cutaneous squamous cell carcinoma (CSCC) remains unclear. OBJECT To determine the miR-20a's roles in CSCC and confirm whether LIMK1 is a direct target gene of miR-20a. METHODS First miR-20a and LIMK1 expression levels were detected in six pairs of CSCC tissues and corresponding normal skin by qRT-PCR. Then MTT assays and colony formation assays were performed to evaluate the impact of miR-20a on cell proliferation. In addition, scratch migration assays and transwell invasion assays were performed to check miR-20a's effect on cell metastasis. Since LIMK1 (LIM kinase-1) was predicted as a target gene of miR-20a, the changes of LIMK1 protein and mRNA were measured by western blot and qRT-RCR methods after miR-20a overexpression. Moreover the dual reporter gene assay was performed to confirm whether LIMK1 is a direct target gene of miR-20a. Finally LIMK1 mRNA and miR-20a in other 30 cases of CSCC pathological specimens were determined and a correlation analysis was evaluated. RESULTS The miR-20a significantly low-expressed in CSCC tissues compared with that in matched normal tissues while LIMK1 has a relative higher expression. MiR-20a inhibited A431 and SCL-1 proliferation and metastasis. Both of LIMK1 protein and mRNA levels were downregulated after miR-20a overexpression. The dual reporter gene assays revealed that LIMK1 is a direct target gene of miR-20a. Furthermore, qRT-PCR results of LIMK1 mRNA and miR-20a in 30 cases of CSCC pathological specimens showed miR-20a is inversely correlated with LIMK1 expression. CONCLUSION Our study demonstrated that miR-20a is involved in the tumor inhibition of CSCC by directly targeting LIMK1 gene. This finding provides potential novel strategies for therapeutic interventions of CSCC.
Collapse
Affiliation(s)
- Jianda Zhou
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Rui Liu
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Chengqun Luo
- Department of Plastic and Reconstructive Surgery; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Xiao Zhou
- Department of Oncoplastic and Reconstructive Surgery; The Affiliated Tumor Hospital of Xiangya Medical School; Changsha City, Hunan, PR China
| | - Kun Xia
- State Key Laboratory of Medical Genetics; Changsha City, Hunan, PR China
| | - Xiang Chen
- Department of Dermatology; Xiangya Hospital; Changsha City, Hunan, PR China
| | - Ming Zhou
- Cancer Research Institute; Key Laboratory of Carcinogenesis of Ministry of Health; Changsha City, Hunan, PR China
| | - Qiong Zou
- Department of Pathology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Peiguo Cao
- Department of Oncology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| | - Ke Cao
- Department of Oncology; Third Xiangya Hospital; Central South University; Changsha City, Hunan, PR China
| |
Collapse
|
49
|
Angiotensin II-regulated microRNA 483-3p directly targets multiple components of the renin-angiotensin system. J Mol Cell Cardiol 2014; 75:25-39. [PMID: 24976017 DOI: 10.1016/j.yjmcc.2014.06.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 11/21/2022]
Abstract
Improper regulation of signaling in vascular smooth muscle cells (VSMCs) by angiotensin II (AngII) can lead to hypertension, vascular hypertrophy and atherosclerosis. The extent to which the homeostatic levels of the components of signaling networks are regulated through microRNAs (miRNA) modulated by AngII type 1 receptor (AT1R) in VSMCs is not fully understood. Whether AT1R blockers used to treat vascular disorders modulate expression of miRNAs is also not known. To report differential miRNA expression following AT1R activation by AngII, we performed microarray analysis in 23 biological and technical replicates derived from humans, rats and mice. Profiling data revealed a robust regulation of miRNA expression by AngII through AT1R, but not the AngII type 2 receptor (AT2R). The AT1R-specific blockers, losartan and candesartan antagonized >90% of AT1R-regulated miRNAs and AngII-activated AT2R did not modulate their expression. We discovered VSMC-specific modulation of 22 miRNAs by AngII, and validated AT1R-mediated regulation of 17 of those miRNAs by real-time polymerase chain reaction analysis. We selected miR-483-3p as a novel representative candidate for further study because mRNAs of multiple components of the renin-angiotensin system (RAS) were predicted to contain the target sequence for this miRNA. MiR-483-3p inhibited the expression of luciferase reporters bearing 3'-UTRs of four different RAS genes and the inhibition was reversed by antagomir-483-3p. The AT1R-regulated expression levels of angiotensinogen and angiotensin converting enzyme 1 (ACE-1) proteins in VSMCs are modulated specifically by miR-483-3p. Our study demonstrates that the AT1R-regulated miRNA expression fingerprint is conserved in VSMCs of humans and rodents. Furthermore, we identify the AT1R-regulated miR-483-3p as a potential negative regulator of steady-state levels of RAS components in VSMCs. Thus, miRNA-regulation by AngII to affect cellular signaling is a novel aspect of RAS biology, which may lead to discovery of potential candidate prognostic markers and therapeutic targets.
Collapse
|
50
|
Ruland R, Florea AM. Are microRNAs key players in epithelial skin cancers? A review focused on basal cell carcinoma and squamous cell carcinoma. ACTA ACUST UNITED AC 2014. [DOI: 10.5339/jlghs.2014.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cancer of the skin is an increasing problem for public health worldwide. The fair skin populations that are environmentally or occupationally exposed to solar ultraviolet (UV)-radiation are the most affected. Intensive research investigating the molecular mechanisms of skin cancer is ongoing, however the role of noncoding RNAs in the pathology of cutaneous cell carcinoma is not fully understood. Accumulating evidence show that miRNAs play an important role in physiologic, pathologic and carcinogenic processes but their role in epithelial skin cancers (i.e. basal cell carcinoma and squamous cell carcinoma) was to date not sufficiently highlighted. MiRNAs are single-stranded small RNAs which specifically target mRNAs for translational repression and/or mRNA decay. In this review we focus on the latest findings in this area of research reviewing the newest research trends and perspectives.
Collapse
Affiliation(s)
- Rebecca Ruland
- Environmental Toxicology, University of Trier, FBVI, Universitätsring 15, 54296, Trier
| | - Ana-Maria Florea
- Environmental Toxicology, University of Trier, FBVI, Universitätsring 15, 54296, Trier
| |
Collapse
|