1
|
Shapiro JG, Changela N, Jang JK, Joshi JN, McKim KS. Distinct checkpoint and homolog biorientation pathways regulate meiosis I in Drosophila oocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608908. [PMID: 39229242 PMCID: PMC11370425 DOI: 10.1101/2024.08.21.608908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Mitosis and meiosis have two mechanisms for regulating the accuracy of chromosome segregation: error correction and the spindle assembly checkpoint (SAC). We have investigated the function of several checkpoint proteins in meiosis I of Drosophila oocytes. Evidence of a SAC response by several of these proteins is found upon depolymerization of microtubules by colchicine. However, unattached kinetochores or errors in biorientation of homologous chromosomes does not induce a SAC response. Furthermore, the metaphase I arrest does not depend on SAC genes, suggesting the APC is inhibited even if the SAC is silenced. Two SAC proteins, ROD of the ROD-ZW10-Zwilch (RZZ) complex and MPS1, are also required for the biorientation of homologous chromosomes during meiosis I, suggesting an error correction function. Both proteins aid in preventing or correcting erroneous attachments and depend on SPC105R for localization to the kinetochore. We have defined a region of SPC105R, amino acids 123-473, that is required for ROD localization and biorientation of homologous chromosomes at meiosis I. Surprisingly, ROD removal, or "streaming", is independent of the dynein adaptor Spindly and is not linked to the stabilization of end-on attachments. Instead, meiotic RZZ streaming appears to depend on cell cycle stage and may be regulated independently of kinetochore attachment or biorientation status. We also show that dynein adaptor Spindly is also required for biorientation at meiosis I, and surprisingly, the direction of RZZ streaming.
Collapse
Affiliation(s)
- Joanatta G Shapiro
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Jay N Joshi
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
2
|
Abstract
Many human embryos die in utero owing to an excess or deficit of chromosomes, a phenomenon known as aneuploidy; this is largely a consequence of nondisjunction during maternal meiosis I. Asymmetries of this division render it vulnerable to selfish centromeres that promote their own transmission, these being thought to somehow underpin aneuploidy. In this essay, I suggest that these vulnerabilities provide only half the solution to the enigma. In mammals, as in utero and postnatal provisioning is continuous, the costs of early death are mitigated. With such reproductive compensation, selection can favour a centromere because it induces lethal aneuploidy: if, when taken towards the polar body, it instead kills the embryo via aneuploidy, it gains. The model is consistent with the observation that reduced dosage of a murine drive suppressor induces aneuploidy and with the fact that high aneuploidy rates in vertebrates are seen exclusively in mammals. I propose further tests of this idea. The wastefulness of human reproduction may be a price we pay for nurturing our offspring.
Collapse
Affiliation(s)
- Laurence D. Hurst
- Wissenshaftskolleg zu Berlin, Berlin, Germany
- The Milner Centre for Evolution, University of Bath, Bath, Somerset, United Kingdom
| |
Collapse
|
3
|
Lane S, Kauppi L. Meiotic spindle assembly checkpoint and aneuploidy in males versus females. Cell Mol Life Sci 2019; 76:1135-1150. [PMID: 30564841 PMCID: PMC6513798 DOI: 10.1007/s00018-018-2986-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/12/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
The production of gametes (sperm and eggs in mammals) involves two sequential cell divisions, meiosis I and meiosis II. In meiosis I, homologous chromosomes segregate to different daughter cells, and meiosis II resembles mitotic divisions in that sister chromatids separate. While in principle the process is identical in males and females, the time frame and susceptibility to chromosomal defects, including achiasmy and cohesion weakening, and the response to mis-segregating chromosomes are not. In this review, we compare and contrast meiotic spindle assembly checkpoint function and aneuploidy in the two sexes.
Collapse
Affiliation(s)
- Simon Lane
- Department of Chemistry and the Institute for Life Sciences, University of Southampton, Building 85, Highfield Campus, Southampton, SO171BJ, UK
| | - Liisa Kauppi
- Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00014, Helsinki, Finland.
| |
Collapse
|
4
|
Varjabedian A, Kita A, Bement W. Living Xenopus oocytes, eggs, and embryos as models for cell division. Methods Cell Biol 2018; 144:259-285. [PMID: 29804672 PMCID: PMC6050073 DOI: 10.1016/bs.mcb.2018.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Xenopus laevis has long been a popular model for studies of development and, based on the use of cell-free extracts derived from its eggs, as a model for reconstitution of cell cycle regulation and other basic cellular processes. However, work over the last several years has shown that intact Xenopus eggs and embryos are also powerful models for visualization and characterization of cell cycle-regulated cytoskeletal dynamics. These findings were something of a surprise, given that the relatively low opacity of Xenopus eggs and embryos was assumed to make them poor subjects for live-cell imaging. In fact, however, the high tolerance for light exposure, the development of new imaging approaches, new probes for cytoskeletal components and cytoskeletal regulators, and the ease of microinjection make the Xenopus oocytes, eggs, and embryos one of the most useful live-cell imaging models among the vertebrates. In this review, we describe the basics of using X. laevis as a model organism for studying cell division and outline experimental approaches for imaging cytoskeletal components in vivo in X. laevis embryos and eggs.
Collapse
Affiliation(s)
- Ani Varjabedian
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Angela Kita
- Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - William Bement
- Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI, United States; Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
5
|
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis. Front Cell Dev Biol 2017; 5:109. [PMID: 29322045 PMCID: PMC5733479 DOI: 10.3389/fcell.2017.00109] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/28/2017] [Indexed: 11/17/2022] Open
Abstract
Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid.
Collapse
Affiliation(s)
- Adele L Marston
- Wellcome Centre for Cell Biology, Institute for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Katja Wassmann
- Sorbonne Universités, UPMC Univ Paris 06, Institut de Biologie Paris Seine, UMR7622, Paris, France.,Centre National de la Recherche Scientifique, Institut de Biologie Paris Seine, UMR7622 Developmental Biology Lab, Paris, France
| |
Collapse
|
6
|
Lane SIR, Jones KT. Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume. J Cell Biol 2017; 216:3949-3957. [PMID: 28978643 PMCID: PMC5716262 DOI: 10.1083/jcb.201606134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/28/2017] [Accepted: 09/07/2017] [Indexed: 11/23/2022] Open
Abstract
Lane and Jones use serial bisection of mouse oocytes to analyze the influence of cytoplasmic volume on spindle assembly checkpoint function. Volume reduction promotes inhibition of APC but cannot prevent chromosome segregation errors at anaphase. The spindle assembly checkpoint (SAC) prevents chromosome missegregation by coupling anaphase onset with correct chromosome attachment and tension to microtubules. It does this by generating a diffusible signal from free kinetochores into the cytoplasm, inhibiting the anaphase-promoting complex (APC). The volume in which this signal remains effective is unknown. This raises the possibility that cell volume may be the reason the SAC is weak, and chromosome segregation error-prone, in mammalian oocytes. Here, by a process of serial bisection, we analyzed the influence of oocyte volume on the ability of the SAC to inhibit bivalent segregation in meiosis I. We were able to generate oocytes with cytoplasmic volumes reduced by 86% and observed changes in APC activity consistent with increased SAC control. However, bivalent biorientation remained uncoupled from APC activity, leading to error-prone chromosome segregation. We conclude that volume is one factor contributing to SAC weakness in oocytes. However, additional factors likely uncouple chromosome biorientation with APC activity.
Collapse
Affiliation(s)
- Simon I R Lane
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK .,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | - Keith T Jones
- Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
7
|
Touati SA, Wassmann K. How oocytes try to get it right: spindle checkpoint control in meiosis. Chromosoma 2015; 125:321-35. [PMID: 26255654 DOI: 10.1007/s00412-015-0536-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/27/2022]
Abstract
The generation of a viable, diploid organism depends on the formation of haploid gametes, oocytes, and spermatocytes, with the correct number of chromosomes. Halving the genome requires the execution of two consecutive specialized cell divisions named meiosis I and II. Unfortunately, and in contrast to male meiosis, chromosome segregation in oocytes is error prone, with human oocytes being extraordinarily "meiotically challenged". Aneuploid oocytes, that are with the wrong number of chromosomes, give rise to aneuploid embryos when fertilized. In humans, most aneuploidies are lethal and result in spontaneous abortions. However, some trisomies survive to birth or even adulthood, such as the well-known trisomy 21, which gives rise to Down syndrome (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012). A staggering 20-25 % of oocytes ready to be fertilized are aneuploid in humans. If this were not bad enough, there is an additional increase in meiotic missegregations as women get closer to menopause. A woman above 40 has a risk of more than 30 % of getting pregnant with a trisomic child. Worse still, in industrialized western societies, child birth is delayed, with women getting their first child later in life than ever. This trend has led to an increase of trisomic pregnancies by 70 % in the last 30 years (Nagaoka et al. in Nat Rev Genet 13:493-504, 2012; Schmidt et al. in Hum Reprod Update 18:29-43, 2012). To understand why errors occur so frequently during the meiotic divisions in oocytes, we review here the molecular mechanisms at works to control chromosome segregation during meiosis. An important mitotic control mechanism, namely the spindle assembly checkpoint or SAC, has been adapted to the special requirements of the meiotic divisions, and this review will focus on our current knowledge of SAC control in mammalian oocytes. Knowledge on how chromosome segregation is controlled in mammalian oocytes may help to identify risk factors important for questions related to human reproductive health.
Collapse
Affiliation(s)
- Sandra A Touati
- Institut de Biologie Paris Seine (IBPS), UMR7622, Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, France.,Chromosome Segregation Laboratory, Lincoln's Inn Fields Laboratory, The Francis Crick Institute, London, UK
| | - Katja Wassmann
- Institut de Biologie Paris Seine (IBPS), UMR7622, Sorbonne Universités, UPMC Univ Paris 06, Paris, France. .,CNRS, IBPS, UMR7622 Developmental Biology Lab, Paris, France.
| |
Collapse
|