1
|
Pigg HC, Alley KR, Griffin CR, Moon CH, Kraske SJ, DeRose VJ. The unique Pt(II)-induced nucleolar stress response and its deviation from DNA damage response pathways. J Biol Chem 2024; 300:107858. [PMID: 39374783 PMCID: PMC11612370 DOI: 10.1016/j.jbc.2024.107858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024] Open
Abstract
The mechanisms of action for the platinum compounds cisplatin and oxaliplatin have yet to be fully elucidated, despite the worldwide use of these drugs. Recent studies suggest that the two compounds may be working through different mechanisms, with cisplatin inducing cell death via the DNA damage response (DDR) and oxaliplatin utilizing a nucleolar stress-based cell death pathway. While cisplatin-induced DDR has been subject to much research, the mechanisms for oxaliplatin's influence on the nucleolus are not well understood. Prior work has outlined structural parameters for Pt(II) derivatives capable of nucleolar stress induction. In this work, we gain insight into the nucleolar stress response induced by these Pt(II) derivatives by investigating potential correlations between this unique pathway and DDR. Key findings from this study indicate that Pt(II)-induced nucleolar stress occurs when DDR is inhibited and works independently of the ATM/ATR-dependent DDR pathway. We also determine that Pt(II)-induced stress may be linked to the G1 cell cycle phase, as cisplatin can induce nucleolar stress when cell cycle inhibition occurs at the G1/S checkpoint. Finally, we compare Pt(II)-induced nucleolar stress with other small-molecule nucleolar stress-inducing compounds Actinomycin D, BMH-21, and CX-5461 and find that Pt(II) compounds cause irreversible nucleolar stress, whereas the reversibility of nucleolar stress induced by small-molecules varies. Taken together, these findings contribute to a better understanding of Pt(II)-induced nucleolar stress, its deviation from ATM/ATR-dependent DDR, and the possible influence of cell cycle on the ability of Pt(II) compounds to cause nucleolar stress.
Collapse
Affiliation(s)
- Hannah C Pigg
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Katelyn R Alley
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | | | - Caleb H Moon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Sarah J Kraske
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Victoria J DeRose
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA.
| |
Collapse
|
2
|
Muciño-Hernández G, Acevo-Rodríguez PS, Cabrera-Benitez S, Guerrero AO, Merchant-Larios H, Castro-Obregón S. Nucleophagy contributes to genome stability through degradation of type II topoisomerases A and B and nucleolar components. J Cell Sci 2023; 136:286548. [PMID: 36633090 PMCID: PMC10112964 DOI: 10.1242/jcs.260563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/24/2022] [Indexed: 01/13/2023] Open
Abstract
The nuclear architecture of mammalian cells can be altered as a consequence of anomalous accumulation of nuclear proteins or genomic alterations. Most of the knowledge about nuclear dynamics comes from studies on cancerous cells. How normal healthy cells maintain genome stability, avoiding accumulation of nuclear damaged material, is less understood. Here, we describe that primary mouse embryonic fibroblasts develop a basal level of nuclear buds and micronuclei, which increase after etoposide-induced DNA double-stranded breaks. Both basal and induced nuclear buds and micronuclei colocalize with the autophagic proteins BECN1 and LC3B (also known as MAP1LC3B) and with acidic vesicles, suggesting their clearance by nucleophagy. Some of the nuclear alterations also contain autophagic proteins and type II DNA topoisomerases (TOP2A and TOP2B), or the nucleolar protein fibrillarin, implying they are also targets of nucleophagy. We propose that basal nucleophagy contributes to genome and nuclear stability, as well as in response to DNA damage.
Collapse
Affiliation(s)
- Gabriel Muciño-Hernández
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Pilar Sarah Acevo-Rodríguez
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Sandra Cabrera-Benitez
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| | - Adán Oswaldo Guerrero
- Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, Mexico
| | - Horacio Merchant-Larios
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Susana Castro-Obregón
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Mexico City, México
| |
Collapse
|
3
|
Kubalová I, Schmidt Černohorská M, Huranová M, Weisshart K, Houben A, Schubert V. Prospects and limitations of expansion microscopy in chromatin ultrastructure determination. Chromosome Res 2020; 28:355-368. [PMID: 32939606 PMCID: PMC7691311 DOI: 10.1007/s10577-020-09637-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/28/2020] [Accepted: 08/05/2020] [Indexed: 02/04/2023]
Abstract
Expansion microscopy (ExM) is a method to magnify physically a specimen with preserved ultrastructure. It has the potential to explore structural features beyond the diffraction limit of light. The procedure has been successfully used for different animal species, from isolated macromolecular complexes through cells to tissue slices. Expansion of plant-derived samples is still at the beginning, and little is known, whether the chromatin ultrastructure becomes altered by physical expansion. In this study, we expanded isolated barley nuclei and compared whether ExM can provide a structural view of chromatin comparable with super-resolution microscopy. Different fixation and denaturation/digestion conditions were tested to maintain the chromatin ultrastructure. We achieved up to ~4.2-times physically expanded nuclei corresponding to a maximal resolution of ~50-60 nm when imaged by wild-field (WF) microscopy. By applying structured illumination microscopy (SIM, super-resolution) doubling the WF resolution, the chromatin structures were observed at a resolution of ~25-35 nm. WF microscopy showed a preserved nucleus shape and nucleoli. Moreover, we were able to detect chromatin domains, invisible in unexpanded nuclei. However, by applying SIM, we observed that the preservation of the chromatin ultrastructure after the expansion was not complete and that the majority of the tested conditions failed to keep the ultrastructure. Nevertheless, using expanded nuclei, we localized successfully centromere repeats by fluorescence in situ hybridization (FISH) and the centromere-specific histone H3 variant CENH3 by indirect immunolabelling. However, although these repeats and proteins were localized at the correct position within the nuclei (indicating a Rabl orientation), their ultrastructural arrangement was impaired.
Collapse
Affiliation(s)
- Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Markéta Schmidt Černohorská
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Huranová
- Laboratory of Adaptive Immunity, Institute of Molecular Genetics,, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany.
| |
Collapse
|
4
|
The silencing of long non-coding RNA ANRIL suppresses invasion, and promotes apoptosis of retinoblastoma cells through the ATM-E2F1 signaling pathway. Biosci Rep 2018; 38:BSR20180558. [PMID: 30355646 PMCID: PMC6294646 DOI: 10.1042/bsr20180558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/25/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023] Open
Abstract
As one of the most common primary intraocular carcinomas, retinoblastoma generally stems from the inactivation of the retinoblastoma RB1 gene in retinal cells. Antisense non-coding RNA in the INK4 locus (ANRIL), a long non-coding RNA (lncRNA), has been reported to affect tumorigenesis and progression of various cancers, including gastric cancer and non-small cell lung cancer. However, limited investigations emphasized the role of ANRIL in human retinoblastoma. Hence, the current study was intended to investigate the effects of ANRIL on the proliferation, apoptosis, and invasion of retinoblastoma HXO-RB44 and Y79 cells. The lentivirus-based packaging system was designed to aid the up-regulation of ANRIL and ATM expressions or employed for the down-regulation of ANRIL in human retinoblastoma cells. Afterward, ANRIL expression, mRNA and protein expression of ATM and E2F1, and protein expression of INK4b, INK4a, alternate reading frame (ARF), p53 and retinoblastoma protein (pRB) were determined in order to elucidate the regulation effect associated with ANRIL on the ATM-E2F1 signaling pathway. In addition, cell viability, apoptosis, and invasion were detected accordingly. The results indicated that the down-regulation of ANRIL or up-regulation of ATM led to an increase in the expressions of ATM, E2F1, INK4b, INK4a, ARF, p53, and pRB. The silencing of ANRIL or up-regulation of ATM exerted an inhibitory effect on the proliferation and invasion while improving the apoptosis of HXO-RB44 and Y79 cells. In conclusion, the key observations of our study demonstrated that ANRIL depletion could act to suppress retinoblastoma progression by activating the ATM-E2F1 signaling pathway. These results provide a potentially promising basis for the targetted intervention treatment of human retinoblastoma.
Collapse
|
5
|
DNA Damage-Response Pathway Heterogeneity of Human Lung Cancer A549 and H1299 Cells Determines Sensitivity to 8-Chloro-Adenosine. Int J Mol Sci 2018; 19:ijms19061587. [PMID: 29843366 PMCID: PMC6032248 DOI: 10.3390/ijms19061587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/10/2018] [Accepted: 05/21/2018] [Indexed: 01/29/2023] Open
Abstract
Human lung cancer H1299 (p53-null) cells often display enhanced susceptibility to chemotherapeutics comparing to A549 (p53-wt) cells. However, little is known regarding to the association of DNA damage-response (DDR) pathway heterogeneity with drug sensitivity in these two cells. We investigated the DDR pathway differences between A549 and H1299 cells exposed to 8-chloro-adenosine (8-Cl-Ado), a potential anticancer drug that can induce DNA double-strand breaks (DSBs), and found that the hypersensitivity of H1299 cells to 8-Cl-Ado is associated with its DSB overaccumulation. The major causes of excessive DSBs in H1299 cells are as follows: First, defect of p53-p21 signal and phosphorylation of SMC1 increase S phase cells, where replication of DNA containing single-strand DNA break (SSB) produces more DSBs in H1299 cells. Second, p53 defect and no available induction of DNA repair protein p53R2 impair DNA repair activity in H1299 cells more severely than A549 cells. Third, cleavage of PARP-1 inhibits topoisomerase I and/or topoisomerase I-like activity of PARP-1, aggravates DNA DSBs and DNA repair mechanism impairment in H1299 cells. Together, DDR pathway heterogeneity of cancer cells is linked to cancer susceptibility to DNA damage-based chemotherapeutics, which may provide aid in design of chemotherapy strategy to improve treatment outcomes.
Collapse
|
6
|
Lezina L, Aksenova V, Fedorova O, Malikova D, Shuvalov O, Antonov AV, Tentler D, Garabadgiu AV, Melino G, Barlev NA. KMT Set7/9 affects genotoxic stress response via the Mdm2 axis. Oncotarget 2016; 6:25843-55. [PMID: 26317544 PMCID: PMC4694870 DOI: 10.18632/oncotarget.4584] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 07/20/2015] [Indexed: 12/28/2022] Open
Abstract
Genotoxic stress inflicted by anti-cancer drugs causes DNA breaks and genome instability. DNA double strand breaks induced by irradiation or pharmacological inhibition of Topoisomerase II activate ATM (ataxia-telangiectasia-mutated) kinase signalling pathway that in turn triggers cell cycle arrest and DNA repair. ATM-dependent gamma-phosphorylation of histone H2Ax and other histone modifications, including ubiquitnylation, promote exchange of histones and recruitment of DNA damage response (DDR) and repair proteins. Signal transduction pathways, besides DDR itself, also control expression of genes whose products cause cell cycle arrest and/or apoptosis thus ultimately affecting the sensitivity of cells to genotoxic stress. In this study, using a number of experimental approaches we provide evidence that lysine-specific methyltransferase (KMT) Set7/9 affects DDR and DNA repair, at least in part, by regulating the expression of an E3 ubiquitin ligase, Mdm2. Furthermore, we show that Set7/9 physically interacts with Mdm2. Several cancer cell lines with inverse expression of Set7/9 and Mdm2 displayed diminished survival in response to genotoxic stress. These findings are signified by our bioinformatics studies suggesting that the unleashed expression of Mdm2 in cancer patients with diminished expression of Set7/9 is associated with poor survival outcome.
Collapse
Affiliation(s)
- Larissa Lezina
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | - Vasilisa Aksenova
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | - Olga Fedorova
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | - Daria Malikova
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | - Oleg Shuvalov
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | | | - Dmitri Tentler
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia
| | - Alexander V Garabadgiu
- Molecular Pharmacology Laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg, 190013, Russia
| | - Gerry Melino
- MRC Toxicology Unit, Leicester, LE1 9HN, UK.,Molecular Pharmacology Laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg, 190013, Russia
| | - Nikolai A Barlev
- Gene Expression Laboratory, Institute of Cytology, Saint-Petersburg, 194064, Russia.,Molecular Pharmacology Laboratory, Saint-Petersburg Institute of Technology, Saint-Petersburg, 190013, Russia
| |
Collapse
|
7
|
Pérez-García C, Rouxel J, Akcha F. Development of a comet-FISH assay for the detection of DNA damage in hemocytes of Crassostrea gigas. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 161:189-195. [PMID: 25710447 DOI: 10.1016/j.aquatox.2015.01.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 01/14/2015] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
In this work, the DNA-damaging effect of hydrogen peroxide on the structural integrity of nucleolar organizer regions (NORs) was studied for the first time by comet-FISH in the Pacific oyster Crassostrea gigas. Global DNA damage was assessed in hemocytes using an alkaline version of the comet assay. Next, NOR sensitivity was analyzed by mapping major rDNA repeat unit by fluorescence in situ hybridization (FISH) on the same comet slides. Exposure of hemocytes to 100 μM of hydrogen peroxide induced a significant increase in both DNA damage and number of FISH-signals of major ribosomal genes versus the control. Moreover, a significant positive correlation was shown between DNA damage as measured by the comet assay (percentage of DNA in comet tail) and the number of signals present in comet tails. This study demonstrates the potential value of the comet-FISH assay for the study of DNA damage induced by genotoxicant exposure of target genes. It offers a perspective for better understanding the impact of genotoxicity on animal physiology and fitness.
Collapse
Affiliation(s)
- C Pérez-García
- IFREMER, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - J Rouxel
- IFREMER, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - F Akcha
- IFREMER, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
8
|
Barranger A, Benabdelmouna A, Dégremont L, Burgeot T, Akcha F. Parental exposure to environmental concentrations of diuron leads to aneuploidy in embryos of the Pacific oyster, as evidenced by fluorescent in situ hybridization. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:36-43. [PMID: 25498420 DOI: 10.1016/j.aquatox.2014.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/29/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
Changes in normal chromosome numbers (i.e. aneuploidy) due to abnormal chromosome segregation may arise either spontaneously or as a result of chemical/radiation exposure, particularly during cell division. Coastal ecosystems are continuously subjected to various contaminants originating from urban, industrial and agricultural activities. Genotoxicity is common to several families of major environmental pollutants, including pesticides, which therefore represent a potential important environmental hazard for marine organisms. A previous study demonstrated the vertical transmission of DNA damage by subjecting oyster genitors to short-term exposure to the herbicide diuron at environmental concentrations during gametogenesis. In this paper, Fluorescent in situ hybridization (FISH) was used to further characterize diuron-induced DNA damage at the chromosomal level. rDNA genes (5S and 18-5.8-28S), previously mapped onto Crassostrea gigas chromosomes 4, 5 and 10, were used as probes on the interphase nuclei of embryo preparations. Our results conclusively show higher aneuploidy (hypo- or hyperdiploidy) level in embryos from diuron-exposed genitors, with damage to the three studied chromosomal regions. This study suggests that sexually developing oysters are vulnerable to diuron exposure, incurring a negative impact on reproductive success and oyster recruitment.
Collapse
Affiliation(s)
- Audrey Barranger
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France; Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| | - Abdellah Benabdelmouna
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France.
| | - Lionel Dégremont
- Ifremer, SG2M, Laboratory of Genetics and Pathology of Marine Molluscs, Avenue de Mus du Loup, 17390 La Tremblade, France
| | - Thierry Burgeot
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| | - Farida Akcha
- Ifremer, Department of Biogeochemistry and Ecotoxicology, Laboratory of Ecotoxicology, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France
| |
Collapse
|
9
|
Qi JJ, Liu L, Cao JX, An GS, Li SY, Li G, Jia HT, Ni JH. E2F1 regulates p53R2 gene expression in p53-deficient cells. Mol Cell Biochem 2014; 399:179-88. [DOI: 10.1007/s11010-014-2244-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/09/2014] [Indexed: 01/05/2023]
|
10
|
Cao JX, Li SY, An GS, Mao ZB, Jia HT, Ni JH. E2F1-regulated DROSHA promotes miR-630 biosynthesis in cisplatin-exposed cancer cells. Biochem Biophys Res Commun 2014; 450:470-5. [DOI: 10.1016/j.bbrc.2014.05.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 05/30/2014] [Indexed: 01/07/2023]
|