1
|
Goff NJ, Mikhova M, Schmidt JC, Meek K. DNA-PK: A synopsis beyond synapsis. DNA Repair (Amst) 2024; 141:103716. [PMID: 38996771 PMCID: PMC11369974 DOI: 10.1016/j.dnarep.2024.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024]
Abstract
Given its central role in life, DNA is remarkably easy to damage. Double strand breaks (DSBs) are the most toxic form of DNA damage, and DSBs pose the greatest danger to genomic integrity. In higher vertebrates, the non-homologous end joining pathway (NHEJ) is the predominate pathway that repairs DSBs. NHEJ has three steps: 1) DNA end recognition by the DNA dependent protein kinase [DNA-PK], 2) DNA end-processing by numerous NHEJ accessory factors, and 3) DNA end ligation by the DNA ligase IV complex (LX4). Although this would appear to be a relatively simple mechanism, it has become increasingly apparent that it is not. Recently, much insight has been derived regarding the mechanism of non-homologous end joining through a proliferation of cryo-EM studies, structure-function mutational experiments informed by these new structural data, and novel single-molecule imaging approaches. An emerging consensus in the field is that NHEJ progresses from initial DSB end recognition by DNA-PK to synapsis of the two DNA ends in a long-range synaptic complex where ends are held too far apart (115 Å) for ligation, and then progress to a short-range synaptic complex where ends are positioned close enough for ligation. What was surprising from these structural studies was the observation of two distinct types of DNA-PK dimers that represent NHEJ long-range complexes. In this review, we summarize current knowledge about the function of the distinct NHEJ synaptic complexes and align this new information with emerging cellular single-molecule microscopy studies as well as with previous studies of DNA-PK's function in repair.
Collapse
Affiliation(s)
- Noah J Goff
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Mariia Mikhova
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology Genetics & Immunology, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Zhang CZ, Pellman D. Chromosome breakage-replication/fusion enables rapid DNA amplification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608415. [PMID: 39229211 PMCID: PMC11370323 DOI: 10.1101/2024.08.17.608415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
DNA rearrangements are thought to arise from two classes of processes. The first class involves DNA breakage and fusion ("cut-and-paste") without net DNA gain or loss. The second class involves aberrant DNA replication ("copy-and-paste") and can produce either net DNA gain or loss. We previously demonstrated that the partitioning of chromosomes into aberrant structures of the nucleus, micronuclei or chromosome bridges, can generate cut-and-paste rearrangements by chromosome fragmentation and ligation. Surprisingly, in the progeny clones of single cells that have undergone chromosome bridge breakage, we identified large segmental duplications and short sequence insertions that are commonly attributed to copy-and-paste processes. Here, we demonstrate that both large duplications and short insertions are inherent outcomes of the replication and fusion of unligated DNA ends, a process we term breakage-replication/fusion (B-R/F). We propose that B-R/F provides a unifying explanation for complex rearrangement patterns including chromothripsis and chromoanasynthesis and enables rapid DNA amplification after chromosome fragmentation.
Collapse
|
3
|
Buehl CJ, Goff NJ, Hardwick SW, Gellert M, Blundell TL, Yang W, Chaplin AK, Meek K. Two distinct long-range synaptic complexes promote different aspects of end processing prior to repair of DNA breaks by non-homologous end joining. Mol Cell 2023; 83:698-714.e4. [PMID: 36724784 PMCID: PMC9992237 DOI: 10.1016/j.molcel.2023.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 11/29/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023]
Abstract
Non-homologous end joining is the major double-strand break repair (DSBR) pathway in mammals. DNA-PK is the hub and organizer of multiple steps in non-homologous end joining (NHEJ). Recent high-resolution structures show how two distinct NHEJ complexes "synapse" two DNA ends. One complex includes a DNA-PK dimer mediated by XLF, whereas a distinct DNA-PK dimer forms via a domain-swap mechanism where the C terminus of Ku80 from one DNA-PK protomer interacts with another DNA-PK protomer in trans. Remarkably, the distance between the two synapsed DNA ends in both dimers is the same (∼115 Å), which matches the distance observed in the initial description of an NHEJ long-range synaptic complex. Here, a mutational strategy is used to demonstrate distinct cellular function(s) of the two dimers: one promoting fill-in end processing, while the other promotes DNA end resection. Thus, the specific DNA-PK dimer formed (which may be impacted by DNA end structure) dictates the mechanism by which ends will be made ligatable.
Collapse
Affiliation(s)
- Christopher J Buehl
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Noah J Goff
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA
| | - Steven W Hardwick
- CryoEM Facility, Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amanda K Chaplin
- Department of Biochemistry, University of Cambridge, Sanger Building, Tennis Court Road, Cambridge CB2 1GA, UK; Leicester Institute for Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| | - Katheryn Meek
- College of Veterinary Medicine, Department of Microbiology & Molecular Genetics, Department of Pathobiology & Diagnostic Investigation, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
4
|
Chaurasia RK, Bhat NN, Gaur N, Shirsath KB, Desai UN, Sapra BK. Establishment and multiparametric-cytogenetic validation of 60Co-gamma-ray induced, phospho-gamma-H2AX calibration curve for rapid biodosimetry and triage management during radiological emergencies. Mutat Res 2021; 866:503354. [PMID: 33985694 DOI: 10.1016/j.mrgentox.2021.503354] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023]
Abstract
Exposure to ionizing radiation is unavoidable to our modern developing society as its applications are widespread and increasing with societal development. The exposures may be planned as in medical applications or may be unplanned as in occupational work and radiological emergencies. Dose quantification of planned and unplanned exposures is essential to make crucial decisions for management of such exposures. This study aims to establish ex-vivo dose-response curve for 60Co-gamma-ray induced gamma-H2AX-foci by immunofluorescence using microscopy and flowcytometry with human lymphocytes. This technique has the potential to serve as a rapid tool for dose estimation and triage application during small to large scale radiological emergencies and clinical exposures. Response curves were generated for the dose range 0-4 Gy (at 1, 2, 4, 8, 16, 24, 48, 72 and 96 h of incubation after irradiation) with microscopy and 0-8 Gy (at 2, 4, 8, 16 and 24 h of incubation after irradiation) with flow cytometry. These curves can be applied for dose reconstruction when post exposure sampling is delayed up to 96 h. In order to evaluate Minimum Detection Limit (MDL) of the assay, variation of background frequency of gamma-H2AX-foci was measured in 12 volunteers. To understand the application window of the assay, gamma-H2AX foci decay kinetics has been studied up to 96 h with microscopy and response curves were generated from 1 to 96 hours post exposure. Gamma-H2AX fluorescence intensity decay kinetics was also studied up to 96 h with flow cytometry and response curves were generated from 2 to 24 hours post irradiation. Established curves were validated with dose blinded samples and also compared with standard cytogenetic assays. An inter-comparison of dose estimates was made among gamma-H2AX assay, dicentric aberrations and reciprocal translocations for application window in various dose ranges and time of blood collection after exposures.
Collapse
Affiliation(s)
- Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - N N Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| | - Neeraj Gaur
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - K B Shirsath
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - U N Desai
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India.
| | - B K Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India; Homi Bhabha National Institute (HBNI), Mumbai, India.
| |
Collapse
|
5
|
RepID-deficient cancer cells are sensitized to a drug targeting p97/VCP segregase. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00121-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Background
The p97/valosin-containing protein (VCP) complex is a crucial factor for the segregation of ubiquitinated proteins in the DNA damage response and repair pathway.
Objective
We investigated whether blocking the p97/VCP function can inhibit the proliferation of RepID-deficient cancer cells using immunofluorescence, clonogenic survival assay, fluorescence-activated cell sorting, and immunoblotting.
Result
p97/VCP was recruited to chromatin and colocalized with DNA double-strand breaks in RepID-deficient cancer cells that undergo spontaneous DNA damage. Inhibition of p97/VCP induced death of RepID-depleted cancer cells. This study highlights the potential of targeting p97/VCP complex as an anticancer therapeutic approach.
Conclusion
Our results show that RepID is required to prevent excessive DNA damage at the endogenous levels. Localization of p97/VCP to DSB sites was induced based on spontaneous DNA damage in RepID-depleted cancer cells. Anticancer drugs targeting p97/VCP may be highly potent in RepID-deficient cells. Therefore, we suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.
Collapse
|
6
|
Stinson BM, Loparo JJ. Repair of DNA Double-Strand Breaks by the Nonhomologous End Joining Pathway. Annu Rev Biochem 2021; 90:137-164. [PMID: 33556282 DOI: 10.1146/annurev-biochem-080320-110356] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA double-strand breaks pose a serious threat to genome stability. In vertebrates, these breaks are predominantly repaired by nonhomologous end joining (NHEJ), which pairs DNA ends in a multiprotein synaptic complex to promote their direct ligation. NHEJ is a highly versatile pathway that uses an array of processing enzymes to modify damaged DNA ends and enable their ligation. The mechanisms of end synapsis and end processing have important implications for genome stability. Rapid and stable synapsis is necessary to limit chromosome translocations that result from the mispairing of DNA ends. Furthermore, end processing must be tightly regulated to minimize mutations at the break site. Here, we review our current mechanistic understanding of vertebrate NHEJ, with a particular focus on end synapsis and processing.
Collapse
Affiliation(s)
- Benjamin M Stinson
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
7
|
The molecular basis and disease relevance of non-homologous DNA end joining. Nat Rev Mol Cell Biol 2020; 21:765-781. [PMID: 33077885 DOI: 10.1038/s41580-020-00297-8] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/26/2022]
Abstract
Non-homologous DNA end joining (NHEJ) is the predominant repair mechanism of any type of DNA double-strand break (DSB) during most of the cell cycle and is essential for the development of antigen receptors. Defects in NHEJ result in sensitivity to ionizing radiation and loss of lymphocytes. The most critical step of NHEJ is synapsis, or the juxtaposition of the two DNA ends of a DSB, because all subsequent steps rely on it. Recent findings show that, like the end processing step, synapsis can be achieved through several mechanisms. In this Review, we first discuss repair pathway choice between NHEJ and other DSB repair pathways. We then integrate recent insights into the mechanisms of NHEJ synapsis with updates on other steps of NHEJ, such as DNA end processing and ligation. Finally, we discuss NHEJ-related human diseases, including inherited disorders and neoplasia, which arise from rare failures at different NHEJ steps.
Collapse
|
8
|
Zhao B, Watanabe G, Lieber MR. Polymerase μ in non-homologous DNA end joining: importance of the order of arrival at a double-strand break in a purified system. Nucleic Acids Res 2020; 48:3605-3618. [PMID: 32052035 PMCID: PMC7144918 DOI: 10.1093/nar/gkaa094] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/14/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
During non-homologous DNA end joining (NHEJ), bringing two broken dsDNA ends into proximity is an essential prerequisite for ligation by XRCC4:Ligase IV (X4L4). This physical juxtaposition of DNA ends is called NHEJ synapsis. In addition to the key NHEJ synapsis proteins, Ku, X4L4, and XLF, it has been suggested that DNA polymerase mu (pol μ) may also align two dsDNA ends into close proximity for synthesis. Here, we directly observe the NHEJ synapsis by pol μ using a single molecule FRET (smFRET) assay where we can measure the duration of the synapsis. The results show that pol μ alone can mediate efficient NHEJ synapsis of 3′ overhangs that have at least 1 nt microhomology. The abundant Ku protein in cells limits the accessibility of pol μ to DNA ends with overhangs. But X4L4 can largely reverse the Ku inhibition, perhaps by pushing the Ku inward to expose the overhang for NHEJ synapsis. Based on these studies, the mechanistic flexibility known to exist at other steps of NHEJ is now also apparent for the NHEJ synapsis step.
Collapse
Affiliation(s)
- Bailin Zhao
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Go Watanabe
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Molecular Microbiology & Immunology, and Section of Computational & Molecular Biology, USC Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, 1441 Eastlake Ave, Rm. 5428, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci Rep 2020; 10:940. [PMID: 31969622 PMCID: PMC6976671 DOI: 10.1038/s41598-020-57886-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 01/07/2020] [Indexed: 01/05/2023] Open
Abstract
DNA polymerase (pol) μ primarily inserts ribonucleotides into a single-nucleotide gapped DNA intermediate, and the ligation step plays a critical role in the joining of noncomplementary DNA ends during nonhomologous end joining (NHEJ) for the repair of double-strand breaks (DSBs) caused by reactive oxygen species. Here, we report that the pol μ insertion products of ribonucleotides (rATP or rCTP), instead of deoxyribonucleotides, opposite 8-oxo-2′-deoxyguanosine (8-oxodG) are efficiently ligated and the presence of Mn2+ stimulates this coupled reaction in vitro. Moreover, our results point to a role of pol μ in mediating ligation during the mutagenic bypass of 8-oxodG, while 3′-preinserted noncanonical base pairs (3′-rA or 3′-rC) on NHEJ repair intermediates compromise the end joining by DNA ligase I or the DNA ligase IV/XRCC4 complex.
Collapse
|
10
|
Ray S, Breuer G, DeVeaux M, Zelterman D, Bindra R, Sweasy JB. DNA polymerase beta participates in DNA End-joining. Nucleic Acids Res 2019; 46:242-255. [PMID: 29161447 PMCID: PMC5758893 DOI: 10.1093/nar/gkx1147] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
DNA double strand breaks (DSBs) are one of the most deleterious lesions and if left unrepaired, they lead to cell death, genomic instability and carcinogenesis. Cells combat DSBs by two pathways: homologous recombination (HR) and non-homologous end-joining (NHEJ), wherein the two DNA ends are re-joined. Recently a back-up NHEJ pathway has been reported and is referred to as alternative NHEJ (aNHEJ), which joins ends but results in deletions and insertions. NHEJ requires processing enzymes including nucleases and polymerases, although the roles of these enzymes are poorly understood. Emerging evidence indicates that X family DNA polymerases lambda (Pol λ) and mu (Pol μ) promote DNA end-joining. Here, we show that DNA polymerase beta (Pol β), another member of the X family of DNA polymerases, plays a role in aNHEJ. In the absence of DNA Pol β, fewer small deletions are observed. In addition, depletion of Pol β results in cellular sensitivity to bleomycin and DNA protein kinase catalytic subunit inhibitors due to defective repair of DSBs. In summary, our results indicate that Pol β in functions in aNHEJ and provide mechanistic insight into its role in this process.
Collapse
Affiliation(s)
- Sreerupa Ray
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Gregory Breuer
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Michelle DeVeaux
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Daniel Zelterman
- School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Pathology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| | - Joann B Sweasy
- Department of Therapeutic Radiology, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA.,Department of Genetics, School of Public Health, Yale University School of Medicine, New Haven, CT 06520-8034, USA
| |
Collapse
|
11
|
Çağlayan M. Interplay between DNA Polymerases and DNA Ligases: Influence on Substrate Channeling and the Fidelity of DNA Ligation. J Mol Biol 2019; 431:2068-2081. [PMID: 31034893 DOI: 10.1016/j.jmb.2019.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 02/06/2023]
Abstract
DNA ligases are a highly conserved group of nucleic acid enzymes that play an essential role in DNA repair, replication, and recombination. This review focuses on functional interaction between DNA polymerases and DNA ligases in the repair of single- and double-strand DNA breaks, and discusses the notion that the substrate channeling during DNA polymerase-mediated nucleotide insertion coupled to DNA ligation could be a mechanism to minimize the release of potentially mutagenic repair intermediates. Evidence suggesting that DNA ligases are essential for cell viability includes the fact that defects or insufficiency in DNA ligase are casually linked to genome instability. In the future, it may be possible to develop small molecule inhibitors of mammalian DNA ligases and/or their functional protein partners that potentiate the effects of chemotherapeutic compounds and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
12
|
Çağlayan M, Wilson SH. Pol μ dGTP mismatch insertion opposite T coupled with ligation reveals promutagenic DNA repair intermediate. Nat Commun 2018; 9:4213. [PMID: 30310068 PMCID: PMC6181931 DOI: 10.1038/s41467-018-06700-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/08/2018] [Indexed: 01/01/2023] Open
Abstract
Incorporation of mismatched nucleotides during DNA replication or repair leads to transition or transversion mutations and is considered as a predominant source of base substitution mutagenesis in cancer cells. Watson-Crick like dG:dT base pairing is considered to be an important source of genome instability. Here we show that DNA polymerase (pol) μ insertion of 7,8-dihydro-8′-oxo-dGTP (8-oxodGTP) or deoxyguanosine triphosphate (dGTP) into a model double-strand break DNA repair substrate with template base T results in efficient ligation by DNA ligase. These results indicate that pol μ-mediated dGTP mismatch insertion opposite template base T coupled with ligation could be a feature of mutation prone nonhomologous end joining during double-strand break repair. Incorporation of mismatched nucleotides during DNA replication or repair can lead to mutagenesis. Here the authors reveal that DNA ligase can ligate NHEJ intermediates following incorporation of 8-oxodGTP or dGTP opposite T by DNA Polymerase mu (Pol mu) in vitro, which suggests that Pol mu could cause promutagenic mismatches during DSB repair.
Collapse
Affiliation(s)
- Melike Çağlayan
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA. .,Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
13
|
Keskin H, Storici F. An Approach to Detect and Study DNA Double-Strand Break Repair by Transcript RNA Using a Spliced-Antisense RNA Template. Methods Enzymol 2018. [PMID: 29523242 DOI: 10.1016/bs.mie.2017.11.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
A double-strand break (DSB) is one of the most dangerous DNA lesion, and its repair is crucial for genome stability. Homologous recombination is considered the safest way to repair a DNA DSB and requires an identical or nearly identical DNA template, such as a sister chromatid or a homologous chromosome for accurate repair. Can transcript RNA serve as donor template for DSB repair? Here, we describe an approach that we developed to detect and study DNA repair by transcript RNA. Key features of the method are: (i) use of antisense (noncoding) RNA as template for DSB repair by RNA, (ii) use of intron splicing to distinguish the sequence of the RNA template from that of the DNA that generates the RNA template, and (iii) use of a trans and cis system to study how RNA repairs a DSB in homologous but distant DNA or in its own DNA, respectively. This chapter provides details on how to use a spliced-antisense RNA template to detect and study DSB repair by RNA in trans or cis in yeast cells. Our approach for detection of DSB repair by RNA in cells can be applied to cell types other than yeast, such as bacteria, mammalian cells, or other eukaryotic cells.
Collapse
Affiliation(s)
- Havva Keskin
- Georgia Institute of Technology, Atlanta, GA, United States
| | | |
Collapse
|
14
|
Khodaverdian VY, Hanscom T, Yu AM, Yu TL, Mak V, Brown AJ, Roberts SA, McVey M. Secondary structure forming sequences drive SD-MMEJ repair of DNA double-strand breaks. Nucleic Acids Res 2018; 45:12848-12861. [PMID: 29121353 PMCID: PMC5728401 DOI: 10.1093/nar/gkx1056] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/18/2017] [Indexed: 12/29/2022] Open
Abstract
Alternative end-joining (alt-EJ) repair of DNA double-strand breaks is associated with deletions, chromosome translocations, and genome instability. Alt-EJ frequently uses annealing of microhomologous sequences to tether broken ends. When accessible pre-existing microhomologies do not exist, we have postulated that new microhomologies can be created via limited DNA synthesis at secondary-structure forming sequences. This model, called synthesis-dependent microhomology-mediated end joining (SD-MMEJ), predicts that differences between DNA sequences near double-strand breaks should alter repair outcomes in predictable ways. To test this hypothesis, we injected plasmids with sequence variations flanking an I-SceI endonuclease recognition site into I-SceI expressing Drosophila embryos and used Illumina amplicon sequencing to compare repair junctions. As predicted by the model, we found that small changes in sequences near the I-SceI site had major impacts on the spectrum of repair junctions. Bioinformatic analyses suggest that these repair differences arise from transiently forming loops and hairpins within 30 nucleotides of the break. We also obtained evidence for ‘trans SD-MMEJ,’ involving at least two consecutive rounds of microhomology annealing and synthesis across the break site. These results highlight the importance of sequence context for alt-EJ repair and have important implications for genome editing and genome evolution.
Collapse
Affiliation(s)
- Varandt Y Khodaverdian
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Terrence Hanscom
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Amy Marie Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Taylor L Yu
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Victoria Mak
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| | - Alexander J Brown
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, Washington State University, P100 Dairy Road, Pullman, WA 99164, USA
| | - Mitch McVey
- Department of Biology, Tufts University, 200 Boston Avenue, Suite 4700, Medford, MA 02155, USA
| |
Collapse
|
15
|
Talens F, Jalving M, Gietema JA, Van Vugt MA. Therapeutic targeting and patient selection for cancers with homologous recombination defects. Expert Opin Drug Discov 2017; 12:565-581. [PMID: 28425306 DOI: 10.1080/17460441.2017.1322061] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION DNA double-strand breaks (DSBs) are toxic DNA lesions that can be repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR). Mutations in HR genes elicit a predisposition to cancer; yet, they also result in increased sensitivity to certain DNA damaging agents and poly (ADP-ribose) polymerase (PARP) inhibitors. To optimally implement PARP inhibitor treatment, it is important that patients with HR-deficient tumors are adequately selected. Areas covered: Herein, the authors describe the HR pathway mechanistically and review the treatment of HR-deficient cancers, with a specific focus on PARP inhibition for BRCA1/2-mutated breast and ovarian cancer. In addition, mechanisms of acquired PARP inhibitor resistance are discussed. Furthermore, combination therapies with PARP inhibitors are reviewed, in the context of both HR-deficient and HR-proficient tumors and methods for proper patient selection are also discussed. Expert opinion: Currently, only patients with germline or somatic BRCA1/2 mutations are eligible for PARP inhibitor treatment and only a proportion of patients respond. Patients with HR-deficient tumors caused by other (epi)genetic events may also benefit from PARP inhibitor treatment. Ideally, selection of eligible patients for PARP inhibitor treatment include a functional HR read-out, in which cancer cells are interrogated for their ability to perform HR repair and maintain replication fork stability.
Collapse
Affiliation(s)
- Francien Talens
- a Department of Medical Oncology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Mathilde Jalving
- a Department of Medical Oncology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Jourik A Gietema
- a Department of Medical Oncology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| | - Marcel A Van Vugt
- a Department of Medical Oncology , University Medical Center Groningen, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
16
|
Bhattacharjee S, Nandi S. Choices have consequences: the nexus between DNA repair pathways and genomic instability in cancer. Clin Transl Med 2016; 5:45. [PMID: 27921283 PMCID: PMC5136664 DOI: 10.1186/s40169-016-0128-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 11/10/2022] Open
Abstract
Background The genome is under constant assault from a multitude of sources that can lead to the formation of DNA double-stand breaks (DSBs). DSBs are cytotoxic lesions, which if left unrepaired could lead to genomic instability, cancer and even cell death. However, erroneous repair of DSBs can lead to chromosomal rearrangements and loss of heterozygosity, which in turn can also cause cancer and cell death. Hence, although the repair of DSBs is crucial for the maintenance of genome integrity the process of repair need to be well regulated and closely monitored. Main body The two most commonly used pathways to repair DSBs in higher eukaryotes include non-homologous end joining (NHEJ) and homologous recombination (HR). NHEJ is considered to be error-prone, intrinsically mutagenic quick fix remedy to seal together the broken DNA ends and restart replication. In contrast, HR is a high-fidelity process that has been very well conserved from phage to humans. Here we review HR and its sub-pathways. We discuss what factors determine the sub pathway choice including etiology of the DSB, chromatin structure at the break site, processing of the DSBs and the mechanisms regulating the sub-pathway choice. We also elaborate on the potential of targeting HR genes for cancer therapy and anticancer strategies. Conclusion The DNA repair field is a vibrant one, and the stage is ripe for scrutinizing the potential treatment efficacy and future clinical applications of the pharmacological inhibitors of HR enzymes as mono- or combinatorial therapy regimes. Electronic supplementary material The online version of this article (doi:10.1186/s40169-016-0128-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Saikat Nandi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
17
|
Graham TGW, Walter JC, Loparo JJ. Two-Stage Synapsis of DNA Ends during Non-homologous End Joining. Mol Cell 2016; 61:850-8. [PMID: 26990988 DOI: 10.1016/j.molcel.2016.02.010] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/21/2015] [Accepted: 02/07/2016] [Indexed: 11/28/2022]
Abstract
Repair of DNA double-strand breaks (DSBs) is essential for genomic stability. The most common DSB repair mechanism in human cells, non-homologous end joining (NHEJ), rejoins broken DNA ends by direct ligation. It remains unclear how components of the NHEJ machinery assemble a synaptic complex that bridges DNA ends. Here, we use single-molecule imaging in a vertebrate cell-free extract to show that synapsis of DNA ends occurs in at least two stages that are controlled by different NHEJ factors. DNA ends are initially tethered in a long-range complex whose formation requires the Ku70/80 heterodimer and the DNA-dependent protein kinase catalytic subunit. The ends are then closely aligned, which requires XLF, a non-catalytic function of XRCC4-LIG4, and DNA-PK activity. These results reveal a structural transition in the synaptic complex that governs alignment of DNA ends. Our approach provides a means of studying physiological DNA DSB repair at single-molecule resolution.
Collapse
Affiliation(s)
- Thomas G W Graham
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Ogino M, Ichimura M, Nakano N, Minami A, Kitagishi Y, Matsuda S. Roles of PTEN with DNA Repair in Parkinson's Disease. Int J Mol Sci 2016; 17:ijms17060954. [PMID: 27314344 PMCID: PMC4926487 DOI: 10.3390/ijms17060954] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress is considered to play key roles in aging and pathogenesis of many neurodegenerative diseases such as Parkinson’s disease, which could bring DNA damage by cells. The DNA damage may lead to the cell apoptosis, which could contribute to the degeneration of neuronal tissues. Recent evidence suggests that PTEN (phosphatase and tensin homolog on chromosome 10) may be involved in the pathophysiology of the neurodegenerative disorders. Since PTEN expression appears to be one dominant determinant of the neuronal cell death, PTEN should be a potential molecular target of novel therapeutic strategies against Parkinson’s disease. In addition, defects in DNA damage response and DNA repair are often associated with modulation of hormone signaling pathways. Especially, many observations imply a role for estrogen in a regulation of the DNA repair action. In the present review, we have attempted to summarize the function of DNA repair molecules at a viewpoint of the PTEN signaling pathway and the hormone related functional modulation of cells, providing a broad interpretation on the molecular mechanisms for treatment of Parkinson’s disease. Particular attention will be paid to the mechanisms proposed to explain the health effects of food ingredients against Parkinson’s disease related to reduce oxidative stress for an efficient therapeutic intervention.
Collapse
Affiliation(s)
- Mako Ogino
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Mayuko Ichimura
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Noriko Nakano
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Akari Minami
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|
19
|
Chang HHY, Lieber MR. Structure-Specific nuclease activities of Artemis and the Artemis: DNA-PKcs complex. Nucleic Acids Res 2016; 44:4991-7. [PMID: 27198222 PMCID: PMC4914130 DOI: 10.1093/nar/gkw456] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 12/23/2022] Open
Abstract
Artemis is a vertebrate nuclease with both endo- and exonuclease activities that acts on a wide range of nucleic acid substrates. It is the main nuclease in the non-homologous DNA end-joining pathway (NHEJ). Not only is Artemis important for the repair of DNA double-strand breaks (DSBs) in NHEJ, it is essential in opening the DNA hairpin intermediates that are formed during V(D)J recombination. Thus, humans with Artemis deficiencies do not have T- or B-lymphocytes and are diagnosed with severe combined immunodeficiency (SCID). While Artemis is the only vertebrate nuclease capable of opening DNA hairpins, it has also been found to act on other DNA substrates that share common structural features. Here, we discuss the key structural features that all Artemis DNA substrates have in common, thus providing a basis for understanding how this structure-specific nuclease recognizes its DNA targets.
Collapse
Affiliation(s)
- Howard H Y Chang
- University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| | - Michael R Lieber
- University of Southern California Keck School of Medicine, Norris Comprehensive Cancer Center, Los Angeles, CA 90089, USA
| |
Collapse
|
20
|
Emerson CH, Bertuch AA. Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem Cell Biol 2016; 94:396-406. [PMID: 27240172 DOI: 10.1139/bcb-2016-0001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA double strand breaks (DSBs) are dangerous sources of genome instability and must be repaired by the cell. Nonhomologous end-joining (NHEJ) is an evolutionarily conserved pathway to repair DSBs by direct ligation of the ends, with no requirement for a homologous template. While NHEJ is the primary DSB repair pathway in mammalian cells, conservation of the core NHEJ factors throughout eukaryotes makes the pathway attractive for study in model organisms. The budding yeast, Saccharomyces cerevisiae, has been used extensively to develop a functional picture of NHEJ. In this review, we will discuss the current understanding of NHEJ in S. cerevisiae. Topics include canonical end-joining, alternative end-joining, and pathway regulation. Particular attention will be paid to the NHEJ mechanism involving core factors, including Yku70/80, Dnl4, Lif1, and Nej1, as well as the various factors implicated in the processing of the broken ends. The relevance of chromatin dynamics to NHEJ will also be discussed. This review illustrates the use of S. cerevisiae as a powerful system to understand the principles of NHEJ, as well as in pioneering the direction of the field.
Collapse
Affiliation(s)
- Charlene H Emerson
- a Graduate Program in Genetics, Baylor College of Medicine, Houston, TX 77030, USA.,b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alison A Bertuch
- b Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
21
|
He MD, Zhang FH, Wang HL, Wang HP, Zhu ZY, Sun YH. Efficient ligase 3-dependent microhomology-mediated end joining repair of DNA double-strand breaks in zebrafish embryos. Mutat Res 2015; 780:86-96. [PMID: 26318124 DOI: 10.1016/j.mrfmmm.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/21/2015] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
DNA double-strand break (DSB) repair is of considerable importance for genomic integrity. Homologous recombination (HR) and non-homologous end joining (NHEJ) are considered as two major mechanistically distinct pathways involved in repairing DSBs. In recent years, another DSB repair pathway, namely, microhomology-mediated end joining (MMEJ), has received increasing attention. MMEJ is generally believed to utilize an alternative mechanism to repair DSBs when NHEJ and other mechanisms fail. In this study, we utilized zebrafish as an in vivo model to study DSB repair and demonstrated that efficient MMEJ repair occurred in the zebrafish genome when DSBs were induced using TALEN (transcription activator-like effector nuclease) or CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 technologies. The wide existence of MMEJ repair events in zebrafish embryos was further demonstrated via the injection of several in vitro-designed exogenous MMEJ reporters. Interestingly, the inhibition of endogenous ligase 4 activity significantly increased MMEJ frequency, and the inhibition of ligase 3 activity severely decreased MMEJ activity. These results suggest that MMEJ in zebrafish is dependent on ligase 3 but independent of ligase 4. This study will enhance our understanding of the mechanisms of MMEJ in vivo and facilitate inducing desirable mutations via DSB-induced repair.
Collapse
Affiliation(s)
- Mu-Dan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Feng-Hua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Lin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hou-Peng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuo-Yan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-Hua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
22
|
XRCC4/XLF Interaction Is Variably Required for DNA Repair and Is Not Required for Ligase IV Stimulation. Mol Cell Biol 2015; 35:3017-28. [PMID: 26100018 DOI: 10.1128/mcb.01503-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/15/2015] [Indexed: 01/21/2023] Open
Abstract
The classic nonhomologous end-joining (c-NHEJ) pathway is largely responsible for repairing double-strand breaks (DSBs) in mammalian cells. XLF stimulates the XRCC4/DNA ligase IV complex by an unknown mechanism. XLF interacts with XRCC4 to form filaments of alternating XRCC4 and XLF dimers that bridge DNA ends in vitro, providing a mechanism by which XLF might stimulate ligation. Here, we characterize two XLF mutants that do not interact with XRCC4 and cannot form filaments or bridge DNA in vitro. One mutant is fully sufficient in stimulating ligation by XRCC4/Lig4 in vitro; the other is not. This separation-of-function mutant (which must function as an XLF homodimer) fully complements the c-NHEJ deficits of some XLF-deficient cell strains but not others, suggesting a variable requirement for XRCC4/XLF interaction in living cells. To determine whether the lack of XRCC4/XLF interaction (and potential bridging) can be compensated for by other factors, candidate repair factors were disrupted in XLF- or XRCC4-deficient cells. The loss of either ATM or the newly described XRCC4/XLF-like factor, PAXX, accentuates the requirement for XLF. However, in the case of ATM/XLF loss (but not PAXX/XLF loss), this reflects a greater requirement for XRCC4/XLF interaction.
Collapse
|
23
|
DNA polymerases β and λ and their roles in cell. DNA Repair (Amst) 2015; 29:112-26. [DOI: 10.1016/j.dnarep.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 10/24/2022]
|
24
|
Regulation of 53BP1 protein stability by RNF8 and RNF168 is important for efficient DNA double-strand break repair. PLoS One 2014; 9:e110522. [PMID: 25337968 PMCID: PMC4206297 DOI: 10.1371/journal.pone.0110522] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
53BP1 regulates DNA double-strand break (DSB) repair. In functional assays for specific DSB repair pathways, we found that 53BP1 was important in the conservative non-homologous end-joining (C-NHEJ) pathway, and this activity was dependent upon RNF8 and RNF168. We observed that 53BP1 protein was diffusely abundant in nuclei, and upon ionizing radiation, 53BP1 was everywhere degraded except at DNA damage sites. Depletion of RNF8 or RNF168 blocked the degradation of the diffusely localized nuclear 53BP1, and ionizing radiation induced foci (IRIF) did not form. Furthermore, when 53BP1 degradation was inhibited, a subset of 53BP1 was bound to DNA damage sites but bulk, unbound 53BP1 remained in the nucleoplasm, and localization of its downstream effector RIF1 at DSBs was abolished. Our data suggest a novel mechanism for responding to DSB that upon ionizing radiation, 53BP1 was divided into two populations, ensuring functional DSB repair: damage site-bound 53BP1 whose binding signal is known to be generated by RNF8 and RNF168; and unbound bulk 53BP1 whose ensuing degradation is regulated by RNF8 and RNF168.
Collapse
|
25
|
Apoptosis and molecular targeting therapy in cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:150845. [PMID: 25013758 PMCID: PMC4075070 DOI: 10.1155/2014/150845] [Citation(s) in RCA: 737] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/11/2014] [Indexed: 12/22/2022]
Abstract
Apoptosis is the programmed cell death which maintains the healthy survival/death balance in metazoan cells. Defect in apoptosis can cause cancer or autoimmunity, while enhanced apoptosis may cause degenerative diseases. The apoptotic signals contribute into safeguarding the genomic integrity while defective apoptosis may promote carcinogenesis. The apoptotic signals are complicated and they are regulated at several levels. The signals of carcinogenesis modulate the central control points of the apoptotic pathways, including inhibitor of apoptosis (IAP) proteins and FLICE-inhibitory protein (c-FLIP). The tumor cells may use some of several molecular mechanisms to suppress apoptosis and acquire resistance to apoptotic agents, for example, by the expression of antiapoptotic proteins such as Bcl-2 or by the downregulation or mutation of proapoptotic proteins such as BAX. In this review, we provide the main regulatory molecules that govern the main basic mechanisms, extrinsic and intrinsic, of apoptosis in normal cells. We discuss how carcinogenesis could be developed via defective apoptotic pathways or their convergence. We listed some molecules which could be targeted to stimulate apoptosis in different cancers. Together, we briefly discuss the development of some promising cancer treatment strategies which target apoptotic inhibitors including Bcl-2 family proteins, IAPs, and c-FLIP for apoptosis induction.
Collapse
|
26
|
Huang B, Shang ZF, Li B, Wang Y, Liu XD, Zhang SM, Guan H, Rang WQ, Hu JA, Zhou PK. DNA-PKcs associates with PLK1 and is involved in proper chromosome segregation and cytokinesis. J Cell Biochem 2014; 115:1077-88. [PMID: 24166892 DOI: 10.1002/jcb.24703] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022]
Abstract
Accurate mitotic regulation is as important as intrinsic DNA repair for maintaining genomic stability. It is believed that these two cellular mechanisms are interconnected with DNA damage. DNA-PKcs is a critical component of the non-homologous end-joining pathway of DNA double-stranded break repair, and it was recently discovered to be involved in mitotic processing. However, the underlying mechanism of DNA-PKcs action in mitotic control is unknown. Here, we demonstrated that depletion of DNA-PKcs led to the dysregulation of mitotic progression in response to DNA damage, which eventually resulted in multiple failures, including failure to segregate sister chromatids and failure to complete cytokinesis, with daughter cells becoming fused again. The depletion of DNA-PKcs resulted in a notable failure of cytokinesis, with a high incidence of multinucleated cells. There were also cytoplasmic bridges containing DNA that continuously connected the daughter cells after DNA damage was induced. Phosphorylated DNA-PKcs (T2609) colocalizes with PLK1 throughout mitosis, including at the centrosomes from prophase to anaphase and at the kinetochores from prometaphase to metaphase, with accumulation at the midbody during cytokinesis. Importantly, DNA-PKcs was found to associate with PLK1 in the mitotic phase, and the depletion of DNA-PKcs resulted in the overexpression of PLK1 due to increased protein stability. However, deficiency in DNA-PKcs attenuated the recruitment of phosphorylated PLK1 to the midbody but not to the kinetochores and centrosomes. Our results demonstrate the functional association of DNA-PKcs with PLK1, especially in chromosomal segregation and cytokinesis control.
Collapse
Affiliation(s)
- Bo Huang
- School of Public Heath, Central South University, Changsha, Hunan Province, 410078, P.R. China; Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China; Institute for Environmental Medicine and Radiation Hygiene, The College of Public Health, University of South China, Hengyang, Hunan Province, 421000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
The repair of environmentally relevant DNA double strand breaks caused by high linear energy transfer irradiation – No simple task. DNA Repair (Amst) 2014; 17:64-73. [DOI: 10.1016/j.dnarep.2014.01.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/24/2014] [Indexed: 01/03/2023]
|
28
|
Waters CA, Strande NT, Wyatt DW, Pryor JM, Ramsden DA. Nonhomologous end joining: a good solution for bad ends. DNA Repair (Amst) 2014; 17:39-51. [PMID: 24630899 DOI: 10.1016/j.dnarep.2014.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 12/27/2022]
Abstract
Double strand breaks pose unique problems for DNA repair, especially when broken ends possess complex structures that interfere with standard DNA transactions. Nonhomologous end joining can use multiple strategies to solve these problems. It further uses sophisticated means to ensure the strategy chosen provides the ideal balance of flexibility and accuracy.
Collapse
Affiliation(s)
- Crystal A Waters
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Natasha T Strande
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - David W Wyatt
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - John M Pryor
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics and Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
29
|
Non-homologous end joining often uses microhomology: implications for alternative end joining. DNA Repair (Amst) 2014; 17:74-80. [PMID: 24613510 DOI: 10.1016/j.dnarep.2014.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/27/2014] [Accepted: 02/10/2014] [Indexed: 11/20/2022]
Abstract
Artemis and PALF (also called APLF) appear to be among the primary nucleases involved in non-homologous end joining (NHEJ) and responsible for most nucleolytic end processing in NHEJ. About 60% of NHEJ events show an alignment of the DNA ends that use 1 or 2bp of microhomology (MH) between the two DNA termini. Thus, MH is a common feature of NHEJ. For most naturally occurring human chromosomal deletions (e.g., after oxidative damage or radiation) and translocations, such as those seen in human neoplasms and as well as inherited chromosomal structural variations, MH usage occurs at a frequency that is typical of NHEJ, and does not suggest major involvement of alternative pathways that require more extensive MH. Though we mainly focus on human NHEJ at double-strand breaks, comparison on these points to other eukaryotes, primarily S. cerevisiae, is informative.
Collapse
|
30
|
Illegitimate V(D)J recombination-mediated deletions in Notch1 and Bcl11b are not sufficient for extensive clonal expansion and show minimal age or sex bias in frequency or junctional processing. Mutat Res 2014; 761:34-48. [PMID: 24530429 DOI: 10.1016/j.mrfmmm.2014.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 12/23/2013] [Accepted: 01/28/2014] [Indexed: 01/22/2023]
Abstract
Illegitimate V(D)J recombination at oncogenes and tumor suppressor genes is implicated in formation of several T cell malignancies. Notch1 and Bcl11b, genes involved in developing T cell specification, selection, proliferation, and survival, were previously shown to contain hotspots for deletional illegitimate V(D)J recombination associated with radiation-induced thymic lymphoma. Interestingly, these deletions were also observed in wild-type animals. In this study, we conducted frequency, clonality, and junctional processing analyses of Notch1 and Bcl11b deletions during mouse development and compared results to published analyses of authentic V(D)J rearrangements at the T cell receptor beta (TCRβ) locus and illegitimate V(D)J deletions observed at the human, nonimmune HPRT1 locus not involved in T cell malignancies. We detect deletions in Notch1 and Bcl11b in thymic and splenic T cell populations, consistent with cells bearing deletions in the circulating lymphocyte pool. Deletions in thymus can occur in utero, increase in frequency between fetal and postnatal stages, are detected at all ages examined between fetal and 7 months, exhibit only limited clonality (contrasting with previous results in radiation-sensitive mouse strains), and consistent with previous reports are more frequent in Bcl11b, partially explained by relatively high Recombination Signal Information Content (RIC) scores. Deletion junctions in Bcl11b exhibit greater germline nucleotide loss, while in Notch1 palindromic (P) nucleotides are more abundant, although average P nucleotide length is similar for both genes and consistent with results at the TCRβ locus. Non-templated (N) nucleotide insertions appear to increase between fetal and postnatal stages for Notch1, consistent with normal terminal deoxynucleotidyl transferase (TdT) activity; however, neonatal Bcl11b junctions contain elevated levels of N insertions. Finally, contrasting with results at the HPRT1 locus, we find no obvious age or gender bias in junctional processing, and inverted repeats at recessed coding ends (Pr nucleotides) correspond mostly to single-base additions consistent with normal TdT activity.
Collapse
|
31
|
Wierstra I. The transcription factor FOXM1 (Forkhead box M1): proliferation-specific expression, transcription factor function, target genes, mouse models, and normal biological roles. Adv Cancer Res 2013; 118:97-398. [PMID: 23768511 DOI: 10.1016/b978-0-12-407173-5.00004-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
FOXM1 (Forkhead box M1) is a typical proliferation-associated transcription factor, which stimulates cell proliferation and exhibits a proliferation-specific expression pattern. Accordingly, both the expression and the transcriptional activity of FOXM1 are increased by proliferation signals, but decreased by antiproliferation signals, including the positive and negative regulation by protooncoproteins or tumor suppressors, respectively. FOXM1 stimulates cell cycle progression by promoting the entry into S-phase and M-phase. Moreover, FOXM1 is required for proper execution of mitosis. Accordingly, FOXM1 regulates the expression of genes, whose products control G1/S-transition, S-phase progression, G2/M-transition, and M-phase progression. Additionally, FOXM1 target genes encode proteins with functions in the execution of DNA replication and mitosis. FOXM1 is a transcriptional activator with a forkhead domain as DNA binding domain and with a very strong acidic transactivation domain. However, wild-type FOXM1 is (almost) inactive because the transactivation domain is repressed by three inhibitory domains. Inactive FOXM1 can be converted into a very potent transactivator by activating signals, which release the transactivation domain from its inhibition by the inhibitory domains. FOXM1 is essential for embryonic development and the foxm1 knockout is embryonically lethal. In adults, FOXM1 is important for tissue repair after injury. FOXM1 prevents premature senescence and interferes with contact inhibition. FOXM1 plays a role for maintenance of stem cell pluripotency and for self-renewal capacity of stem cells. The functions of FOXM1 in prevention of polyploidy and aneuploidy and in homologous recombination repair of DNA-double-strand breaks suggest an importance of FOXM1 for the maintenance of genomic stability and chromosomal integrity.
Collapse
|
32
|
Blackwood E, Epler J, Yen I, Flagella M, O'Brien T, Evangelista M, Schmidt S, Xiao Y, Choi J, Kowanetz K, Ramiscal J, Wong K, Jakubiak D, Yee S, Cain G, Gazzard L, Williams K, Halladay J, Jackson PK, Malek S. Combination drug scheduling defines a "window of opportunity" for chemopotentiation of gemcitabine by an orally bioavailable, selective ChK1 inhibitor, GNE-900. Mol Cancer Ther 2013; 12:1968-80. [PMID: 23873850 DOI: 10.1158/1535-7163.mct-12-1218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Checkpoint kinase 1 (ChK1) is a serine/threonine kinase that functions as a central mediator of the intra-S and G2-M cell-cycle checkpoints. Following DNA damage or replication stress, ChK1-mediated phosphorylation of downstream effectors delays cell-cycle progression so that the damaged genome can be repaired. As a therapeutic strategy, inhibition of ChK1 should potentiate the antitumor effect of chemotherapeutic agents by inactivating the postreplication checkpoint, causing premature entry into mitosis with damaged DNA resulting in mitotic catastrophe. Here, we describe the characterization of GNE-900, an ATP-competitive, selective, and orally bioavailable ChK1 inhibitor. In combination with chemotherapeutic agents, GNE-900 sustains ATR/ATM signaling, enhances DNA damage, and induces apoptotic cell death. The kinetics of checkpoint abrogation seems to be more rapid in p53-mutant cells, resulting in premature mitotic entry and/or accelerated cell death. Importantly, we show that GNE-900 has little single-agent activity in the absence of chemotherapy and does not grossly potentiate the cytotoxicity of gemcitabine in normal bone marrow cells. In vivo scheduling studies show that optimal administration of the ChK1 inhibitor requires a defined lag between gemcitabine and GNE-900 administration. On the refined combination treatment schedule, gemcitabine's antitumor activity against chemotolerant xenografts is significantly enhanced and dose-dependent exacerbation of DNA damage correlates with extent of tumor growth inhibition. In summary, we show that in vivo potentiation of gemcitabine activity is mechanism based, with optimal efficacy observed when S-phase arrest and release is followed by checkpoint abrogation with a ChK1 inhibitor.
Collapse
Affiliation(s)
- Elizabeth Blackwood
- Corresponding Authors: Elizabeth Blackwood and Shiva Malek, Genentech, 1 DNA Way, South San Francisco, CA 94080.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Chiruvella KK, Liang Z, Wilson TE. Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 2013; 5:a012757. [PMID: 23637284 DOI: 10.1101/cshperspect.a012757] [Citation(s) in RCA: 279] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonhomologous end joining (NHEJ) refers to a set of genome maintenance pathways in which two DNA double-strand break (DSB) ends are (re)joined by apposition, processing, and ligation without the use of extended homology to guide repair. Canonical NHEJ (c-NHEJ) is a well-defined pathway with clear roles in protecting the integrity of chromosomes when DSBs arise. Recent advances have revealed much about the identity, structure, and function of c-NHEJ proteins, but many questions exist regarding their concerted action in the context of chromatin. Alternative NHEJ (alt-NHEJ) refers to more recently described mechanism(s) that repair DSBs in less-efficient backup reactions. There is great interest in defining alt-NHEJ more precisely, including its regulation relative to c-NHEJ, in light of evidence that alt-NHEJ can execute chromosome rearrangements. Progress toward these goals is reviewed.
Collapse
|
34
|
Malu S, Malshetty V, Francis D, Cortes P. Role of non-homologous end joining in V(D)J recombination. Immunol Res 2013; 54:233-46. [PMID: 22569912 DOI: 10.1007/s12026-012-8329-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pathway of V(D)J recombination was discovered almost three decades ago. Yet it continues to baffle scientists because of its inherent complexity and the multiple layers of regulation that are required to efficiently generate a diverse repertoire of T and B cells. The non-homologous end-joining (NHEJ) DNA repair pathway is an integral part of the V(D)J reaction, and its numerous players perform critical functions in generating this vast diversity, while ensuring genomic stability. In this review, we summarize the efforts of a number of laboratories including ours in providing the mechanisms of V(D)J regulation with a focus on the NHEJ pathway. This involves discovering new players, unraveling unknown roles for known components, and understanding how deregulation of these pathways contributes to generation of primary immunodeficiencies. A long-standing interest of our laboratory has been to elucidate various mechanisms that control RAG activity. Our recent work has focused on understanding the multiple protein-protein interactions and protein-DNA interactions during V(D)J recombination, which allow efficient and regulated generation of the antigen receptors. Exploring how deregulation of this process contributes to immunodeficiencies also continues to be an important area of research for our group.
Collapse
Affiliation(s)
- Shruti Malu
- Department of Medicine, Immunology Institute, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The mechanisms by which B cells somatically engineer their genomes to generate the vast diversity of antibodies required to challenge the nearly infinite number of antigens that immune systems encounter are of tremendous clinical and academic interest. The DNA cytidine deaminase activation-induced deaminase (AID) catalyzes two of these mechanisms: class switch recombination (CSR) and somatic hypermutation (SHM). Recent discoveries indicate a significant promiscuous targeting of this B-cell mutator enzyme genome-wide. Here we discuss the various regulatory elements that control AID activity and prevent AID from inducing genomic instability and thereby initiating oncogenesis.
Collapse
Affiliation(s)
- Celia Keim
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - David Kazadi
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Gerson Rothschild
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | - Uttiya Basu
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| |
Collapse
|
36
|
Structural basis of DNA ligase IV-Artemis interaction in nonhomologous end-joining. Cell Rep 2012; 2:1505-12. [PMID: 23219551 DOI: 10.1016/j.celrep.2012.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/05/2012] [Accepted: 11/09/2012] [Indexed: 01/01/2023] Open
Abstract
DNA ligase IV (LigIV) and Artemis are central components of the nonhomologous end-joining (NHEJ) machinery that is required for V(D)J recombination and the maintenance of genomic integrity in mammalian cells. We report here crystal structures of the LigIV DNA binding domain (DBD) in both its apo form and in complex with a peptide derived from the Artemis C-terminal region. We show that LigIV interacts with Artemis through an extended hydrophobic surface. In particular, we find that the helix α2 in LigIV-DBD is longer than in other mammalian ligases and presents residues that specifically interact with the Artemis peptide, which adopts a partially helical conformation on binding. Mutations of key residues on the LigIV-DBD hydrophobic surface abolish the interaction. Together, our results provide structural insights into the specificity of the LigIV-Artemis interaction and how the enzymatic activities of the two proteins may be coordinated during NHEJ.
Collapse
|
37
|
Baños B, Villar L, Salas M, de Vega M. DNA stabilization at the Bacillus subtilis PolX core--a binding model to coordinate polymerase, AP-endonuclease and 3'-5' exonuclease activities. Nucleic Acids Res 2012; 40:9750-62. [PMID: 22844091 PMCID: PMC3479172 DOI: 10.1093/nar/gks702] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Family X DNA polymerases (PolXs) are involved in DNA repair. Their binding to gapped DNAs relies on two conserved helix-hairpin-helix motifs, one located at the 8-kDa domain and the other at the fingers subdomain. Bacterial/archaeal PolXs have a specifically conserved third helix-hairpin-helix motif (GFGxK) at the fingers subdomain whose putative role in DNA binding had not been established. Here, mutagenesis at the corresponding residues of Bacillus subtilis PolX (PolXBs), Gly130, Gly132 and Lys134 produced enzymes with altered DNA binding properties affecting the three enzymatic activities of the protein: polymerization, located at the PolX core, 3'-5' exonucleolysis and apurinic/apyrimidinic (AP)-endonucleolysis, placed at the so-called polymerase and histidinol phosphatase domain. Furthermore, we have changed Lys192 of PolXBs, a residue moderately conserved in the palm subdomain of bacterial PolXs and immediately preceding two catalytic aspartates of the polymerization reaction. The results point to a function of residue Lys192 in guaranteeing the right orientation of the DNA substrates at the polymerization and histidinol phosphatase active sites. The results presented here and the recently solved structures of other bacterial PolX ternary complexes lead us to propose a structural model to account for the appropriate coordination of the different catalytic activities of bacterial PolXs.
Collapse
Affiliation(s)
- Benito Baños
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/Nicolás Cabrera 1, Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
38
|
Minniti G, Goldsmith C, Brada M. Radiotherapy. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:215-28. [PMID: 22230446 DOI: 10.1016/b978-0-444-52138-5.00016-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
39
|
Pears CJ, Couto CAM, Wang HY, Borer C, Kiely R, Lakin ND. The role of ADP-ribosylation in regulating DNA double-strand break repair. Cell Cycle 2012; 11:48-56. [PMID: 22186780 DOI: 10.4161/cc.11.1.18793] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ADP-ribosylation is the post translational modification of proteins catalysed by ADP-ribosyltransferases (ARTs). ADP-ribosylation has been implicated in a wide variety of cellular processes including cell growth and differentiation, apoptosis and transcriptional regulation. Perhaps the best characterised role, however, is in DNA repair and genome stability where ADP-ribosylation promotes resolution of DNA single strand breaks. Although ADP-ribosylation also occurs at DNA double strand breaks (DSBs), which ARTs catalyse this reaction and the molecular basis of how this modification regulates their repair remains a matter of debate. Here we review recent advances in our understanding of how ADP-ribosylation regulates DSB repair. Specifically, we highlight studies using the genetic model organism Dictyostelium, in addition to vertebrate cells that identify a third ART that accelerates DSB repair by non-homologous end-joining through promoting the interaction of repair factors with DNA lesions. The implications of these data with regards to how ADP-ribosylation regulates DNA repair and genome stability are discussed.
Collapse
|
40
|
Beck BD, Lee SS, Williamson E, Hromas RA, Lee SH. Biochemical characterization of metnase's endonuclease activity and its role in NHEJ repair. Biochemistry 2011; 50:4360-70. [PMID: 21491884 PMCID: PMC3388547 DOI: 10.1021/bi200333k] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metnase (SETMAR) is a SET-transposase fusion protein that promotes nonhomologous end joining (NHEJ) repair in humans. Although both SET and the transposase domains were necessary for its function in DSB repair, it is not clear what specific role Metnase plays in the NHEJ. In this study, we show that Metnase possesses a unique endonuclease activity that preferentially acts on ssDNA and ssDNA-overhang of a partial duplex DNA. Cell extracts lacking Metnase poorly supported DNA end joining, and addition of wt-Metnase to cell extracts lacking Metnase markedly stimulated DNA end joining, while a mutant (D483A) lacking endonuclease activity did not. Given that Metnase overexpression enhanced DNA end processing in vitro, our finding suggests a role for Metnase's endonuclease activity in promoting the joining of noncompatible ends.
Collapse
Affiliation(s)
- Brian D. Beck
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Sung-Sook Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | - Elizabeth Williamson
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Robert A. Hromas
- Department of Medicine, University of Florida and Shands Health Care System, Gainesville, Florida 32610, USA
| | - Suk-Hee Lee
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
- Indiana University Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| |
Collapse
|
41
|
Xie P. A model for the dynamics of mammalian family X DNA polymerases. J Theor Biol 2011; 277:111-22. [PMID: 21377475 DOI: 10.1016/j.jtbi.2011.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 12/22/2010] [Accepted: 02/22/2011] [Indexed: 11/28/2022]
Abstract
Based on available structural studies, a model is presented for polymerization dynamics of mammalian family X DNA polymerases, including polymerases β, λ, μ, and terminal deoxynucleotidyl transferase (TdT). Using the model, distinct polymerization activities and processivities of the four polymerases acting on different forms of DNA substrate are analyzed and studied theoretically. A "gradient" of template dependence of polymerases β, λ, μ, and TdT is well explained. The much higher occurrence frequencies of the -1 frameshift DNA synthesis by pols λ and μ than that by pol β are well explained. The theoretical results on the polymerization processivities are also in agreement with the available experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
42
|
Marusawa H, Takai A, Chiba T. Role of activation-induced cytidine deaminase in inflammation-associated cancer development. Adv Immunol 2011; 111:109-41. [PMID: 21970953 DOI: 10.1016/b978-0-12-385991-4.00003-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Human cancer is a genetic disease resulting from the stepwise accumulation of genetic alterations in various tumor-related genes. Normal mutation rates, however, cannot account for the abundant genetic changes accumulated in tumor cells, suggesting that certain molecular mechanisms underlie such a large number of genetic alterations. Activation-induced cytidine deaminase (AID), a nucleotide-editing enzyme that triggers DNA alterations and double-strand DNA breaks in the immunoglobulin gene, has been identified in activated B lymphocytes. Recent studies revealed that AID-mediated genotoxic effects target not only immunoglobulin genes but also a variety of other genes in both B lymphocytes and non-lymphoid cells. Consistent with the finding that several transcription factors including nuclear factor-κB (NF-κB) mediate AID expression in B cells, proinflammatory cytokine stimulation of several types of gastrointestinal epithelial cells, such as gastric, colonic, hepatic, and biliary epithelium, induces aberrant AID expression through the NF-κB signaling pathway. In vivo studies revealed that constitutive AID expression promotes the tumorigenic pathway by enhancing the susceptibility to mutagenesis in a variety of epithelial organs. The activity of AID as a genome mutator provides a new avenue for studies aimed at understanding mutagenesis mechanisms during carcinogenesis.
Collapse
Affiliation(s)
- Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
43
|
Belousova EA, Lavrik OI. DNA polymerases β and λ and their roles in DNA replication and repair. Mol Biol 2010. [DOI: 10.1134/s0026893310060014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
44
|
Asaithamby A, Chen DJ. Mechanism of cluster DNA damage repair in response to high-atomic number and energy particles radiation. Mutat Res 2010; 711:87-99. [PMID: 21126526 DOI: 10.1016/j.mrfmmm.2010.11.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/29/2010] [Accepted: 11/23/2010] [Indexed: 02/07/2023]
Abstract
Low-linear energy transfer (LET) radiation (i.e., γ- and X-rays) induces DNA double-strand breaks (DSBs) that are rapidly repaired (rejoined). In contrast, DNA damage induced by the dense ionizing track of high-atomic number and energy (HZE) particles is slowly repaired or is irreparable. These unrepaired and/or misrepaired DNA lesions may contribute to the observed higher relative biological effectiveness for cell killing, chromosomal aberrations, mutagenesis, and carcinogenesis in HZE particle irradiated cells compared to those treated with low-LET radiation. The types of DNA lesions induced by HZE particles have been characterized in vitro and usually consist of two or more closely spaced strand breaks, abasic sites, or oxidized bases on opposing strands. It is unclear why these lesions are difficult to repair. In this review, we highlight the potential of a new technology allowing direct visualization of different types of DNA lesions in human cells and document the emerging significance of live-cell imaging for elucidation of the spatio-temporal characterization of complex DNA damage. We focus on the recent insights into the molecular pathways that participate in the repair of HZE particle-induced DSBs. We also discuss recent advances in our understanding of how different end-processing nucleases aid in repair of DSBs with complicated ends generated by HZE particles. Understanding the mechanism underlying the repair of DNA damage induced by HZE particles will have important implications for estimating the risks to human health associated with HZE particle exposure.
Collapse
Affiliation(s)
- Aroumougame Asaithamby
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, United States.
| | | |
Collapse
|
45
|
Tichý A, Vávrová J, Pejchal J, Rezácová M. Ataxia-telangiectasia mutated kinase (ATM) as a central regulator of radiation-induced DNA damage response. ACTA MEDICA (HRADEC KRÁLOVÉ) 2010; 53:13-7. [PMID: 20608227 DOI: 10.14712/18059694.2016.57] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Ataxia-telangiectasia mutated kinase (ATM) is a DNA damage-inducible protein kinase, which phosphorylates plethora of substrates participating in DNA damage response. ATM significance for the cell faith is undeniable, since it regulates DNA repair, cell-cycle progress, and apoptosis. Here we describe its main signalling targets and discuss its importance in DNA repair as well as novel findings linked to this key regulatory enzyme in the terms of ionizing radiation-induced DNA damage.
Collapse
Affiliation(s)
- Ales Tichý
- University of Defence in Brno, Faculty of Military Health Sciences, Department of Radiobiology, Hradec Králové, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Schmid TE, Dollinger G, Beisker W, Hable V, Greubel C, Auer S, Mittag A, Tarnok A, Friedl AA, Molls M, Röper B. Differences in the kinetics of gamma-H2AX fluorescence decay after exposure to low and high LET radiation. Int J Radiat Biol 2010; 86:682-91. [PMID: 20569192 DOI: 10.3109/09553001003734543] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
PURPOSE In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed. MATERIALS AND METHODS We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX) which is thought to reflect the repair kinetics of radiation-induced DNA double-strand breaks (DSB) using Laser-Scanning-Cytometry. Asynchronous human HeLa cells were irradiated with a single dose of either 1.89 Gy of 55 MeV carbon ions or 5 Gy of 70 kV X-rays. RESULTS Measurements of the gamma-H2AX-intensities from 15-60 min resulted in a 16 % decrease for carbon ions and in a 43 % decrease for X-rays. After 21 h, the decrease was 77 % for carbon ions and 85 % for X-rays. The corresponding time-effect relationship was fitted by a bi-exponential function showing a fast and a slow component with identical half-life values for both radiation qualities being 24 +/- 4 min and 13.9 +/- 0.7 h, respectively. Apparent differences in the kinetics following high and low LET irradiation could completely be attributed to quantitative differences in their contributions, with the slow component being responsible for 47 % of the repair after exposure to X-rays as compared to 80 % after carbon ion irradiation. CONCLUSION gamma-H2AX loss kinetics follows a bi-exponential decline with two definite decay times independent of LET. The higher contribution of the slow component determined for carbon ion exposure is thought to reflect the increased amount of complex DSB induced by high LET radiation.
Collapse
Affiliation(s)
- Thomas E Schmid
- Klinikum rechts der Isar, Department of Radiation Oncology, Technische Universität München, München, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kurosawa A, Adachi N. Functions and regulation of Artemis: a goddess in the maintenance of genome integrity. JOURNAL OF RADIATION RESEARCH 2010; 51:503-509. [PMID: 20543526 DOI: 10.1269/jrr.10017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Artemis is a structure-specific endonuclease when associated with and phosphorylated by DNA-dependent protein kinase catalytic subunit. This structure-specific endonuclease is responsible for the resolution of hairpin coding ends in V(D)J recombination. In DNA double-strand break repair, Artemis is implicated in the end-processing step of the non-homologous end-joining (NHEJ) pathway. Recently, we have demonstrated that the involvement of Artemis in NHEJ depends on the type of DNA damage. Interestingly, recent evidence suggests that the end-processing activity is not the only function of Artemis. Indeed, Artemis is rapidly phosphorylated by ataxia telangiectasia mutated in response to DNA damage, and such phosphorylation of Artemis appears to be involved in the regulation of cell cycle checkpoints. These findings suggest that Artemis is a multifunctional protein participating in the maintenance of genome integrity at two distinct levels; one at the end processing step of NHEJ, and the other at the signaling pathway of cell cycle regulation. Therefore, understanding Artemis function may give us profound insights into the DNA repair network. In this review, we summarize the functions and regulation of Artemis.
Collapse
Affiliation(s)
- Aya Kurosawa
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan.
| | | |
Collapse
|
48
|
Recuero-Checa MA, Doré AS, Arias-Palomo E, Rivera-Calzada A, Scheres SHW, Maman JD, Pearl LH, Llorca O. Electron microscopy of Xrcc4 and the DNA ligase IV-Xrcc4 DNA repair complex. DNA Repair (Amst) 2010; 8:1380-9. [PMID: 19837014 DOI: 10.1016/j.dnarep.2009.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 10/20/2022]
Abstract
The DNA ligase IV-Xrcc4 complex is responsible for the ligation of broken DNA ends in the non-homologous end-joining (NHEJ) pathway of DNA double strand break repair in mammals. Mutations in DNA ligase IV (Lig4) lead to immunodeficiency and radiosensitivity in humans. Only partial structural information for Lig4 and Xrcc4 is available, while the structure of the full-length proteins and their arrangement within the Lig4-Xrcc4 complex is unknown. The C-terminal domain of Xrcc4, whose structure has not been solved, contains phosphorylation sites for DNA-PKcs and is phylogenetically conserved, indicative of a regulatory role in NHEJ. Here, we have purified full length Xrcc4 and the Lig4-Xrcc4 complex, and analysed their structure by single-particle electron microscopy. The three-dimensional structure of Xrcc4 at a resolution of approximately 37A reveals that the C-terminus of Xrcc4 forms a dimeric globular domain connected to the N-terminus by a coiled-coil. The N- and C-terminal domains of Xrcc4 locate at opposite ends of an elongated molecule. The electron microscopy images of the Lig4-Xrcc4 complex were examined by two-dimensional image processing and a double-labelling strategy, identifying the site of the C-terminus of Xrcc4 and the catalytic core of Lig4 within the complex. The catalytic domains of Lig4 were found to be in the vicinity of the N-terminus of Xrcc4. We provide a first sight of the structural organization of the Lig4-Xrcc4 complex, which suggests that the BRCT domains could provide the link of the ligase to Xrcc4 while permitting some movements of the catalytic domains of Lig4. This arrangement may facilitate the ligation of diverse configurations of damaged DNA.
Collapse
Affiliation(s)
- María A Recuero-Checa
- Centro de Investigaciones Biológicas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Stavnezer J, Björkman A, Du L, Cagigi A, Pan-Hammarström Q. Mapping of Switch Recombination Junctions, a Tool for Studying DNA Repair Pathways during Immunoglobulin Class Switching. Adv Immunol 2010; 108:45-109. [DOI: 10.1016/b978-0-12-380995-7.00003-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
50
|
Bennardo N, Gunn A, Cheng A, Hasty P, Stark JM. Limiting the persistence of a chromosome break diminishes its mutagenic potential. PLoS Genet 2009; 5:e1000683. [PMID: 19834534 PMCID: PMC2752804 DOI: 10.1371/journal.pgen.1000683] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Accepted: 09/15/2009] [Indexed: 01/05/2023] Open
Abstract
To characterize the repair pathways of chromosome double-strand breaks (DSBs), one approach involves monitoring the repair of site-specific DSBs generated by rare-cutting endonucleases, such as I-SceI. Using this method, we first describe the roles of Ercc1, Msh2, Nbs1, Xrcc4, and Brca1 in a set of distinct repair events. Subsequently, we considered that the outcome of such assays could be influenced by the persistent nature of I-SceI-induced DSBs, in that end-joining (EJ) products that restore the I-SceI site are prone to repeated cutting. To address this aspect of repair, we modified I-SceI-induced DSBs by co-expressing I-SceI with a non-processive 3′ exonuclease, Trex2, which we predicted would cause partial degradation of I-SceI 3′ overhangs. We find that Trex2 expression facilitates the formation of I-SceI-resistant EJ products, which reduces the potential for repeated cutting by I-SceI and, hence, limits the persistence of I-SceI-induced DSBs. Using this approach, we find that Trex2 expression causes a significant reduction in the frequency of repair pathways that result in substantial deletion mutations: EJ between distal ends of two tandem DSBs, single-strand annealing, and alternative-NHEJ. In contrast, Trex2 expression does not inhibit homology-directed repair. These results indicate that limiting the persistence of a DSB causes a reduction in the frequency of repair pathways that lead to significant genetic loss. Furthermore, we find that individual genetic factors play distinct roles during repair of non-cohesive DSB ends that are generated via co-expression of I-SceI with Trex2. A deleterious lesion in DNA is a break of both strands, or a chromosome double-strand break (DSB). DSBs can arise during normal cellular metabolism, but are also a consequence of many forms of cancer therapy. If DSBs are not repaired prior to cell division, entire segments of a chromosome can be lost. Several pathways ensure that DSBs are repaired, though some pathways are prone to causing mutations and/or chromosomal rearrangements, each of which can contribute to cancer development. In the first part of this study, we describe the roles of individual genetic factors in distinct repair pathways of DSBs generated by the I-SceI endonuclease. From these studies, we find that some factors can function in multiple repair pathways. In the second part of this study, we present a method for partially degrading the cohesive DSB overhangs that are generated by I-SceI, which we find facilitates repair products that are not prone to being re-cut by the endonuclease. As a consequence, we have limited the persistence of such breaks, which we find causes a reduction in repair pathways that lead to significant genetic loss. As well, we use this method to characterize the role of individual genetic factors during the repair of non-cohesive DSB ends.
Collapse
Affiliation(s)
- Nicole Bennardo
- Department of Cancer Biology, Division of Radiation Biology, Beckman Research Institute of the City of Hope, Duarte, California, USA
| | | | | | | | | |
Collapse
|