1
|
De Zio R, Pietrafesa G, Milano S, Procino G, Bramerio M, Pepe M, Forleo C, Favale S, Svelto M, Gerbino A, Carmosino M. Role of Nuclear Lamin A/C in the Regulation of Nav1.5 Channel and Microtubules: Lesson From the Pathogenic Lamin A/C Variant Q517X. Front Cell Dev Biol 2022; 10:918760. [PMID: 35846372 PMCID: PMC9277463 DOI: 10.3389/fcell.2022.918760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/24/2022] Open
Abstract
In this work, we studied an lmna nonsense mutation encoding for the C-terminally truncated Lamin A/C (LMNA) variant Q517X, which was described in patients affected by a severe arrhythmogenic cardiomyopathy with history of sudden death. We found that LMNA Q517X stably expressed in HL-1 cardiomyocytes abnormally aggregates at the nuclear envelope and within the nucleoplasm. Whole-cell patch clamp experiments showed that LMNA Q517X-expressing cardiomyocytes generated action potentials with reduced amplitude, overshoot, upstroke velocity and diastolic potential compared with LMNA WT-expressing cardiomyocytes. Moreover, the unique features of these cardiomyocytes were 1) hyper-polymerized tubulin network, 2) upregulated acetylated α-tubulin, and 3) cell surface Nav1.5 downregulation. These findings pointed the light on the role of tubulin and Nav1.5 channel in the abnormal electrical properties of LMNA Q517X-expressing cardiomyocytes. When expressed in HEK293 with Nav1.5 and its β1 subunit, LMNA Q517X reduced the peak Na+ current (INa) up to 63% with a shift toward positive potentials in the activation curve of the channel. Of note, both AP properties in cardiomyocytes and Nav1.5 kinetics in HEK293 cells were rescued in LMNA Q517X-expressing cells upon treatment with colchicine, an FDA-approved inhibitor of tubulin assembly. In conclusion, LMNA Q517X expression is associated with hyper-polymerization and hyper-acetylation of tubulin network with concomitant downregulation of Nav1.5 cell expression and activity, thus revealing 1) new mechanisms by which LMNA may regulate channels at the cell surface in cardiomyocytes and 2) new pathomechanisms and therapeutic targets in cardiac laminopathies.
Collapse
Affiliation(s)
- Roberta De Zio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giusy Pietrafesa
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Manuela Bramerio
- ASST Grande Ospedale Metropolitano Niguarda Pathological Anatomy Center, Milano, Italy
| | - Martino Pepe
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Cinzia Forleo
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Stefano Favale
- Department of Emergency and Organ Transplantation, Cardiology Unit, University of Bari Aldo Moro, Bari, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, Potenza, Italy
- *Correspondence: Monica Carmosino,
| |
Collapse
|
2
|
Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals (Basel) 2022; 15:ph15020231. [PMID: 35215342 PMCID: PMC8879921 DOI: 10.3390/ph15020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Zsigmond Máté Kovács
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Péter P. Nánási
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Correspondence: ; Tel.: +36-(52)-255-575; Fax: +36-(52)-255-116
| |
Collapse
|
3
|
Del-Canto I, Gómez-Cid L, Hernández-Romero I, Guillem MS, Fernández-Santos ME, Atienza F, Such L, Fernández-Avilés F, Chorro FJ, Climent AM. Ranolazine-Mediated Attenuation of Mechanoelectric Feedback in Atrial Myocyte Monolayers. Front Physiol 2020; 11:922. [PMID: 32848863 PMCID: PMC7417656 DOI: 10.3389/fphys.2020.00922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Background Mechanical stretch increases Na+ inflow into myocytes, related to mechanisms including stretch-activated channels or Na+/H+ exchanger activation, involving Ca2+ increase that leads to changes in electrophysiological properties favoring arrhythmia induction. Ranolazine is an antianginal drug with confirmed beneficial effects against cardiac arrhythmias associated with the augmentation of INaL current and Ca2+ overload. Objective This study investigates the effects of mechanical stretch on activation patterns in atrial cell monolayers and its pharmacological response to ranolazine. Methods Confluent HL-1 cells were cultured in silicone membrane plates and were stretched to 110% of original length. The characteristics of in vitro fibrillation (dominant frequency, regularity index, density of phase singularities, rotor meandering, and rotor curvature) were analyzed using optical mapping in order to study the mechanoelectric response to stretch under control conditions and ranolazine action. Results HL-1 cell stretch increased fibrillatory dominant frequency (3.65 ± 0.69 vs. 4.35 ± 0.74 Hz, p < 0.01) and activation complexity (1.97 ± 0.45 vs. 2.66 ± 0.58 PS/cm2, p < 0.01) under control conditions. These effects were related to stretch-induced changes affecting the reentrant patterns, comprising a decrease in rotor meandering (0.72 ± 0.12 vs. 0.62 ± 0.12 cm/s, p < 0.001) and an increase in wavefront curvature (4.90 ± 0.42 vs. 5.68 ± 0.40 rad/cm, p < 0.001). Ranolazine reduced stretch-induced effects, attenuating the activation rate increment (12.8% vs. 19.7%, p < 0.01) and maintaining activation complexity—both parameters being lower during stretch than under control conditions. Moreover, under baseline conditions, ranolazine slowed and regularized the activation patterns (3.04 ± 0.61 vs. 3.65 ± 0.69 Hz, p < 0.01). Conclusion Ranolazine attenuates the modifications of activation patterns induced by mechanical stretch in atrial myocyte monolayers.
Collapse
Affiliation(s)
- Irene Del-Canto
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Electronic Engineering, Universitat Politècnica de València, Valencia, Spain
| | - Lidia Gómez-Cid
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | | | - María S Guillem
- ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| | - María Eugenia Fernández-Santos
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Felipe Atienza
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Luis Such
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Physiology, Universitat de València Estudi General, Valencia, Spain
| | - Francisco Fernández-Avilés
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain
| | - Francisco J Chorro
- INCLIVA Health Research Institute, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Valencia, Spain.,Department of Cardiology, Hospital Clínico Universitario de Valencia, INCLIVA, Valencia, Spain
| | - Andreu M Climent
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain.,ITACA Institute, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
4
|
Strege PR, Mercado-Perez A, Mazzone A, Saito YA, Bernard CE, Farrugia G, Beyder A. SCN5A mutation G615E results in Na V1.5 voltage-gated sodium channels with normal voltage-dependent function yet loss of mechanosensitivity. Channels (Austin) 2019; 13:287-298. [PMID: 31262209 PMCID: PMC6629189 DOI: 10.1080/19336950.2019.1632670] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/19/2022] Open
Abstract
SCN5A is expressed in cardiomyocytes and gastrointestinal (GI) smooth muscle cells (SMCs) as the voltage-gated mechanosensitive sodium channel NaV1.5. The influx of Na+ through NaV1.5 produces a fast depolarization in membrane potential, indispensable for electrical excitability in cardiomyocytes and important for electrical slow waves in GI smooth muscle. As such, abnormal NaV1.5 voltage gating or mechanosensitivity may result in channelopathies. SCN5A mutation G615E - found separately in cases of acquired long-QT syndrome, sudden cardiac death, and irritable bowel syndrome - has a relatively minor effect on NaV1.5 voltage gating. The aim of this study was to test whether G615E impacts mechanosensitivity. Mechanosensitivity of wild-type (WT) or G615E-NaV1.5 in HEK-293 cells was examined by shear stress on voltage- or current-clamped whole cells or pressure on macroscopic patches. Unlike WT, voltage-clamped G615E-NaV1.5 showed a loss in shear- and pressure-sensitivity of peak current yet a normal leftward shift in the voltage-dependence of activation. In current-clamp, shear stress led to a significant increase in firing spike frequency with a decrease in firing threshold for WT but not G615E-NaV1.5. Our results show that the G615E mutation leads to functionally abnormal NaV1.5 channels, which cause disruptions in mechanosensitivity and mechano-electrical feedback and suggest a potential contribution to smooth muscle pathophysiology.
Collapse
Affiliation(s)
- Peter R. Strege
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Arnaldo Mercado-Perez
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Medical Scientist Training Program (MSTP), Mayo Clinic, Rochester, MN, USA
| | - Amelia Mazzone
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yuri A. Saito
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Cheryl E. Bernard
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Gianrico Farrugia
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Arthur Beyder
- Enteric NeuroScience Program, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Maroni M, Körner J, Schüttler J, Winner B, Lampert A, Eberhardt E. β1 and β3 subunits amplify mechanosensitivity of the cardiac voltage-gated sodium channel Nav1.5. Pflugers Arch 2019; 471:1481-1492. [PMID: 31728700 DOI: 10.1007/s00424-019-02324-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/25/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
In cardiomyocytes, electrical activity is coupled to cellular contraction, thus exposing all proteins expressed in the sarcolemma to mechanical stress. The voltage-gated sodium channel Nav1.5 is the main contributor to the rising phase of the action potential in the heart. There is growing evidence that gating and kinetics of Nav1.5 are modulated by mechanical forces and pathogenic variants that affect mechanosensitivity have been linked to arrhythmias. Recently, the sodium channel β1 subunit has been described to stabilise gating against mechanical stress of Nav1.7 expressed in neurons. Here, we tested the effect of β1 and β3 subunits on mechanosensitivity of the cardiac Nav1.5. β1 amplifies stress-induced shifts of V1/2 of steady-state fast inactivation to hyperpolarised potentials (ΔV1/2: 6.2 mV without and 10.7 mV with β1 co-expression). β3, on the other hand, almost doubles stress-induced speeding of time to sodium current transient peak (Δtime to peak at - 30 mV: 0.19 ms without and 0.37 ms with β3 co-expression). Our findings may indicate that in cardiomyocytes, the interdependence of electrical activity and contraction is used as a means of fine tuning cardiac sodium channel function, allowing quicker but more strongly inactivating sodium currents under conditions of increased mechanical stress. This regulation may help to shorten action potential duration during tachycardia, to prevent re-entry phenomena and thus arrhythmias.
Collapse
Affiliation(s)
- Michele Maroni
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.,Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Jannis Körner
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany.,Department of Anaesthesiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Jürgen Schüttler
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Angelika Lampert
- Institute of Physiology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Esther Eberhardt
- Department of Anaesthesiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany.
| |
Collapse
|
6
|
Alcaino C, Knutson K, Gottlieb PA, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is inhibited by D-GsMTx4. Channels (Austin) 2017; 11:245-253. [PMID: 28085630 DOI: 10.1080/19336950.2017.1279370] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Enterochromaffin (EC) cells are the primary mechanosensors of the gastrointestinal (GI) epithelium. In response to mechanical stimuliEC cells release serotonin (5-hydroxytryptamine; 5-HT). The molecular details ofEC cell mechanosensitivity are poorly understood. Recently, our group found that human and mouseEC cells express the mechanosensitive ion channel Piezo2. The mechanosensitive currents in a humanEC cell model QGP-1 were blocked by the mechanosensitive channel blocker D-GsMTx4. In the present study we aimed to characterize the effects of the mechanosensitive ion channel inhibitor spider peptide D-GsMTx4 on the mechanically stimulated currents from both QGP-1 and human Piezo2 transfected HEK-293 cells. We found co-localization of 5-HT and Piezo2 in QGP-1 cells by immunohistochemistry. QGP-1 mechanosensitive currents had biophysical properties similar to dose-dependently Piezo2 and were inhibited by D-GsMTx4. In response to direct displacement of cell membranes, human Piezo2 transiently expressed in HEK-293 cells produced robust rapidly activating and inactivating inward currents. D-GsMTx4 reversibly and dose-dependently inhibited both the potency and efficacy of Piezo2 currents in response to mechanical force. Our data demonstrate an effective inhibition of Piezo2 mechanosensitive currents by the spider peptide D-GsMTx4.
Collapse
Affiliation(s)
- Constanza Alcaino
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| | - Kaitlyn Knutson
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| | - Philip A Gottlieb
- b Department of Physiology and Biophysics, Center for Single Molecule Biophysics , State University of New York , Buffalo , NY , USA
| | - Gianrico Farrugia
- b Department of Physiology and Biophysics, Center for Single Molecule Biophysics , State University of New York , Buffalo , NY , USA
| | - Arthur Beyder
- a Department of Physiology & Biomedical Engineering, Enteric Neuroscience Program, Division of Gastroenterology & Hepatology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
7
|
Pre- and Delayed Treatments With Ranolazine Ameliorate Ventricular Arrhythmias and Nav1.5 Downregulation in Ischemic/Reperfused Rat Hearts. J Cardiovasc Pharmacol 2016; 68:269-279. [DOI: 10.1097/fjc.0000000000000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ, Kashyap P, Grover M, Oeckler R, Gottlieb PA, Li HJ, Leiter AB, Farrugia G, Beyder A. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J Physiol 2016; 595:79-91. [PMID: 27392819 DOI: 10.1113/jp272718] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS The gastrointestinal epithelial enterochromaffin (EC) cell synthesizes the vast majority of the body's serotonin. As a specialized mechanosensor, the EC cell releases this serotonin in response to mechanical forces. However, the molecular mechanism of EC cell mechanotransduction is unknown. In the present study, we show, for the first time, that the mechanosensitive ion channel Piezo2 is specifically expressed by the human and mouse EC cells. Activation of Piezo2 by mechanical forces results in a characteristic ionic current, the release of serotonin and stimulation of gastrointestinal secretion. Piezo2 inhibition by drugs or molecular knockdown decreases mechanosensitive currents, serotonin release and downstream physiological effects. The results of the present study suggest that the mechanosensitive ion channel Piezo2 is specifically expressed by the EC cells of the human and mouse small bowel and that it is important for EC cell mechanotransduction. ABSTRACT The enterochromaffin (EC) cell in the gastrointestinal (GI) epithelium is the source of nearly all systemic serotonin (5-hydroxytryptamine; 5-HT), which is an important neurotransmitter and endocrine, autocrine and paracrine hormone. The EC cell is a specialized mechanosensor, and it is well known that it releases 5-HT in response to mechanical forces. However, the EC cell mechanotransduction mechanism is unknown. The present study aimed to determine whether Piezo2 is involved in EC cell mechanosensation. Piezo2 mRNA was expressed in human jejunum and mouse mucosa from all segments of the small bowel. Piezo2 immunoreactivity localized specifically within EC cells of human and mouse small bowel epithelium. The EC cell model released 5-HT in response to stretch, and had Piezo2 mRNA and protein, as well as a mechanically-sensitive inward non-selective cation current characteristic of Piezo2. Both inward currents and 5-HT release were inhibited by Piezo2 small interfering RNA and antagonists (Gd3+ and D-GsMTx4). Jejunum mucosal pressure increased 5-HT release and short-circuit current via submucosal 5-HT3 and 5-HT4 receptors. Pressure-induced secretion was inhibited by the mechanosensitive ion channel antagonists gadolinium, ruthenium red and D-GsMTx4. We conclude that the EC cells in the human and mouse small bowel GI epithelium selectively express the mechanosensitive ion channel Piezo2, and also that activation of Piezo2 by force leads to inward currents, 5-HT release and an increase in mucosal secretion. Therefore, Piezo2 is critical to EC cell mechanosensitivity and downstream physiological effects.
Collapse
Affiliation(s)
- Fan Wang
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.,Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 300 Yanchang Middle Road, Shanghai, PR China
| | - Kaitlyn Knutson
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Constanza Alcaino
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - David R Linden
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Simon J Gibbons
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Purna Kashyap
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Madhusudan Grover
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Richard Oeckler
- Division of Pulmonary and Critical Care, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Philip A Gottlieb
- Department of Physiology and Biophysics, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY, USA
| | - Hui Joyce Li
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Andrew B Leiter
- Department of Medicine, Division of Gastroenterology, University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, USA
| | - Gianrico Farrugia
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| | - Arthur Beyder
- Enteric Neuroscience Program, Division of Gastroenterology & Hepatology, Departments of Medicine and Physiology & Biomedical Engineering, Mayo Clinic, 200 First Street SW, Rochester, MN, USA
| |
Collapse
|
9
|
Schwingshackl A. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target? Am J Physiol Lung Cell Mol Physiol 2016; 311:L639-52. [PMID: 27521425 DOI: 10.1152/ajplung.00458.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/05/2016] [Indexed: 02/06/2023] Open
Abstract
Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address.
Collapse
|
10
|
Ranolazine Attenuates the Electrophysiological Effects of Myocardial Stretch in Langendorff-Perfused Rabbit Hearts. Cardiovasc Drugs Ther 2016; 29:231-41. [PMID: 26138210 DOI: 10.1007/s10557-015-6587-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Mechanical stretch is an arrhythmogenic factor found in situations of cardiac overload or dyssynchronic contraction. Ranolazine is an antianginal agent that inhibits the late Na (+) current and has been shown to exert a protective effect against arrhythmias. The present study aims to determine whether ranolazine modifies the electrophysiological responses induced by acute mechanical stretch. METHODS The ventricular fibrillation modifications induced by acute stretch were studied in Langendorff-perfused rabbit hearts using epicardial multiple electrodes under control conditions (n = 9) or during perfusion of the late Na(+) current blocker ranolazine 5 μM (n = 9). Spectral and mapping techniques were used to establish the ventricular fibrillation dominant frequency, the spectral concentration and the complexity of myocardial activation in three situations: baseline, stretch and post-stretch. RESULTS Ranolazine attenuated the increase in ventricular fibrillation dominant frequency produced by stretch (23.0 vs 40.4 %) (control: baseline =13.6 ± 2.6 Hz, stretch = 19.1 ± 3.1 Hz, p < 0.0001; ranolazine: baseline = 1.4 ± 1.8 Hz, stretch =14.0 ± 2.4 Hz, p < 0.05 vs baseline, p < 0.001 vs control). During stretch, ventricular fibrillation was less complex in the ranolazine than in the control series, as evaluated by the lesser percentage of complex maps and the greater spectral concentration of ventricular fibrillation. These changes were associated to an increase in the fifth percentile of VV intervals during ventricular fibrillation (50 ± 8 vs 38 ± 5 ms, p < .01) and in the wavelength of the activation (2.4 ± 0.3 vs 1.9 ± 0.2 cm, p < 0.001) under ranolazine. CONCLUSIONS The late inward Na(+) current inhibitor ranolazine attenuates the electrophysiological effects responsible for the acceleration and increase in complexity of ventricular fibrillation produced by myocardial stretch.
Collapse
|
11
|
Schürmann S, Wagner S, Herlitze S, Fischer C, Gumbrecht S, Wirth-Hücking A, Prölß G, Lautscham LA, Fabry B, Goldmann WH, Nikolova-Krstevski V, Martinac B, Friedrich O. The IsoStretcher: An isotropic cell stretch device to study mechanical biosensor pathways in living cells. Biosens Bioelectron 2016; 81:363-372. [PMID: 26991603 DOI: 10.1016/j.bios.2016.03.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022]
Abstract
Mechanosensation in many organs (e.g. lungs, heart, gut) is mediated by biosensors (like mechanosensitive ion channels), which convert mechanical stimuli into electrical and/or biochemical signals. To study those pathways, technical devices are needed that apply strain profiles to cells, and ideally allow simultaneous live-cell microscopy analysis. Strain profiles in organs can be complex and multiaxial, e.g. in hollow organs. Most devices in mechanobiology apply longitudinal uniaxial stretch to adhered cells using elastomeric membranes to study mechanical biosensors. Recent approaches in biomedical engineering have employed intelligent systems to apply biaxial or multiaxial stretch to cells. Here, we present an isotropic cell stretch system (IsoStretcher) that overcomes some previous limitations. Our system uses a rotational swivel mechanism that translates into a radial displacement of hooks attached to small circular silicone membranes. Isotropicity and focus stability are demonstrated with fluorescent beads, and transmission efficiency of elastomer membrane stretch to cellular area change in HeLa/HEK cells. Applying our system to lamin-A overexpressing fibrosarcoma cells, we found a markedly reduced stretch of cell area, indicative of a stiffer cytoskeleton. We also investigated stretch-activated Ca(2+) entry into atrial HL-1 myocytes. 10% isotropic stretch induced robust oscillating increases in intracellular Fluo-4 Ca(2+) fluorescence. Store-operated Ca(2+) entry was not detected in these cells. The Isostretcher provides a useful versatile tool for mechanobiology.
Collapse
Affiliation(s)
- S Schürmann
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - S Wagner
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany; Department of Physics, Biophysics Group, FAU, Henkestr. 91, 91052 Erlangen, Germany
| | - S Herlitze
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - C Fischer
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - S Gumbrecht
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - A Wirth-Hücking
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - G Prölß
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany
| | - L A Lautscham
- Department of Physics, Biophysics Group, FAU, Henkestr. 91, 91052 Erlangen, Germany
| | - B Fabry
- Department of Physics, Biophysics Group, FAU, Henkestr. 91, 91052 Erlangen, Germany
| | - W H Goldmann
- Department of Physics, Biophysics Group, FAU, Henkestr. 91, 91052 Erlangen, Germany
| | - V Nikolova-Krstevski
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, 405 Liverpool St, Darlinghurst, NSW 2010 Sydney, Australia
| | - B Martinac
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst NSW 2010, Australia
| | - O Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Paul-Gordan-Str.3, 91052 Erlangen, Germany.
| |
Collapse
|
12
|
Giles WR, Carmeliet EE. Editorial commentary: This sodium current may be late, but it is important. Trends Cardiovasc Med 2016; 26:123-5. [DOI: 10.1016/j.tcm.2015.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/06/2015] [Indexed: 12/18/2022]
|
13
|
Schindler RFR, Scotton C, Zhang J, Passarelli C, Ortiz-Bonnin B, Simrick S, Schwerte T, Poon KL, Fang M, Rinné S, Froese A, Nikolaev VO, Grunert C, Müller T, Tasca G, Sarathchandra P, Drago F, Dallapiccola B, Rapezzi C, Arbustini E, Di Raimo FR, Neri M, Selvatici R, Gualandi F, Fattori F, Pietrangelo A, Li W, Jiang H, Xu X, Bertini E, Decher N, Wang J, Brand T, Ferlini A. POPDC1(S201F) causes muscular dystrophy and arrhythmia by affecting protein trafficking. J Clin Invest 2015; 126:239-53. [PMID: 26642364 DOI: 10.1172/jci79562] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 10/29/2015] [Indexed: 01/16/2023] Open
Abstract
The Popeye domain-containing 1 (POPDC1) gene encodes a plasma membrane-localized cAMP-binding protein that is abundantly expressed in striated muscle. In animal models, POPDC1 is an essential regulator of structure and function of cardiac and skeletal muscle; however, POPDC1 mutations have not been associated with human cardiac and muscular diseases. Here, we have described a homozygous missense variant (c.602C>T, p.S201F) in POPDC1, identified by whole-exome sequencing, in a family of 4 with cardiac arrhythmia and limb-girdle muscular dystrophy (LGMD). This allele was absent in known databases and segregated with the pathological phenotype in this family. We did not find the allele in a further screen of 104 patients with a similar phenotype, suggesting this mutation to be family specific. Compared with WT protein, POPDC1(S201F) displayed a 50% reduction in cAMP affinity, and in skeletal muscle from patients, both POPDC1(S201F) and WT POPDC2 displayed impaired membrane trafficking. Forced expression of POPDC1(S201F) in a murine cardiac muscle cell line (HL-1) increased hyperpolarization and upstroke velocity of the action potential. In zebrafish, expression of the homologous mutation (popdc1(S191F)) caused heart and skeletal muscle phenotypes that resembled those observed in patients. Our study therefore identifies POPDC1 as a disease gene causing a very rare autosomal recessive cardiac arrhythmia and LGMD, expanding the genetic causes of this heterogeneous group of inherited rare diseases.
Collapse
|
14
|
Rusinova R, Koeppe RE, Andersen OS. A general mechanism for drug promiscuity: Studies with amiodarone and other antiarrhythmics. ACTA ACUST UNITED AC 2015; 146:463-75. [PMID: 26573624 PMCID: PMC4664825 DOI: 10.1085/jgp.201511470] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/13/2015] [Indexed: 01/14/2023]
Abstract
Amiodarone is a widely prescribed antiarrhythmic drug used to treat the most prevalent type of arrhythmia, atrial fibrillation (AF). At therapeutic concentrations, amiodarone alters the function of many diverse membrane proteins, which results in complex therapeutic and toxicity profiles. Other antiarrhythmics, such as dronedarone, similarly alter the function of multiple membrane proteins, suggesting that a multipronged mechanism may be beneficial for treating AF, but raising questions about how these antiarrhythmics regulate a diverse range of membrane proteins at similar concentrations. One possible mechanism is that these molecules regulate membrane protein function by altering the common environment provided by the host lipid bilayer. We took advantage of the gramicidin (gA) channels' sensitivity to changes in bilayer properties to determine whether commonly used antiarrhythmics--amiodarone, dronedarone, propranolol, and pindolol, whose pharmacological modes of action range from multi-target to specific--perturb lipid bilayer properties at therapeutic concentrations. Using a gA-based fluorescence assay, we found that amiodarone and dronedarone are potent bilayer modifiers at therapeutic concentrations; propranolol alters bilayer properties only at supratherapeutic concentration, and pindolol has little effect. Using single-channel electrophysiology, we found that amiodarone and dronedarone, but not propranolol or pindolol, increase bilayer elasticity. The overlap between therapeutic and bilayer-altering concentrations, which is observed also using plasma membrane-like lipid mixtures, underscores the need to explore the role of the bilayer in therapeutic as well as toxic effects of antiarrhythmic agents.
Collapse
Affiliation(s)
- Radda Rusinova
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065 Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701
| | - Olaf S Andersen
- Department of Physiology and Biophysics and Department of Anesthesiology, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
15
|
Maier LS, Sossalla S. The late Na current as a therapeutic target: where are we? J Mol Cell Cardiol 2013; 61:44-50. [PMID: 23500390 DOI: 10.1016/j.yjmcc.2013.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/26/2013] [Accepted: 03/04/2013] [Indexed: 12/19/2022]
Abstract
In this article we review the late Na current which functionally can be measured using patch-clamp electrophysiology (INa,late). This current is largely enhanced under pathological myocardial conditions such as ischemia and heart failure. In addition, INa,late can cause systolic and diastolic contractile dysfunction via a Na-dependent Ca-overload of the myocyte. Moreover, INa,late plays a crucial role as ventricular and atrial proarrhythmic substrate in myocardial pathology by changing cellular electrophysiology. We summarize recent experimental and clinical studies that investigate therapeutic inhibition of this current and discuss the significance of the available data and try to answer not only the question, where we currently are but also where we may go in the near future. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes".
Collapse
Affiliation(s)
- Lars S Maier
- Abt. Kardiologie und Pneumologie/Herzzentrum, Deutsches Zentrum für Herzkreislaufforschung, Georg-August-Universität, Göttingen, Germany.
| | | |
Collapse
|