1
|
Fan J, Zheng S, Wang M, Yuan X. The critical roles of caveolin-1 in lung diseases. Front Pharmacol 2024; 15:1417834. [PMID: 39380904 PMCID: PMC11458383 DOI: 10.3389/fphar.2024.1417834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Caveolin-1 (Cav-1), a structural and functional component in the caveolae, plays a critical role in transcytosis, endocytosis, and signal transduction. Cav-1 has been implicated in the mediation of cellular processes by interacting with a variety of signaling molecules. Cav-1 is widely expressed in the endothelial cells, smooth muscle cells, and fibroblasts in the various organs, including the lungs. The Cav-1-mediated internalization and regulation of signaling molecules participate in the physiological and pathological processes. Particularly, the MAPK, NF-κB, TGFβ/Smad, and eNOS/NO signaling pathways have been involved in the regulatory effects of Cav-1 in lung diseases. The important effects of Cav-1 on the lungs indicate that Cav-1 can be a potential target for the treatment of lung diseases. A Cav-1 scaffolding domain peptide CSP7 targeting Cav-1 has been developed. In this article, we mainly discuss the structure of Cav-1 and its critical roles in lung diseases, such as pneumonia, acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary hypertension, pulmonary fibrosis, and lung cancer.
Collapse
Affiliation(s)
| | | | | | - Xiaoliang Yuan
- Department of Respiratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Mohanty S, Kamolvit W, Scheffschick A, Björklund A, Tovi J, Espinosa A, Brismar K, Nyström T, Schröder JM, Östenson CG, Aspenström P, Brauner H, Brauner A. Diabetes downregulates the antimicrobial peptide psoriasin and increases E. coli burden in the urinary bladder. Nat Commun 2022; 13:4983. [PMID: 36127330 PMCID: PMC9489794 DOI: 10.1038/s41467-022-32636-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 08/09/2022] [Indexed: 11/09/2022] Open
Abstract
Diabetes is known to increase susceptibility to infections, partly due to impaired granulocyte function and changes in the innate immunity. Here, we investigate the effect of diabetes, and high glucose on the expression of the antimicrobial peptide, psoriasin and the putative consequences for E. coli urinary tract infection. Blood, urine, and urine exfoliated cells from patients are studied. The influence of glucose and insulin is examined during hyperglycemic clamps in individuals with prediabetes and in euglycemic hyperinsulinemic clamped patients with type 1 diabetes. Important findings are confirmed in vivo in type 2 diabetic mice and verified in human uroepithelial cell lines. High glucose concentrations induce lower psoriasin levels and impair epithelial barrier function together with altering cell membrane proteins and cytoskeletal elements, resulting in increasing bacterial burden. Estradiol treatment restores the cellular function with increasing psoriasin and bacterial killing in uroepithelial cells, confirming its importance during urinary tract infection in hyperglycemia. In conclusion, our findings present the effects and underlying mechanisms of high glucose compromising innate immunity.
Collapse
Affiliation(s)
- Soumitra Mohanty
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | - Witchuda Kamolvit
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Anneli Björklund
- Center for Diabetes, Academic Specialist Center, Stockholm County Council, Solna, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Kerstin Brismar
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Nyström
- Department of Clinical Science and Education, Division of Internal Medicine, Unit for Diabetes Research, Karolinska Institutet, South Hospital, Stockholm, Sweden
| | - Jens M Schröder
- Department of Dermatology, Venerology and Allergology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claes-Göran Östenson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, Uppsala, Sweden
| | - Hanna Brauner
- Department of Medicine, Solna, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Annelie Brauner
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
- Division of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
3
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
4
|
Schneider Alves AC, Cardoso RS, de Oliveira Neto XA, Kawano DF. Uncovering the Potential of Lipid Drugs: A Focus on Transient Membrane Microdomain-Targeted Lipid Therapeutics. Mini Rev Med Chem 2022; 22:2318-2331. [PMID: 35264091 DOI: 10.2174/1389557522666220309162203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/27/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022]
Abstract
Membrane lipids are generally viewed as inert physical barriers, but many vital cellular processes greatly rely on the interaction with these structures, as expressed by the membrane hypothesis that explain the genesis of schizophrenia, Alzheimer's and autoimmune diseases, chronic fatigue or cancer, among others. The concept that the cell membrane displays transient membrane microdomains with distinct lipid composition provide the basis for the development of selective lipid-targeted therapies, the membrane-lipid therapies (MLTs). In this concern, medicinal chemists may design therapeutically valuable compounds 1) with a higher affinity for the lipids in these microdomains to restore the normal physiological conditions, 2) that can directly or 3) indirectly (via enzyme inhibition/activation) replace damaged lipids or restore the regular lipid levels in the whole membrane or microdomain, 4) that alter the expression of genes related to lipid genesis/metabolism or 5) that modulate the pathways related to the membrane binding affinity of lipid-anchored proteins. In this context, this mini-review aims to explore the structural diversity and clinical applications of some of the main membrane and microdomain-targeted lipid drugs.
Collapse
Affiliation(s)
- Anna Carolina Schneider Alves
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP 200 Cândido Portinari Street, Campinas, SP 13083871. Brazil
| | - Raquel Soares Cardoso
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP. 200 Cândido Portinari Street, Campinas, SP 13083871. Brazil
| | - Xisto Antonio de Oliveira Neto
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP. 200 Cândido Portinari Street, Campinas, SP 13083871. Brazil
| | - Daniel Fábio Kawano
- Faculty of Pharmaceutical Sciences, University of Campinas - UNICAMP. 200 Cândido Portinari Street, Campinas, SP 13083871. Brazil
| |
Collapse
|
5
|
Peng X, Fang S, Ji B, Li M, Song J, Qiu L, Tan W. DNA Nanostructure-Programmed Cell Entry via Corner Angle-Mediated Molecular Interaction with Membrane Receptors. NANO LETTERS 2021; 21:6946-6951. [PMID: 34396773 DOI: 10.1021/acs.nanolett.1c02191] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite its polyanionic nature, DNA can cross the negatively charged membrane to enter living cells by assembling into specific nanostructures, establishing various opportunities for biomedical applications. Mechanistic studies to explain how the geometrical parameters of DNA nanostructures impact the cell entry are critical but elusive. Here, we use experimentation and simulation to study the interaction between cells and three typical framework nucleic acids (FNAs), including tetrahedron, triangular prism, and cube. Different cellular uptake efficiency was observed among these FNAs, and similar distinction consistently existed in multiple cell lines. Scavenger receptors (SRs) were demonstrated to be essential in mediating the uptake process. Molecular docking simulations revealed that the SR binding predominantly depended on the corner angle of FNAs, determining cellular internalization frequency. This study clearly explains how FNAs interact with the membrane to initiate cell entry, offering new clues for the design of theranostic nanocarriers and the study of virus invasion.
Collapse
Affiliation(s)
- Xueyu Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Bin Ji
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jie Song
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
6
|
Wang H, Zhang H, Zhong Z, Sun Y, Wang M, Chen H, Zhou L, Cao L, Lian C, Li C. Molecular analyses of the gill symbiosis of the bathymodiolin mussel Gigantidas platifrons. iScience 2020; 24:101894. [PMID: 33364583 PMCID: PMC7750550 DOI: 10.1016/j.isci.2020.101894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Accepted: 12/02/2020] [Indexed: 11/29/2022] Open
Abstract
Although the deep-sea bathymodiolin mussels have been intensively studied as a model of animal-bacteria symbiosis, it remains challenging to assess the host-symbiont interactions due to the complexity of the symbiotic tissue-the gill. Using cold-seep mussel Gigantidas platifrons as a model, we isolated the symbiont harboring bacteriocytes and profiled the transcriptomes of the three major parts of the symbiosis-the gill, the bacteriocyte, and the symbiont. This breakdown of the complex symbiotic tissue allowed us to characterize the host-symbiont interactions further. Our data showed that the gill's non-symbiotic parts play crucial roles in maintaining and protecting the symbiosis; the bacteriocytes supply the symbiont with metabolites, control symbiont population, and shelter the symbiont from phage infection; the symbiont dedicates to the methane oxidation and energy production. This study demonstrates that the bathymodiolin symbiosis interacts at the tissue, cellular, and molecular level, maintaining high efficiency and harmonic chemosynthetic micro niche.
Collapse
Affiliation(s)
- Hao Wang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Huan Zhang
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Zhaoshan Zhong
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Sun
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Minxiao Wang
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Hao Chen
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Li Zhou
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Lei Cao
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Chao Lian
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China
| | - Chaolun Li
- Center of Deep-Sea Research, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, P. R. China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, P. R. China.,Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P. R. China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
8
|
Kruglikov IL, Scherer PE. Caveolin-1 as a possible target in the treatment for acne. Exp Dermatol 2020; 29:177-183. [PMID: 31769542 PMCID: PMC6995412 DOI: 10.1111/exd.14063] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/03/2019] [Accepted: 11/19/2019] [Indexed: 12/13/2022]
Abstract
Expression of caveolin-1 (Cav-1) is an important pathophysiological factor in acne. Cav-1 strongly interacts with such well-recognized etiopathogenic factors such as hyperseborrhea, follicular hyperkeratinization and pathogenicity of Cutibacterium acnes. Cav-1 is a strong negative regulator of transforming growth factor beta (TGF-β) expression. It acts as a critical determinant of autophagy, which is significantly induced in acne lesions through C. acnes and by absorption of fatty acids. Cav-1 also demonstrates different correlations with the development of innate immunity. We propose that normalization of Cav-1 expression can serve as a target in anti-acne therapy.
Collapse
Affiliation(s)
| | - Philipp E Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
9
|
Ahn SH, Cho SH, Song JE, Kim S, Oh SS, Jung S, Cho KA, Lee TH. Caveolin-1 serves as a negative effector in senescent human gingival fibroblasts during Fusobacterium nucleatum infection. Mol Oral Microbiol 2016; 32:236-249. [PMID: 27315395 DOI: 10.1111/omi.12167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
It is well established that aging is associated with increased susceptibility to infectious diseases. Fusobacterium nucleatum is a well-known bacterial species that plays a central bridging role between early and late colonizers in the human oral cavity. Further, the ability of F. nucleatum to invade gingival fibroblasts (GFs) is critical to the development of periodontal diseases. However, the mechanisms underlying the age-related infection of GFs by F. nucleatum remain unknown. We used young (fourth passage) and senescent (22nd passage) GFs to investigate the mechanisms of F. nucleatum infection in aged GFs and first observed increased invasion of F. nucleatum in senescent GFs. We also found that the co-localization of caveolin-1 (Cav-1), a protein marker of aging, with F. nucleatum and the knockdown of Cav-1 in GFs reduced F. nucleatum invasion. Additionally, F. nucleatum infection triggered the production of reactive oxygen species (ROS) through activation of NADPH oxidase in GFs, but senescent GFs exhibited significantly lower levels of NADPH oxidase activity and ROS production compared with young GFs in both the uninfected and infected conditions. Also, senescent GFs exhibited a decline in proinflammatory cytokine production and extracellular signal regulated kinase (ERK) phosphorylation following F. nucleatum infection. Interestingly, the knockdown of Cav-1 in senescent GFs increased NADPH oxidase activity and caused the upregulation of interleukin-6 and interleukin-8 and the phosphorylation of ERK. Collectively, the increased expression of Cav-1 might play a critical role in F. nucleatum invasion and could hinder the host response in senescent GFs.
Collapse
Affiliation(s)
- S H Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S-H Cho
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - J-E Song
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S Kim
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S S Oh
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - K A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - T-H Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| |
Collapse
|
10
|
Exome Sequencing of Phenotypic Extremes Identifies CAV2 and TMC6 as Interacting Modifiers of Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. PLoS Genet 2015; 11:e1005273. [PMID: 26047157 PMCID: PMC4457883 DOI: 10.1371/journal.pgen.1005273] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Discovery of rare or low frequency variants in exome or genome data that are associated with complex traits often will require use of very large sample sizes to achieve adequate statistical power. For a fixed sample size, sequencing of individuals sampled from the tails of a phenotype distribution (i.e., extreme phenotypes design) maximizes power and this approach was recently validated empirically with the discovery of variants in DCTN4 that influence the natural history of P. aeruginosa airway infection in persons with cystic fibrosis (CF; MIM219700). The increasing availability of large exome/genome sequence datasets that serve as proxies for population-based controls affords the opportunity to test an alternative, potentially more powerful and generalizable strategy, in which the frequency of rare variants in a single extreme phenotypic group is compared to a control group (i.e., extreme phenotype vs. control population design). As proof-of-principle, we applied this approach to search for variants associated with risk for age-of-onset of chronic P. aeruginosa airway infection among individuals with CF and identified variants in CAV2 and TMC6 that were significantly associated with group status. These results were validated using a large, prospective, longitudinal CF cohort and confirmed a significant association of a variant in CAV2 with increased age-of-onset of P. aeruginosa airway infection (hazard ratio = 0.48, 95% CI=[0.32, 0.88]) and variants in TMC6 with diminished age-of-onset of P. aeruginosa airway infection (HR = 5.4, 95% CI=[2.2, 13.5]) A strong interaction between CAV2 and TMC6 variants was observed (HR=12.1, 95% CI=[3.8, 39]) for children with the deleterious TMC6 variant and without the CAV2 protective variant. Neither gene showed a significant association using an extreme phenotypes design, and conditions for which the power of an extreme phenotype vs. control population design was greater than that for the extreme phenotypes design were explored. Whole exome and whole genome sequencing provide the opportunity to test for associations between expressed traits and genetic variants that cannot be tested with chip technology, particularly variants that are too rare to be included on chips designed for genome-wide association analysis. We used exome sequencing to identify variants in CAV2 and TMC6 that modify the age-of-onset of chronic Pseudomonas aeruginosa infection among children with cystic fibrosis, and validated our findings in a large cohort of children with cystic fibrosis. For a fixed number of study participants, it is known that the extreme phenotypes design provides greater statistical power than a random sampling design. In the extreme phenotypes design, one compares the frequency of a given set of genetic variants in one extreme of age-of-onset (early onset) to that in the other extreme (late onset). Here, we employed an alternative design that compares genetic frequencies in exomes sampled from one extreme to that among exomes from a large set of controls. We show that this design confers substantially greater statistical power for discovery of CAV2 and TMC6 and provide general conditions under which this single extreme versus control design is more powerful than the extreme phenotypes design.
Collapse
|
11
|
Asmat TM, Agarwal V, Saleh M, Hammerschmidt S. Endocytosis of Streptococcus pneumoniae via the polymeric immunoglobulin receptor of epithelial cells relies on clathrin and caveolin dependent mechanisms. Int J Med Microbiol 2014; 304:1233-46. [PMID: 25455218 DOI: 10.1016/j.ijmm.2014.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 10/05/2014] [Indexed: 12/17/2022] Open
Abstract
Colonization of Streptococcus pneumoniae (pneumococci) is a prerequisite for bacterial dissemination and their capability to enter the bloodstream. Pneumococci have evolved various successful strategies to colonize the mucosal epithelial barrier of humans. A pivotal mechanism of host cell invasion implicated with invasive diseases is promoted by the interaction of pneumococcal PspC with the polymeric Ig-receptor (pIgR). However, the mechanism(s) of pneumococcal endocytosis and the intracellular route of pneumococci upon uptake by the PspC-pIgR-interaction are not known. Here, we demonstrate by using a combination of pharmacological inhibitors and genetics interference approaches the involvement of active dynamin-dependent caveolae and clathrin-coated vesicles for pneumococcal uptake via the PspC-pIgR mechanism. Depleting cholesterol from host cell membranes and disruption of lipid microdomains impaired pneumococcal internalization. Moreover, chemical inhibition of clathrin or functional inactivation of dynamin, caveolae or clathrin by RNA interference significantly affected pneumococcal internalization suggesting that clathrin-mediated endocytosis (CME) and caveolae are involved in the bacterial uptake process. Confocal fluorescence microscopy of pIgR-expressing epithelial cells infected with pneumococci or heterologous Lactococcus lactis expressing PspC demonstrated bacterial co-localization with fluorescent-tagged clathrin and early as well as recycling or late endosomal markers such as Lamp1, Rab5, Rab4, and Rab7, respectively. In conclusion these data suggest that PspC-promoted uptake is mediated by both CME and caveolae. After endocytosis pneumococci are routed via the endocytic pathway into early endosomes and are then sorted into recycling or late endosomes, which can result in pneumococcal killing in phagolysosomes or transcytosis via recycling endosomes.
Collapse
Affiliation(s)
- Tauseef M Asmat
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Vaibhav Agarwal
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany; Department of Laboratory Medicine, Medical Protein Chemistry, Malmö University Hospital, Lund University, Malmö, Sweden
| | - Malek Saleh
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany
| | - Sven Hammerschmidt
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst-Moritz-Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D-17487 Greifswald, Germany.
| |
Collapse
|
12
|
Intestinal Salmonella typhimurium infection leads to miR-29a induced caveolin 2 regulation. PLoS One 2013; 8:e67300. [PMID: 23826261 PMCID: PMC3691122 DOI: 10.1371/journal.pone.0067300] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Salmonella are able to modulate host cell functions facilitating both uptake and resistance to cellular host defence mechanisms. While interactions between bacterial modulators and cellular proteins have been the main focus of Salmonella research, relatively little is known about mammalian gene regulation in response to Salmonella infection. A major class of mammalian gene modulators consists of microRNAs. For our study we examined interactions of microRNAs and regulated mRNAs in mammalian intestinal Salmonella infections using a piglet model. METHODOLOGY/PRINCIPAL FINDINGS After performing microRNA as well as mRNA specific microarray analysis of ileal samples from Salmonella infected as well as control piglets, we integrated expression analysis with target prediction identifying microRNAs that mainly regulate focal adhesion as well as actin cytoskeleton pathways. Particular attention was given to miR-29a, which was involved in most interactions including Caveolin 2. RT-qPCR experiments verified up-regulation of miR-29a after infection while its predicted target Caveolin 2 was significantly down-regulated as examined by transcript and protein detection. Reporter gene assays as well as RNAi experiments confirmed Caveolin 2 to be a miR-29a target. Knock-down of Caveolin 2 in intestinal epithelial cells resulted in retarded proliferation as well as increased bacterial uptake. In addition, our experiments showed that Caveolin 2 regulates the activation of the small Rho GTPase CDC42 but apparently not RAC1 in human intestinal cells. CONCLUSIONS/SIGNIFICANCE Our study outlines for the first time important regulation pathways in intestinal Salmonella infection pointing out that focal adhesion and organisation of actin cytoskeleton are regulated by microRNAs. Functional relevance is shown by miR-29a mediated Caveolin 2 regulation, modulating the activation state of CDC42. Further analysis of examined interactions may support the discovery of novel strategies impairing the uptake of intracellular pathogens.
Collapse
|
13
|
Hitkova I, Yuan G, Anderl F, Gerhard M, Kirchner T, Reu S, Röcken C, Schäfer C, Schmid RM, Vogelmann R, Ebert MPA, Burgermeister E. Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis. PLoS Pathog 2013; 9:e1003251. [PMID: 23592983 PMCID: PMC3623771 DOI: 10.1371/journal.ppat.1003251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/04/2013] [Indexed: 02/07/2023] Open
Abstract
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies (“humming bird”) compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells. Infection with the bacterium Helicobacter pylori (H. pylori) mainly affects children in the developing countries who are at risk to progress to gastric cancer (GC) as adults after many years of persistent infection, especially with strains which are positive for the oncogenic virulence factor CagA. Eradication of H. pylori by antibiotics is a treatment of choice but may also alter the susceptibility to allergies and other tumor types. Thus, novel diagnostic or prognostic markers are needed which detect early molecular changes in the stomach mucosa during the transition of chronic inflammation to cancer. In our study, we found that the tumor suppressor caveolin-1 (Cav1) is reduced upon infection with H. pylori, and CagA was sufficient but not necessary for this down-regulation. Loss of Cav1 was caused by H. pylori-dependent activation of sterol-responsive element-binding protein-1 (SREBP1), and this event abolished the interaction of Cav1 with p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1), a second bona fide tumor suppressor in gastric tissue. Conclusively, Cav1 and DLC1 may constitute novel molecular markers in the H. pylori-infected gastric mucosa before neoplastic transformation of the epithelium.
Collapse
Affiliation(s)
- Ivana Hitkova
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gang Yuan
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Florian Anderl
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
| | - Markus Gerhard
- Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, München, Germany
- German Centre for Infection Research (DZIF), München, Germany
| | - Thomas Kirchner
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Simone Reu
- Institute of Pathology, Klinikum der Universität München, München, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts Universität, Kiel, Germany
| | - Claus Schäfer
- Department of Medicine II, Klinikum der Universität München, München, Germany
| | - Roland M. Schmid
- Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Roger Vogelmann
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Matthias P. A. Ebert
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Elke Burgermeister
- Department of Medicine II, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- * E-mail:
| |
Collapse
|
14
|
Abstract
Despite the progress in medical treatment sepsis remains one of the major causes of death in pediatric and elderly patients. Understanding signaling pathways associated with sepsis may be of key significance for designing more efficient therapeutic approaches which could alleviate sepsis outcome. Earlier studies suggested that cholesteroland sphingolipid-rich lipid rafts and their morphologically distinct subset, caveolaecan be utilized by certain bacterial pathogens to enter and invade host cells. Moreover, there is also evidence that the expression levels of the major caveolar coat proteincaveolin-1 can be regulated by the major component of the outer membrane of Gram-negative bacteria,lipopolysaccharide (LPS) in various cell types involved in sepsis. In particular recent studies using caveolin-1 knockout mice and cells have revealed that caveolin-1 is directly involved in regulating numerous signalingpathways and functions in various cell types of the immune system and other cell types involved in sepsis. Moreover, the most recent report implies that in addition to extensively studied caveolin-1, caveolin-2 is also important in regulating LPS-induced sepsis and might possibly play an opposite role to caveolin-1 in regulating certain pro-inflammatory signaling pathways. The purpose of this review is to discuss these new exciting discoveries relatedto the specific role of caveolin-1 and the less studiedcaveolin-2in regulating signaling and outcome associated with sepsis induced by LPS and pathogenic bacteria at molecular, cellular and systemic levels.
Collapse
Affiliation(s)
- Grzegorz Sowa
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia,USA
| |
Collapse
|
15
|
Machado FS, Rodriguez NE, Adesse D, Garzoni LR, Esper L, Lisanti MP, Burk RD, Albanese C, Van Doorslaer K, Weiss LM, Nagajyothi F, Nosanchuk JD, Wilson ME, Tanowitz HB. Recent developments in the interactions between caveolin and pathogens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:65-82. [PMID: 22411314 DOI: 10.1007/978-1-4614-1222-9_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of caveolin and caveolae in the pathogenesis of infection has only recently been appreciated. In this chapter, we have highlighted some important new data on the role of caveolin in infections due to bacteria, viruses and fungi but with particular emphasis on the protozoan parasites Leishmania spp., Trypanosoma cruzi and Toxoplasma gondii. This is a continuing area of research and the final chapter has not been written on this topic.
Collapse
Affiliation(s)
- Fabiana S Machado
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mo S, Yang S, Cui Z. New glimpses of caveolin-1 functions in embryonic development and human diseases. FRONTIERS IN BIOLOGY 2011; 6:367. [PMID: 32215005 PMCID: PMC7089126 DOI: 10.1007/s11515-011-1132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from {itCaenorhabditis elegans} to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Collapse
Affiliation(s)
- Saijun Mo
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengli Yang
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Zongbin Cui
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|