1
|
Endogenous Peptide Inhibitors of HIV Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:65-85. [DOI: 10.1007/978-981-16-8702-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Malik S, Westcott JM, Brekken RA, Burrows FJ. CXCL12 in Pancreatic Cancer: Its Function and Potential as a Therapeutic Drug Target. Cancers (Basel) 2021; 14:cancers14010086. [PMID: 35008248 PMCID: PMC8750050 DOI: 10.3390/cancers14010086] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Pancreatic cancer is a challenging disease to treat effectively. Fibroblasts associated with pancreatic cancer contribute to disease progression by secreting factors that enhance tumor cell survival and help tumor cells avoid detection by the immune system. This overview focuses on a chemokine, CXCL12, produced by cancer-associated fibroblasts and how CXCL12 signaling enhances pancreatic cancer progression by contributing to various hallmarks of cancer including, but not limited to, tumor growth and evasion of immune response. These pro-oncogenic functions of CXCL12 make it an attractive target in pancreatic cancer. We discuss the different approaches in development to therapeutically target CXCL12 and finally propose a novel approach, the use of the farnesyl transferase inhibitor tipifarnib to inhibit CXCL12 expression in pancreatic fibroblasts. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a disease with limited therapeutic options and dismal long-term survival. The unique tumor environment of PDAC, consisting of desmoplastic stroma, immune suppressive cells, and activated fibroblasts, contributes to its resistance to therapy. Activated fibroblasts (cancer-associated fibroblasts and pancreatic stellate cells) secrete chemokines and growth factors that support PDAC growth, spread, chemoresistance, and immune evasion. In this review, we focus on one such chemokine, CXCL12, secreted by the cancer-associated fibroblasts and discuss its contribution to several of the classical hallmarks of PDAC and other tumors. We review the various therapeutic approaches in development to target CXCL12 signaling in PDAC. Finally, we propose an unconventional use of tipifarnib, a farnesyl transferase inhibitor, to inhibit CXCL12 production in PDAC.
Collapse
Affiliation(s)
| | - Jill M. Westcott
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Rolf A. Brekken
- Division of Surgical Oncology, Department of Surgery, and Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| | - Francis J. Burrows
- Kura Oncology, Inc., San Diego, CA 92130, USA;
- Correspondence: (R.A.B.); (F.J.B.)
| |
Collapse
|
3
|
Ji Y, Yao J, He Y. Extracellular ubiquitin protects cardiomyocytes during ischemia/hypoxia by inhibiting mitochondrial apoptosis pathway through CXCR4. Biomed Pharmacother 2020; 131:110787. [PMID: 33152945 DOI: 10.1016/j.biopha.2020.110787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 10/23/2022] Open
Abstract
AIM Acute myocardial infarction (AMI) is one of the deadliest diseases worldwide. The search for countermeasures to reduce cardiomyocytes death in the infarcted area has always been the focus of research. Ubiquitin (UB) is a small polypeptide mainly involved in proteasome-mediated protein degradation in cells, whereas extracellular UB in body fluids can also function through its receptor CXC chemokine receptor type 4 (CXCR4). This study aimed to explore the functional roles of extracellular UB in cardiomyocytes during ischemia/hypoxia (I/H). METHODS H9C2 cells were subjected to I/H treatment and cell injury was evaluated by cell viability, morphology changes and apoptosis rate. UB expression and levels of ubiquitinated proteins after I/H injury were measured. The effects of extracellular UB on I/H-induced cardiomyocytes apoptosis and the possible underlying mechanisms were studied. RESULTS I/H injury induced the decrease of cell viability as well as enhanced impaired cell morphology and apoptosis rate in H9C2 cells. Levels of UB mRNA and ubiquitinated proteins were significantly up-regulated after I/H treatment, whereas the concentration of extracellular UB in the conditioned media did not show significant change and the intracellular mono-UB levels in cells were down-regulated. Extracellular UB treatment protected cardiomyocytes from I/H injury by inhibiting the overactivation of mitochondria-dependent apoptosis pathway and up-regulating autophagy level. Inhibition of CXCR4 receptor using AMD3100 abolished cardioprotective effects of extracellular UB. CONCLUSION The up-regulation of UB was suggested to be an adaptive response to resist I/H-induced cardiomyocytes apoptosis, and additional extracellular UB treatment might serve as a new potential therapeutic drug for AMI.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, Jiangsu Province, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
4
|
Shaler T, Lin H, Bakke J, Chen S, Grover A, Chang P. Particle radiation-induced dysregulation of protein homeostasis in primary human and mouse neuronal cells. LIFE SCIENCES IN SPACE RESEARCH 2020; 25:9-17. [PMID: 32414496 DOI: 10.1016/j.lssr.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/12/2020] [Accepted: 02/16/2020] [Indexed: 06/11/2023]
Abstract
Space particle radiations may cause significant damage to proteins and oxidative stress in the cells within the central nervous system and pose a potential health hazard to humans in long-term manned space explorations. Dysregulation of the ubiquitin-proteasome system as evidenced by abnormal accumulation of polyubiquitin (pUb) chain linkages has been implicated in several age-related neurodegenerative disorders by mechanisms that may involve the inter-neuronal spread of toxic misfolded proteins, the induction of chronic neuroinflammation, or the inappropriate inhibition or activation of key enzymes, which could lead to dysfunction in, for example, proteolysis, or the accumulation of post-translationally-modified substrates.In this study, we employed a quantitative proteomics method to evaluate the impact of particle-radiation induced alterations in three major pUb-linked chains at lysine residues Lys-48 (K-48), Lys-63 (K-63), and Lys-11 (K-11), and probed for global proteomic changes in mouse and human neural cells that were irradiated with low doses of 250 MeV proton, 260 MeV/u silicon or 1 GeV/u iron ions. We found significant accumulation in K-48 linkage after 1 Gy protons and K-63 linkage after 0.5 Gy iron ions in human neural cells. Cells derived from different regions of the mouse brain (cortex, striatum and mesencephalon) showed differential sensitivity to particle radiation exposure. Although none of the linkages were altered after proton exposure, both K-48 and K-63 linkages in mouse striatal neuronal cells were elevated after 0.5 Gy of silicon or iron ions. Changes were also seen in proteins commonly used as markers of neural progenitor and stem cells, in DNA binding/damage repair and cellular redox pathways. In contrast, no significant changes were observed at the same time point after proton irradiation. These results suggest that the quality of the particle radiation plays a key role in the level, linkage and cell type specificity of protein homeostasis in key populations of neuronal cells.
Collapse
Affiliation(s)
- Tom Shaler
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Hua Lin
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - James Bakke
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Sophia Chen
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Amber Grover
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States
| | - Polly Chang
- SRI International, 333 Ravenswood Ave, Menlo Park, CA 94025 United States.
| |
Collapse
|
5
|
Ji Y, Yao J, Zhao Y, Zhai J, Weng Z, He Y. Extracellular ubiquitin levels are increased in coronary heart disease and associated with the severity of the disease. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:256-264. [PMID: 32077763 DOI: 10.1080/00365513.2020.1728783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aim: This study aimed to evaluate concentration of plasma extracellular ubiquitin (UB) in coronary heart disease (CHD) patients and its correlation with the disease severity.Methods: Levels of UB and stromal cell-derived factor-1a (SDF-1a) were measured in 60 healthy controls and 67 CHD cases. Coronary atherosclerosis was assessed with Gensini scoring system. Spearman correlation was used to evaluate the correlation between UB and low-density lipoprotein cholesterol (LDL-C), C-reactive protein (CRP), creatine kinase-MB (CK-MB), cardiac troponin I (cTnI) or SDF-1a. The receiver-operating characteristic (ROC) curve was established to assess the predictive value of UB.Results: Plasma UB levels were significantly higher in CHD patients than in controls (p < .0001), and the levels in those with acute myocardial infarction (AMI) were higher than stable angina pectoris (SAP) and unstable angina pectoris (UAP) groups (both p < .01). UB was also positively correlated with Gensini score, CRP, CK-MB and cTnI in CHD. ROC analysis of UB showed that the area under the curve (AUC) were 0.711 (95%CI, 0.623-0.799) and 0.778 (95%CI, 0.666-0.890) for CHD and acute coronary syndrome (ACS), respectively. Plasma SDF-1a levels were elevated in CHD patients but showed no significant correlation with UB concentration or the severity of the disease.Conclusion: Plasma UB concentration was increased in CHD and the change of UB levels may reflect the progression of CHD.
Collapse
Affiliation(s)
- Yiqun Ji
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jialu Yao
- Department of Cardiology, Suzhou Municipal Hospital, Suzhou, China
| | - Yunxiao Zhao
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juping Zhai
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Weng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Yang He
- MOE Engineering Center of Hematological Disease, MOH Key Lab of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Li H, Zhang X, Wu HY, Sun L, Ma Y, Xu J, Lin Q, Zeng D. 64Cu-Labeled Ubiquitin for PET Imaging of CXCR4 Expression in Mouse Breast Tumor. ACS OMEGA 2019; 4:12432-12437. [PMID: 31460362 PMCID: PMC6682141 DOI: 10.1021/acsomega.9b00678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/28/2019] [Indexed: 05/10/2023]
Abstract
Ubiquitin has been recently identified as a chemokine receptor 4 (CXCR4) natural ligand, offering great potential for positron emission computed tomography (PET) imaging of CXCR4 expression. This study reports the preparation and evaluation of (64Cu)-radiolabeled ubiquitin for CXCR4 imaging. The ubiquitin was first fused with a C-terminal GGCGG sequence, and the resulting recombinant ubiquitin derivative UbCG4 was then functionalized with the trans-cyclooctene (TCO) moiety via thiol-maleimide click reaction, followed by 64Cu-radiolabeling through the TCO/Tz (tetrazine)-based Diels-Alder click reaction. In the prepared in vitro studies, the prepared (64Cu)-UbCG4 showed significantly higher specific uptakes in the 4T1 breast cancer cells compared with the uptakes in the CXCR4-knockdown 4T1 cells. In the in vivo evaluation in the 4T1-xenograft mouse model, (64Cu)-UbCG4 demonstrated a similar tumor uptake but much lower backgrounds compared with 64Cu-labeled AMD3465. These results suggested that (64Cu)-UbCG4 could serve as a potent PET tracer for the noninvasive imaging of CXCR4 expression in tumors.
Collapse
Affiliation(s)
- Huiqiang Li
- PET-CT
Center, Department of Nuclear Medicine, Henan Provincial People’s Hospital, Weiwu Road, No. 7, Jinshui District, Zhengzhou, Henan CN 450003, China
- Molecular
Imaging Laboratory, Department of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15219, United States
| | - Xiaohui Zhang
- Molecular
Imaging Laboratory, Department of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15219, United States
| | - Hsuan Yi Wu
- Department
of Chemistry, State University of New York
at Buffalo, 679 Natural
Sciences Complex, Buffalo, New York 14260, United
States
| | - Lingyi Sun
- Molecular
Imaging Laboratory, Department of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15219, United States
- Department
of Diagnostic Radiology, Oregon Health &
Science University, 3181
S.W. Sam Jackson Park Rd., CRR210B, Portland, Oregon 97239, United States
| | - Yongyong Ma
- Molecular
Imaging Laboratory, Department of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15219, United States
- Department
of Diagnostic Radiology, Oregon Health &
Science University, 3181
S.W. Sam Jackson Park Rd., CRR210B, Portland, Oregon 97239, United States
| | - Junling Xu
- PET-CT
Center, Department of Nuclear Medicine, Henan Provincial People’s Hospital, Weiwu Road, No. 7, Jinshui District, Zhengzhou, Henan CN 450003, China
| | - Qing Lin
- Department
of Chemistry, State University of New York
at Buffalo, 679 Natural
Sciences Complex, Buffalo, New York 14260, United
States
| | - Dexing Zeng
- Molecular
Imaging Laboratory, Department of Medicine, University of Pittsburgh, 3501 Fifth Avenue, Pittsburgh, Pennsylvania 15219, United States
- Department
of Diagnostic Radiology, Oregon Health &
Science University, 3181
S.W. Sam Jackson Park Rd., CRR210B, Portland, Oregon 97239, United States
| |
Collapse
|
7
|
Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One 2017; 12:e0187949. [PMID: 29125867 PMCID: PMC5681266 DOI: 10.1371/journal.pone.0187949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3–68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05–0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03–3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3–68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3–68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3–68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Collapse
|
8
|
Tan C, Lu X, Chen W, Chen S. Serum ubiquitin via CXC chemokine receptor 4 triggered cyclooxygenase-1 ubiquitination possibly involved in the pathogenesis of aspirin resistance. Clin Hemorheol Microcirc 2016; 61:59-81. [PMID: 25267459 DOI: 10.3233/ch-141900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracellular ubiquitin (Ub) with platelet aggregation property was found higher in acute myocardial infarction (AMI) patients. Here we detected the platelet functions and serum Ub levels in 250 AMI patients and 50 healthy volunteers before and after aspirin treatment. The influence of serum Ub on platelet functions was determined in vitro. We found that 47 out of 250 AMI patients showed aspirin resistance (AR) and 203 showed aspirin sensitivity (AS). During hospitalization, AR group had higher serum Ub levels than the AS group or the healthy group, and the serum Ub levels was related to the rates of thrombosis events. The patients with higher serum Ub levels showed that the platelets had more ubiquitinated platelets, higher contents of ubiquitinated proteins and ubiquitinated cyclooxygenase-1 (COX-1). The levels of ubiquitinated COX-1 in the platelets was inversely correlated with acetylated COX-1, the separated ubiquitinated COX-1 activity was approximately twofold or fourfold higher than the total COX-1(ubiquitinated COX-1 and COX-1) or COX-1. In vitro, we found that extracellular Ub, via the CXC chemokine receptor 4 (CXCR4) pathway, facilitated COX-1 to be ubiquitined and prevented aspirin to acetylate its target. Platelets had higher levels of ubiquitinated COX-1 showing poor response to aspirin. Such results were not detected in Ub-free serum or ovalbumin incubated platelets. Serum Ub, via the CXCR4 pathway, facilitated COX-1 to be ubiquitined and activated the platelets possibly involved in the pathogenesis of AR.
Collapse
Affiliation(s)
- Chunjiang Tan
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Xiao Lu
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Wenlie Chen
- Fujian Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fujian, China
| | - Songming Chen
- Cardiovascular Department of First Affiliated Hospital, Medical College, Shantou University, Guangdong, China
| |
Collapse
|
9
|
Sujashvili R, Ioramashvili I, Aptsiauri K, Gvinadze N. Regulation of leucogenesis by extracellular ubiquitin in rodents after chemically induced inhibition. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716050133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
11
|
Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015; 6:429. [PMID: 26347749 PMCID: PMC4543903 DOI: 10.3389/fimmu.2015.00429] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/07/2015] [Indexed: 12/19/2022] Open
Abstract
CXCR4 and its ligand CXCL12 mediate the homing of progenitor cells in the bone marrow and their recruitment to sites of injury, as well as affect processes such as cell arrest, survival, and angiogenesis. CXCL12 was long thought to be the sole CXCR4 ligand, but more recently the atypical chemokine macrophage migration inhibitory factor (MIF) was identified as an alternative, non-cognate ligand for CXCR4 and shown to mediate chemotaxis and arrest of CXCR4-expressing T-cells. This has complicated the understanding of CXCR4-mediated signaling and associated biological processes. Compared to CXCL12/CXCR4-induced signaling, only few details are known on MIF/CXCR4-mediated signaling and it remains unclear to which extent MIF and CXCL12 reciprocally influence CXCR4 binding and signaling. Furthermore, the atypical chemokine receptor 3 (ACKR3) (previously CXCR7) has added to the complexity of CXCR4 signaling due to its ability to bind CXCL12 and MIF, and to evoke CXCL12- and MIF-triggered signaling independently of CXCR4. Also, extracellular ubiquitin (eUb) and the viral protein gp120 (HIV) have been reported as CXCR4 ligands, whereas viral chemokine vMIP-II (Herpesvirus) and human β3-defensin (HBD-3) have been identified as CXCR4 antagonists. This review will provide insight into the diversity and inter-connections in the CXCR4 receptor/ligand family. We will discuss signaling pathways initiated by binding of CXCL12 vs. MIF to CXCR4, elaborate on how ACKR3 affects CXCR4 signaling, and summarize biological functions of CXCR4 signaling mediated by CXCL12 or MIF. Also, we will discuss eUb and gp120 as alternative ligands for CXCR4, and describe vMIP-II and HBD-3 as antagonists for CXCR4. Detailed insight into biological effects of CXCR4 signaling und underlying mechanisms, including diversity of CXCR4 ligands and inter-connections with other (chemokine) receptors, is clinically important, as the CXCR4 antagonist AMD3100 has been approved as stem cell mobilizer in specific disease settings.
Collapse
Affiliation(s)
- Lukas Pawig
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| | - Christina Klasen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich , Munich , Germany ; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance , Munich , Germany ; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University , Maastricht , Netherlands
| | - Jürgen Bernhagen
- Institute of Biochemistry and Molecular Cell Biology, RWTH Aachen University , Aachen , Germany ; August-Lenz-Stiftung, Institute for Cardiovascular Research, Ludwig-Maximilians-University Munich , Munich , Germany
| | - Heidi Noels
- Institute of Molecular Cardiovascular Research (IMCAR), RWTH Aachen University , Aachen , Germany
| |
Collapse
|
12
|
Job F, Settele F, Lorey S, Rundfeldt C, Baumann L, Beck-Sickinger AG, Haupts U, Lilie H, Bosse-Doenecke E. Ubiquitin is a versatile scaffold protein for the generation of molecules with de novo binding and advantageous drug-like properties. FEBS Open Bio 2015; 5:579-93. [PMID: 26258013 PMCID: PMC4522466 DOI: 10.1016/j.fob.2015.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/07/2015] [Accepted: 07/07/2015] [Indexed: 01/17/2023] Open
Abstract
In the search for effective therapeutic strategies, protein-based biologicals are under intense development. While monoclonal antibodies represent the majority of these drugs, other innovative approaches are exploring the use of scaffold proteins for the creation of binding molecules with tailor-made properties. Ubiquitin is especially suited for this strategy due to several key characteristics. Ubiquitin is a natural serum protein, 100% conserved across the mammalian class and possesses high thermal, structural and proteolytic stability. Because of its small size and lack of posttranslational modifications, it can be easily produced in Escherichia coli. In this work we provide evidence that ubiquitin is safe as tested experimentally in vivo. In contrast to previously published results, we show that, in our hands, ubiquitin does not act as a functional ligand of the chemokine receptor CXCR4. Cellular assays based on different signaling pathways of the receptor were conducted with the natural agonist SDF-1 as a benchmark. In none of the assays could a response to ubiquitin treatment be elicited. Furthermore, intravenous application to mice at high concentrations did not induce any detectable effect on cytokine levels or hematological parameters.
Collapse
Affiliation(s)
- Florian Job
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Florian Settele
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Susan Lorey
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Chris Rundfeldt
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Lars Baumann
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | | - Ulrich Haupts
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
| | - Hauke Lilie
- Institute for Biochemistry and Biotechnology/Technical Biochemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Straße 3, D-06120 Halle (Saale), Germany
| | - Eva Bosse-Doenecke
- Scil Proteins GmbH, Heinrich-Damerow-Straße 1, D-06120 Halle (Saale), Germany
- Corresponding author. Tel.: +49 345 4780 365; fax: +49 345 27996 332.
| |
Collapse
|
13
|
Arnolds KL, Spencer JV. CXCR4: a virus's best friend? INFECTION GENETICS AND EVOLUTION 2014; 25:146-56. [PMID: 24793563 DOI: 10.1016/j.meegid.2014.04.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Viruses are dependent on their hosts for replication and dispersal in the environment; thus, the most successful viruses are those that co-evolve with their hosts. CXCR4 is a cellular chemokine receptor that plays central roles in development, hematopoiesis, and immune surveillance through signaling induced by its ligand, CXCL12. The CXCR4-CXCL12 axis has been besieged by many pathogens that employ a range of strategies to modify or exploit CXCR4 activity. While CXCR4 was identified as a critical co-factor for entry of HIV into CD4+ T cells early on, other viruses may utilize CXCR4 to gain cell entry as well. Moreover, several viruses have been found to modulate CXCR4 expression or alter its functional activity, with direct effects on cell trafficking, immune responses, cell proliferation, and cell survival. Because CXCR4 is targeted by a diverse group of viral pathogens, modification of host CXCR4 signaling activity is emerging as a common theme in virus persistence and is likely to be important for subversion of the host immune system. This review highlights major viral pathogens that use and abuse CXCR4 and explores the possible reasons why this chemokine receptor has become "a virus's best friend".
Collapse
Affiliation(s)
- Kathleen L Arnolds
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94403, United States.
| |
Collapse
|
14
|
Chopra R, Kalaiarasan P, Ali S, Srivastava AK, Aggarwal S, Garg VK, Bhattacharya SN, Bamezai RNK. PARK2 and proinflammatory/anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case-control study of North Indian population. BMJ Open 2014; 4:e004239. [PMID: 24578538 PMCID: PMC3939656 DOI: 10.1136/bmjopen-2013-004239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES Cytokines and related molecules in immune-response pathways seem important in deciding the outcome of the host-pathogen interactions towards different polar forms in leprosy. We studied the role of significant and functionally important single-nucleotide polymorphisms (SNPs) in these genes, published independently from our research group, through combined interaction with an additional analysis of the in silico network outcome, to understand how these impact the susceptibility towards the disease, leprosy. DESIGN The study was designed to assess an overall combined contribution of significantly associated individual SNPs to reflect on epistatic interactions and their outcome in the form of the disease, leprosy. Furthermore, in silico approach was adopted to carry out protein-protein interaction study between PARK2 and proinflammatory/anti-inflammatory cytokines. SETTING Population-based case-control study involved the data of North India. Protein-protein interaction networks were constructed using cytoscape. PARTICIPANTS Study included the data available from 2305 Northern Indians samples (829 patients with leprosy; 1476 healthy controls), generated by our research group. PRIMARY AND SECONDARY OUTCOME MEASURES For genotype interaction analysis, all possible genotype combinations between selected SNPs were used as an independent variable, using binary logistic regression with the forward likelihood ratio method, keeping the gender as a covariate. RESULTS Interaction analysis between PARK2 and significant SNPs of anti-inflammatory/proinflammatory cytokine genes, including BAT1 to BTNL2-DR spanning the HLA (6p21.3) region in a case-control comparison, showed that the combined analysis of: (1) PARK2, tumour necrosis factor (TNF), BTNL2-DR, interleukin (IL)-10, IL-6 and TGFBR2 increased the risk towards leprosy (OR=2.54); (2) PARK2, BAT1, NFKBIL1, LTA, TNF-LTB, IL12B and IL10RB provided increased protection (OR=0.26) in comparison with their individual contribution. CONCLUSIONS Epistatic SNP-SNP interactions involving PARK2 and cytokine genes provide an additive risk towards leprosy susceptibility. Furthermore, in silico protein-protein interaction of PARK2 and important proinflammatory/anti-inflammatory molecules indicate that PARK2 is central to immune regulation, regulating the production of different cytokines on infection.
Collapse
Affiliation(s)
- Rupali Chopra
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Ponnusamy Kalaiarasan
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu & Kashmir, India
| | - Shafat Ali
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit K Srivastava
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Aggarwal
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay K Garg
- Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Sambit N Bhattacharya
- Department of Dermatology and Venereology, University College of Medical Sciences and GTB Hospital, Delhi, India
| | - Rameshwar N K Bamezai
- National Centre of Applied Human Genetics, School of life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
15
|
Lorey S, Fiedler E, Kunert A, Nerkamp J, Lange C, Fiedler M, Bosse-Doenecke E, Meysing M, Gloser M, Rundfeldt C, Rauchhaus U, Hänssgen I, Göttler T, Steuernagel A, Fiedler U, Haupts U. Novel ubiquitin-derived high affinity binding proteins with tumor targeting properties. J Biol Chem 2014; 289:8493-507. [PMID: 24474690 PMCID: PMC3961674 DOI: 10.1074/jbc.m113.519884] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Targeting effector molecules to tumor cells is a promising mode of action for cancer therapy and diagnostics. Binding proteins with high affinity and specificity for a tumor target that carry effector molecules such as toxins, cytokines, or radiolabels to their intended site of action are required for these applications. In order to yield high tumor accumulation while maintaining low levels in healthy tissues and blood, the half-life of such conjugates needs to be in an optimal range. Scaffold-based binding molecules are small proteins with high affinity and short systemic circulation. Due to their low molecular complexity, they are well suited for combination with effector molecules as well as half-life extension technologies yielding therapeutics with half-lives adapted to the specific therapy. We have identified ubiquitin as an ideal scaffold protein due to its outstanding biophysical and biochemical properties. Based on a dimeric ubiquitin library, high affinity and specific binding molecules, so-called Affilin® molecules, have been selected against the extradomain B of fibronectin, a target almost exclusively expressed in tumor tissues. Extradomain B-binding molecules feature high thermal and serum stability as well as strong in vitro target binding and in vivo tumor accumulation. Application of several half-life extension technologies results in molecules of largely unaffected affinity but significantly prolonged in vivo half-life and tumor retention. Our results demonstrate the utility of ubiquitin as a scaffold for the generation of high affinity binders in a modular fashion, which can be combined with effector molecules and half-life extension technologies.
Collapse
Affiliation(s)
- Susan Lorey
- From Scil Proteins GmbH, Heinrich-Damerow-Strasse 1, 06120 Halle (Saale), Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Henderson B, Kaiser F. Do reciprocal interactions between cell stress proteins and cytokines create a new intra-/extra-cellular signalling nexus? Cell Stress Chaperones 2013; 18:685-701. [PMID: 23884786 PMCID: PMC3789882 DOI: 10.1007/s12192-013-0444-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/16/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022] Open
Abstract
Cytokine biology began in the 1950s, and by 1988, a large number of cytokines, with a myriad of biological actions, had been discovered. In 1988, the basis of the protein chaperoning function of the heat shock, or cell stress, proteins was identified, and it was assumed that this was their major activity. However, since this time, evidence has accumulated to show that cell stress proteins are secreted by cells and can stimulate cellular cytokine synthesis with the generation of pro- and/or anti-inflammatory cytokine networks. Cell stress can also control cytokine synthesis, and cytokines are able to induce, or even inhibit, the synthesis of selected cell stress proteins and may also promote their release. How cell stress proteins control the formation of cytokines is not understood and how cytokines control cell stress protein synthesis depends on the cellular compartment experiencing stress, with cytoplasmic heat shock factor 1 (HSF1) having a variety of actions on cytokine gene transcription. The endoplasmic reticulum unfolded protein response also exhibits a complex set of behaviours in terms of control of cytokine synthesis. In addition, individual intracellular cell stress proteins, such as Hsp27 and Hsp90, have major roles in controlling cellular responses to cytokines and in controlling cytokine synthesis in response to exogenous factors. While still confusing, the literature supports the hypothesis that cell stress proteins and cytokines may generate complex intra- and extra-cellular networks, which function in the control of cells to external and internal stressors and suggests the cell stress response as a key parameter in cytokine network generation and, as a consequence, in control of immunity.
Collapse
Affiliation(s)
- Brian Henderson
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
| | - Frank Kaiser
- />Department of Microbial Diseases, Eastman Dental Institute, University College London, London, UK
- />Division of Microbial Diseases, Eastman Dental Institute, University College London, 256 Gray’s Inn Road, London, WC1X 8LD UK
| |
Collapse
|
17
|
Chopra R, Ali S, Srivastava AK, Aggarwal S, Kumar B, Manvati S, Kalaiarasan P, Jena M, Garg VK, Bhattacharya SN, Bamezai RNK. Mapping of PARK2 and PACRG overlapping regulatory region reveals LD structure and functional variants in association with leprosy in unrelated indian population groups. PLoS Genet 2013; 9:e1003578. [PMID: 23861666 PMCID: PMC3701713 DOI: 10.1371/journal.pgen.1003578] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium Leprae, where the host genetic background plays an important role toward the disease pathogenesis. Various studies have identified a number of human genes in association with leprosy or its clinical forms. However, non-replication of results has hinted at the heterogeneity among associations between different population groups, which could be due to differently evolved LD structures and differential frequencies of SNPs within the studied regions of the genome. A need for systematic and saturated mapping of the associated regions with the disease is warranted to unravel the observed heterogeneity in different populations. Mapping of the PARK2 and PACRG gene regulatory region with 96 SNPs, with a resolution of 1 SNP per 1 Kb for PARK2 gene regulatory region in a North Indian population, showed an involvement of 11 SNPs in determining the susceptibility towards leprosy. The association was replicated in a geographically distinct and unrelated population from Orissa in eastern India. In vitro reporter assays revealed that the two significantly associated SNPs, located 63.8 kb upstream of PARK2 gene and represented in a single BIN of 8 SNPs, influenced the gene expression. A comparison of BINs between Indian and Vietnamese populations revealed differences in the BIN structures, explaining the heterogeneity and also the reason for non-replication of the associated genomic region in different populations. Leprosy is a chronic granulomatous infection caused by the intracellular organism Mycobacterium leprae. The disease affects the skin and the peripheral nerves and can cause irreversible impairment of the nerve function with consequent chronic disabilities. The prevalence of leprosy has declined dramatically after the introduction of Multidrug therapy in the 1980s. However, the infection continues to survive as a major public health problem with more than 200,000 new cases reported globally every year, especially in China and India. The disease is governed by host genetic background, where several genes have been identified in association with leprosy or its clinical forms. The involvement of the PARK2 and PACRG genes with leprosy susceptibility in two distinct populations of the world, Vietnamese and Brazilian, and its non-replication in other populations suggests unravelling the reasons of heterogeneity between different population groups. The possibility of involvement of other variants and a differential LD structure for the PARK2 regulatory region in Indian populations as compared to Brazilian and Vietnamese provides an answer to the heterogeneity among associations observed previously in different population groups.
Collapse
Affiliation(s)
- Rupali Chopra
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amit K. Srivastava
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shweta Aggarwal
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Bhupender Kumar
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Siddharth Manvati
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Ponnusamy Kalaiarasan
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
| | - Mamta Jena
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Vijay K. Garg
- Department of Dermatology and Sexually Transmitted Diseases, Maulana Azad Medical College, Lok Nayak Jai Prakash Hospital, New Delhi, India
| | - Sambit N. Bhattacharya
- Department of Dermatology and Venereology, University College of Medical Sciences and GTB Hospital, Delhi, India
| | - Rameshwar N. K. Bamezai
- Shri Mata Vaishno Devi University, School of Biotechnology, Katra, Jammu & Kashmir, India
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
18
|
Tripathi A, Saini V, Marchese A, Volkman BF, Tang WJ, Majetschak M. Modulation of the CXC chemokine receptor 4 agonist activity of ubiquitin through C-terminal protein modification. Biochemistry 2013; 52:4184-92. [PMID: 23697661 DOI: 10.1021/bi400254f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Extracellular ubiquitin has recently been described as a CXC chemokine receptor (CXCR) 4 agonist. Studies on the structure-function relationship suggested that the C-terminus of ubiquitin facilitates CXCR4 activation. It remains unknown, however, whether C-terminal processing of ubiquitin could be biologically relevant and whether modifications of the ubiquitin C-terminus can modulate CXCR4 activation. We show that C-terminal truncated ubiquitin antagonizes ubiquitin and stromal cell-derived factor (SDF)-1α induced effects on cell signaling and function. Reduction of cell surface expression of insulin degrading enzyme (IDE), which cleaves the C-terminal di-Gly of ubiquitin, enhances ubiquitin induced reduction of cAMP levels in BV2 and THP-1 cells, but does not influence changes in cAMP levels in response to SDF-1α. Reduction of cell surface IDE expression in THP-1 cells also increases the chemotactic activity of ubiquitin. As compared with native ubiquitin, C-terminal Tyr extension of ubiquitin results in reduced CXCR4 mediated effects on cellular cAMP levels and abolishes chemotactic activity. Replacement of C-terminal di-Gly of ubiquitin with di-Val or di-Arg enhances CXCR4 mediated effects on cAMP levels and the di-Arg substitution exerts increased chemotactic activity, when compared with wild type ubiquitin. The chemotactic activities of the di-Val and di-Arg mutants and their effects on cAMP levels can be antagonized with C-terminal truncated ubiquitin. These data suggest that the development of CXCR4 ligands with enhanced agonist activities is possible and that C-terminal processing of ubiquitin could constitute a biological mechanism, which regulates termination of receptor signaling.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE To determine whether treatment with the CXC chemokine receptor 4 agonist ubiquitin results in beneficial effects in a polytrauma model consisting of bilateral femur fractures plus blunt chest trauma (Injury Severity Score 18-25). DESIGN Treatment study. SETTING Research laboratory. SUBJECTS Seventeen Yorkshire pigs. INTERVENTIONS Intravenous injection of 1.5 mg/kg ubiquitin or albumin (control) at 60 mins after polytrauma. MEASUREMENTS AND MAIN RESULTS Anesthetized, mechanically ventilated pigs underwent polytrauma, followed by a simulated 60-min shock phase. At the end of the shock phase, ubiquitin or albumin were administered and animals were resuscitated to a mean arterial blood pressure of 70 mm Hg until t=420 mins. After intravenous ubiquitin, ubiquitin plasma concentrations increased 16-fold to 2870±1015 ng/mL at t=90 mins and decreased with t1/2=60 mins. Endogenous plasma ubiquitin increased two-fold in the albumin group with peak levels of 359±210 ng/mL. Plasma levels of the cognate CXC chemokine receptor 4 ligand stromal cell-derived factor-1α were unchanged in both groups. Ubiquitin treatment reduced arterial lactate levels and prevented a continuous decrease in arterial oxygenation, which occurred in the albumin group during resuscitation. Wet weight to dry weight ratios of the lung contralateral from the injury, heart, spleen and jejunum were lower with ubiquitin. With ubiquitin treatment, tissue levels of Interleukin-8, Interleukin-10, Tumor Necrosis Factor α, and stromal cell-derived factor-1α were reduced in the injured lung and of Interleukin-8 in the contralateral lung, respectively. CONCLUSIONS Administration of exogenous ubiquitin modulates the local inflammatory response, improves resuscitation, reduces fluid shifts into tissues, and preserves arterial oxygenation after blunt polytrauma with lung injury. This study further supports the notion that ubiquitin is a promising protein therapeutic and implies CXC chemokine receptor 4 as a drug target after polytrauma.
Collapse
|
20
|
Bach HH, Saini V, Baker TA, Tripathi A, Gamelli RL, Majetschak M. Initial assessment of the role of CXC chemokine receptor 4 after polytrauma. Mol Med 2012; 18:1056-66. [PMID: 22634721 DOI: 10.2119/molmed.2011.00497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 05/17/2012] [Indexed: 11/06/2022] Open
Abstract
CXC chemokine receptor (CXCR)-4 agonists have been shown to attenuate inflammation and organ injury in various disease models, including trauma/hemorrhage. The pathophysiological role of CXCR4 during the early response to tissue injury, however, remains unknown. Therefore, we investigated the effects of AMD3100, a drug that antagonizes binding of stromal cell-derived factor (SDF)-1α and ubiquitin to CXCR4 during the initial response to polytrauma in pigs. Fifteen minutes before polytrauma (femur fractures/lung contusion; control: sham), 350 nmol/kg AMD3100, equimolar AMD3100 and ubiquitin (350 nmol/kg each) or vehicle were administered intravenously. After a 60-min shock period, fluid resuscitation was performed for 360 min. Ubiquitin binding to peripheral blood mononuclear cells was significantly reduced after intravenous AMD3100. SDF-1α plasma levels increased transiently >10-fold with AMD3100 in all animals. In injured animals, AMD3100 increased fluid requirements to maintain hemodynamics and enhanced increases in peripheral blood granulocytes, lymphocytes and monocytes, compared with its effects in uninjured animals. Cytokine release from leukocytes in response to Toll-like receptor (TLR)-2 and TLR-4 activation was increased after in vitro AMD3100 treatment of normal whole blood and after in vivo AMD3100 administration in animals subjected to polytrauma. Coadministration of AMD3100/ubiquitin reduced lactate levels, prevented AMD3100-induced increases in fluid requirements and sensitization of the tumor necrosis factor (TNF)-α and interleukin (IL)-6 release upon TLR-2/4 activation, but did not attenuate increases in leukocyte counts and SDF-1α plasma levels. Our findings suggest that CXCR4 controls leukocyte mobilization after trauma, regulates leukocyte reactivity toward inflammatory stimuli and mediates protective effects during the early phase of trauma-induced inflammation.
Collapse
Affiliation(s)
- Harold H Bach
- Department of Surgery, Burn and Shock Trauma Institute, Loyola University Chicago, Maywood, Illinois, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Ubiquitin and stromal cell-derived factor-1α in bronchoalveolar lavage fluid after burn and inhalation injury. J Burn Care Res 2012; 33:57-64. [PMID: 22105097 DOI: 10.1097/bcr.0b013e31823dc559] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The objective of the study was to determine whether the CXC chemokine receptor (CXCR) 4 ligands ubiquitin and stromal cell-derived factor (SDF)-1α are detectable in bronchoalveolar lavage fluid (BALF) after burn and inhalation injury and whether their concentrations in BALF are associated with injury severity, physiological variables, or clinical outcomes. BALF was obtained on hospital admission from 51 patients (48 ± 18 years) with burn (TBSA: 23 ± 24%) and inhalation injury (controls: 10 healthy volunteers, 42 ± 8 years). BALF was analyzed for total protein and for ubiquitin and SDF-1α by enzyme-linked immunosorbent assay. Ubiquitin/SDF-1α levels were normalized to total BALF protein content. The extent of inhalation injury was determined during bronchoscopy using a standardized scoring system. Percent TBSA, Baux scores, revised Baux scores, and clinical variables were documented. Ubiquitin and SDF-1α were detectable in 40% of normal BALF specimens. After injury, ubiquitin was detectable in 90% (P < .01 vs control) and SDF-1α in 10% of the specimens (P < .05 vs control). While SDF-1α levels were reduced in patients (P < .01), ubiquitin levels were increased (P < .01). Ubiquitin concentrations correlated inversely with grade of inhalation injury, revised Baux scores, and resuscitation fluid requirements (Spearman correlation coefficients [r]: -.3, -.33, and -.45, respectively). Ubiquitin levels correlated positively with arterial oxygenation at the time of bronchoscopy (r: .35). BALF levels of CXCR4 agonists are differentially regulated after burn and inhalation injury. Increases in BALF ubiquitin after inhalation injury may maintain CXCR4-mediated lung protection and repair processes. The finding that BALF ubiquitin decreased with higher grades of inhalation injury may provide a biological correlate for an insufficient local inflammatory response after severe inhalation injury.
Collapse
|
22
|
Pasikowski P, Goździewicz T, Stefanowicz P, Artym J, Zimecki M, Szewczuk Z. A novel immunosuppressory peptide originating from the ubiquitin sequence. Peptides 2011; 32:2418-27. [PMID: 22008734 DOI: 10.1016/j.peptides.2011.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/01/2023]
Abstract
Ubiquitin is a conservative polypeptide present in every eukaryotic cell. Apart from its involvement in proteasomal degradation and other intracellular signal pathways, it was suggested to play an important role as the extracellular immunomodulator and antimicrobial agent. Moreover, ubiquitin-derived peptides were shown to express significant biological activities. Our previous studies showed a high immunosuppressive potency of the ubiquitin peptic hydrolysate in which we identified over 70 different peptides. The present work focuses on synthesizing the most abundant of these peptides and investigating their immunomodulatory potency. The peptide VKTLTGKTI possessed the highest immunosuppressory activity in AFC experiments, comparable to the previously described LEDGRTLSDY sequence (a previously discovered ubiquitin-derived peptide). Moreover, some of the investigated peptides expressed immunostimulatory effects. These findings support the idea that ubiquitin, together with products of its degradation, could represent a self-regulating immunoregulatory system. Peptide VKTLTGKTI was also tested for its activity to prolong the skin graft survival in mice. The results showed that the investigated peptide significantly extended the skin transplant rejection time, therefore it could be considered as a potential supplementary medicine in the post-transplantation therapy. Moreover, we synthesized two analogs of investigated peptides, first designed to mimic the non-linear epitope consisting of ubiquitin 16-21 and ubiquitin 52-57 fragments, and second designed to mimic the ubiquitin 5-13 hairpin. We also tested their immunosuppressory activity in in vitro experiments.
Collapse
|
23
|
Saini V, Staren DM, Ziarek JJ, Nashaat ZN, Campbell EM, Volkman BF, Marchese A, Majetschak M. The CXC chemokine receptor 4 ligands ubiquitin and stromal cell-derived factor-1α function through distinct receptor interactions. J Biol Chem 2011; 286:33466-77. [PMID: 21757744 PMCID: PMC3190899 DOI: 10.1074/jbc.m111.233742] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/11/2011] [Indexed: 01/21/2023] Open
Abstract
Recently, we identified extracellular ubiquitin as an endogenous CXC chemokine receptor (CXCR) 4 agonist. However, the receptor selectivity and molecular basis of the CXCR4 agonist activity of ubiquitin are unknown, and functional consequences of CXCR4 activation with ubiquitin are poorly defined. Here, we provide evidence that ubiquitin and the cognate CXCR4 ligand stromal cell-derived factor (SDF)-1α do not share CXCR7 as a receptor. We further demonstrate that ubiquitin does not utilize the typical two-site binding mechanism of chemokine-receptor interactions, in which the receptor N terminus is important for ligand binding. CXCR4 activation with ubiquitin and SDF-1α lead to similar Gα(i)-responses and to a comparable magnitude of phosphorylation of ERK-1/2, p90 ribosomal S6 kinase-l and Akt, although phosphorylations occur more transiently after activation with ubiquitin. Despite the similarity of signal transduction events after activation of CXCR4 with both ligands, ubiquitin possesses weaker chemotactic activity than SDF-lα in cell migration assays and does not interfere with productive entry of HIV-1 into P4.R5 multinuclear activation of galactosidase indicator cells. Unlike SDF-1α, ubiquitin lacks interactions with an N-terminal CXCR4 peptide in NMR spectroscopy experiments. Binding and signaling studies in the presence of antibodies against the N terminus and extracellular loops 2/3 of CXCR4 confirm that the ubiquitin CXCR4 interaction is independent of the N-terminal receptor domain, whereas blockade of extracellular loops 2/3 prevents receptor binding and activation. Our findings define ubiquitin as a CXCR4 agonist, which does not interfere with productive cellular entry of HIV-1, and provide new mechanistic insights into interactions between CXCR4 and its natural ligands.
Collapse
Affiliation(s)
- Vikas Saini
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Daniel M. Staren
- From the Department of Surgery, Burn and Shock Trauma Institute, and
| | - Joshua J. Ziarek
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | | | - Brian F. Volkman
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| | - Matthias Majetschak
- From the Department of Surgery, Burn and Shock Trauma Institute, and
- Molecular Pharmacology & Therapeutics, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois 60153 and
| |
Collapse
|