1
|
How to move an amphipathic molecule across a lipid bilayer: different mechanisms for different ABC transporters? Biochem Soc Trans 2017; 44:774-82. [PMID: 27284041 PMCID: PMC4900756 DOI: 10.1042/bst20160040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 02/06/2023]
Abstract
Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter. We propose that this solves the biophysical problem of moving an amphipathic molecule across the peroxisomal membrane, since the intrinsic thioesterase activity of the transporter permits separate membrane translocation pathways for the hydrophobic fatty acid moiety and the polar CoA moiety. The cleavage/re-esterification mechanism also has the potential to control entry of disparate substrates into the β-oxidation pathway when coupled with distinct peroxisomal ACSs. A different solution to the movement of amphipathic molecules across a lipid bilayer is deployed by the bacterial lipid-linked oligosaccharide (LLO) flippase, PglK, in which the hydrophilic head group and the hydrophobic polyprenyl tail of the substrate are proposed to have distinct translocation pathways but are not chemically separated during transport. We discuss a speculative alternating access model for ABCD proteins based on the mammalian ABC transporter associated with antigen processing (TAP) and compare it to the novel mechanism suggested by the recent PglK crystal structures and biochemical data.
Collapse
|
2
|
Mendiondo GM, Medhurst A, van Roermund CW, Zhang X, Devonshire J, Scholefield D, Fernández J, Axcell B, Ramsay L, Waterham HR, Waugh R, Theodoulou FL, Holdsworth MJ. Barley has two peroxisomal ABC transporters with multiple functions in β-oxidation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4833-47. [PMID: 24913629 PMCID: PMC4144768 DOI: 10.1093/jxb/eru243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In oilseed plants, peroxisomal β-oxidation functions not only in lipid catabolism but also in jasmonate biosynthesis and metabolism of pro-auxins. Subfamily D ATP-binding cassette (ABC) transporters mediate import of β-oxidation substrates into the peroxisome, and the Arabidopsis ABCD protein, COMATOSE (CTS), is essential for this function. Here, the roles of peroxisomal ABCD transporters were investigated in barley, where the main storage compound is starch. Barley has two CTS homologues, designated HvABCD1 and HvABCD2, which are widely expressed and present in embryo and aleurone tissues during germination. Suppression of both genes in barley RNA interference (RNAi) lines indicated roles in metabolism of 2,4-dichlorophenoxybutyrate (2,4-DB) and indole butyric acid (IBA), jasmonate biosynthesis, and determination of grain size. Transformation of the Arabidopsis cts-1 null mutant with HvABCD1 and HvABCD2 confirmed these findings. HvABCD2 partially or completely complemented all tested phenotypes of cts-1. In contrast, HvABCD1 failed to complement the germination and establishment phenotypes of cts-1 but increased the sensitivity of hypocotyls to 100 μM IBA and partially complemented the seed size phenotype. HvABCD1 also partially complemented the yeast pxa1/pxa2Δ mutant for fatty acid β-oxidation. It is concluded that the core biochemical functions of peroxisomal ABC transporters are largely conserved between oilseeds and cereals but that their physiological roles and importance may differ.
Collapse
Affiliation(s)
- Guillermina M Mendiondo
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Anne Medhurst
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Carlo W van Roermund
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Xuebin Zhang
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Jean Devonshire
- Plant Biology and Crop Science Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Duncan Scholefield
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - José Fernández
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Barry Axcell
- SABMiller plc., SABMiller House, Church Street, West Woking, Surrey GU21 6HS, UK
| | - Luke Ramsay
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Hans R Waterham
- Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Robbie Waugh
- Division of Plant Sciences, College of life Sciences, University of Dundee and The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Frederica L Theodoulou
- Biological Chemistry and Crop Protection Department, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| |
Collapse
|
3
|
Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, Keereetaweep J, Chapman KD, Mullen RT, Dyer JM. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. THE PLANT CELL 2013; 25:1726-39. [PMID: 23667126 PMCID: PMC3694702 DOI: 10.1105/tpc.113.111898] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 05/21/2023]
Abstract
COMPARATIVE GENE IDENTIFICATION-58 (CGI-58) is a key regulator of lipid metabolism and signaling in mammals, but its underlying mechanisms are unclear. Disruption of CGI-58 in either mammals or plants results in a significant increase in triacylglycerol (TAG), suggesting that CGI-58 activity is evolutionarily conserved. However, plants lack proteins that are important for CGI-58 activity in mammals. Here, we demonstrate that CGI-58 functions by interacting with the PEROXISOMAL ABC-TRANSPORTER1 (PXA1), a protein that transports a variety of substrates into peroxisomes for their subsequent metabolism by β-oxidation, including fatty acids and lipophilic hormone precursors of the jasmonate and auxin biosynthetic pathways. We also show that mutant cgi-58 plants display changes in jasmonate biosynthesis, auxin signaling, and lipid metabolism consistent with reduced PXA1 activity in planta and that, based on the double mutant cgi-58 pxa1, PXA1 is epistatic to CGI-58 in all of these processes. However, CGI-58 was not required for the PXA1-dependent breakdown of TAG in germinated seeds. Collectively, the results reveal that CGI-58 positively regulates many aspects of PXA1 activity in plants and that these two proteins function to coregulate lipid metabolism and signaling, particularly in nonseed vegetative tissues. Similarities and differences of CGI-58 activity in plants versus animals are discussed.
Collapse
Affiliation(s)
- Sunjung Park
- U.S. Department of Agriculture–Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203
| | - Satinder K. Gidda
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Christopher N. James
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203
| | - Patrick J. Horn
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203
| | - Nicholas Khuu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Damien C. Seay
- U.S. Department of Agriculture–Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
| | - Jantana Keereetaweep
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203
| | - Kent D. Chapman
- Department of Biological Sciences, Center for Plant Lipid Research, University of North Texas, Denton, Texas 76203
| | - Robert T. Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - John M. Dyer
- U.S. Department of Agriculture–Agricultural Research Service, U.S. Arid-Land Agricultural Research Center, Maricopa, Arizona 85138
- Address correspondence to
| |
Collapse
|
4
|
Swietnicki W, Carmany D, Retford M, Guelta M, Dorsey R, Bozue J, Lee MS, Olson MA. Identification of small-molecule inhibitors of Yersinia pestis Type III secretion system YscN ATPase. PLoS One 2011; 6:e19716. [PMID: 21611119 PMCID: PMC3097197 DOI: 10.1371/journal.pone.0019716] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Accepted: 04/14/2011] [Indexed: 01/12/2023] Open
Abstract
Yersinia pestis is a Gram negative zoonotic pathogen responsible for causing bubonic and pneumonic plague in humans. The pathogen uses a type III secretion system (T3SS) to deliver virulence factors directly from bacterium into host mammalian cells. The system contains a single ATPase, YscN, necessary for delivery of virulence factors. In this work, we show that deletion of the catalytic domain of the yscN gene in Y. pestis CO92 attenuated the strain over three million-fold in the Swiss-Webster mouse model of bubonic plague. The result validates the YscN protein as a therapeutic target for plague. The catalytic domain of the YscN protein was made using recombinant methods and its ATPase activity was characterized in vitro. To identify candidate therapeutics, we tested computationally selected small molecules for inhibition of YscN ATPase activity. The best inhibitors had measured IC50 values below 20 µM in an in vitro ATPase assay and were also found to inhibit the homologous BsaS protein from Burkholderia mallei animal-like T3SS at similar concentrations. Moreover, the compounds fully inhibited YopE secretion by attenuated Y. pestis in a bacterial cell culture and mammalian cells at µM concentrations. The data demonstrate the feasibility of targeting and inhibiting a critical protein transport ATPase of a bacterial virulence system. It is likely the same strategy could be applied to many other common human pathogens using type III secretion system, including enteropathogenic E. coli, Shigella flexneri, Salmonella typhimurium, and Burkholderia mallei/pseudomallei species.
Collapse
Affiliation(s)
- Wieslaw Swietnicki
- The Uniformed Services University, Bethesda, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Nyathi Y, De Marcos Lousa C, van Roermund CW, Wanders RJA, Johnson B, Baldwin SA, Theodoulou FL, Baker A. The Arabidopsis peroxisomal ABC transporter, comatose, complements the Saccharomyces cerevisiae pxa1 pxa2Delta mutant for metabolism of long-chain fatty acids and exhibits fatty acyl-CoA-stimulated ATPase activity. J Biol Chem 2010; 285:29892-902. [PMID: 20659892 PMCID: PMC2943281 DOI: 10.1074/jbc.m110.151225] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/08/2010] [Indexed: 12/26/2022] Open
Abstract
The Arabidopsis ABC transporter Comatose (CTS; AtABCD1) is required for uptake into the peroxisome of a wide range of substrates for β-oxidation, but it is uncertain whether CTS itself is the transporter or if the transported substrates are free acids or CoA esters. To establish a system for its biochemical analysis, CTS was expressed in Saccharomyces cerevisiae. The plant protein was correctly targeted to yeast peroxisomes, was assembled into the membrane with its nucleotide binding domains in the cytosol, and exhibited basal ATPase activity that was sensitive to aluminum fluoride and abrogated by mutation of a conserved Walker A motif lysine residue. The yeast pxa1 pxa2Δ mutant lacks the homologous peroxisomal ABC transporter and is unable to grow on oleic acid. Consistent with its exhibiting a function in yeast akin to that in the plant, CTS rescued the oleate growth phenotype of the pxa1 pxa2Δ mutant, and restored β-oxidation of fatty acids with a range of chain lengths and varying degrees of desaturation. When expressed in yeast peroxisomal membranes, the basal ATPase activity of CTS could be stimulated by fatty acyl-CoAs but not by fatty acids. The implications of these findings for the function and substrate specificity of CTS are discussed.
Collapse
Affiliation(s)
- Yvonne Nyathi
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| | | | - Carlo W. van Roermund
- the Departments of Pediatrics and Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands, and
| | - Ronald J. A. Wanders
- the Departments of Pediatrics and Clinical Chemistry, Laboratory of Genetic Metabolic Diseases, Academic Medical Centre, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands, and
| | - Barbara Johnson
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| | - Stephen A. Baldwin
- the Institute of Membrane and Systems Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Alison Baker
- From the Centre for Plant Sciences, Faculty of Biological Sciences, and
| |
Collapse
|
6
|
de Wet H, Fotinou C, Amad N, Dreger M, Ashcroft FM. The ATPase activities of sulfonylurea receptor 2A and sulfonylurea receptor 2B are influenced by the C-terminal 42 amino acids. FEBS J 2010. [DOI: 10.1111/j.1742-4658.2010.07675.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|