1
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
2
|
Wu Y, Wang CZ, Wan JY, Yao H, Yuan CS. Dissecting the Interplay Mechanism between Epigenetics and Gut Microbiota: Health Maintenance and Disease Prevention. Int J Mol Sci 2021; 22:6933. [PMID: 34203243 PMCID: PMC8267743 DOI: 10.3390/ijms22136933] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/10/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota exists throughout the full life cycle of the human body, and it has been proven to have extensive impacts on health and disease. Accumulating evidence demonstrates that the interplay between gut microbiota and host epigenetics plays a multifaceted role in health maintenance and disease prevention. Intestinal microflora, along with their metabolites, could regulate multiple epigenetic pathways; e.g., DNA methylation, miRNA, or histone modification. Moreover, epigenetic factors can serve as mediators to coordinate gut microbiota within the host. Aiming to dissect this interplay mechanism, the present review summarizes the research profile of gut microbiota and epigenetics in detail, and further interprets the biofunctions of this interplay, especially the regulation of intestinal inflammation, the improvement of metabolic disturbances, and the inhibition of colitis events. This review provides new insights into the interplay of epigenetics and gut microbiota, and attempts to reveal the mysteries of health maintenance and disease prevention from this new perspective.
Collapse
Affiliation(s)
- Yuqi Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chong-Zhi Wang
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| | - Jin-Yi Wan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiqiang Yao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China;
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chun-Su Yuan
- Tang Center for Herbal Medicine Research, The University of Chicago, Chicago, IL 60637, USA; (C.-Z.W.); (C.-S.Y.)
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
4
|
Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci 2021; 11:43. [PMID: 33632341 PMCID: PMC7905430 DOI: 10.1186/s13578-021-00552-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/06/2021] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-derived structures play impressive roles in various biological processes. So dysregulation of miRNAs can lead to different human diseases. Recent studies have extended our comprehension of the control of miRNA function and features. Here, we overview some remarkable miRNA properties that have potential implications for the miRNA functions, including different variants of a miRNA called isomiRs, miRNA arm selection/arm switching, and the effect of these factors on miRNA target selection. Besides, we review some aspects of miRNA interactions such as the interaction between epigenetics and miRNA (different miRNAs and their related processing enzymes are epigenetically regulated by multiple DNA methylation enzymes. moreover, DNA methylation could be controlled by diverse mechanisms related to miRNAs), direct and indirect crosstalk between miRNA and lnc (Long Non-Coding) RNAs as a further approach to conduct intercellular regulation called "competing endogenous RNA" (ceRNA) that is involved in the pathogenesis of different diseases, and the interaction of miRNA activities and some Xeno-infectious (virus/bacteria/parasite) factors, which result in modulation of the pathogenesis of infections. This review provides some related studies to a better understanding of miRNA involvement mechanisms and overcoming the complexity of related diseases that may be applicable and useful to prognostic, diagnostic, therapeutic purposes and personalized medicine in the future.
Collapse
Affiliation(s)
- Samaneh Heydarzadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Ranjbar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farokh Karimi
- Department of Biotechnology, Faculty of Science, University of Maragheh, Maragheh, Iran
| | - Farhad Seif
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Sun D, Chen Y, Fang JY. Influence of the microbiota on epigenetics in colorectal cancer. Natl Sci Rev 2019; 6:1138-1148. [PMID: 34691992 PMCID: PMC8291637 DOI: 10.1093/nsr/nwy160] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer is one of the most common malignancies and is the second leading cause of cancer death worldwide. Generally, there are three categories of colorectal cancer development mechanism—genetic, epigenetic and aberrant immunological signaling pathways—all of which may be initiated by an imbalanced gut microbiota. Epigenetic modifications enable host cells to change gene expression without modifying the gene sequence. The microbiota can interact with the host genome dynamically through the interface presented by epigenetic modifications. In particular, bacterially derived short-chain fatty acids have been identified as one clear link in the interaction of the microbiota with host epigenetic pathways. This review discusses recent findings relating to the cross talk between the microbiota and epigenetic modifications in colorectal cancer.
Collapse
Affiliation(s)
- Danfeng Sun
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yingxuan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
6
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
7
|
Liu T, Porter J, Zhao C, Zhu H, Wang N, Sun Z, Mo YY, Wang Z. TADKB: Family classification and a knowledge base of topologically associating domains. BMC Genomics 2019; 20:217. [PMID: 30871473 PMCID: PMC6419456 DOI: 10.1186/s12864-019-5551-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background Topologically associating domains (TADs) are considered the structural and functional units of the genome. However, there is a lack of an integrated resource for TADs in the literature where researchers can obtain family classifications and detailed information about TADs. Results We built an online knowledge base TADKB integrating knowledge for TADs in eleven cell types of human and mouse. For each TAD, TADKB provides the predicted three-dimensional (3D) structures of chromosomes and TADs, and detailed annotations about the protein-coding genes and long non-coding RNAs (lncRNAs) existent in each TAD. Besides the 3D chromosomal structures inferred by population Hi-C, the single-cell haplotype-resolved chromosomal 3D structures of 17 GM12878 cells are also integrated in TADKB. A user can submit query gene/lncRNA ID/sequence to search for the TAD(s) that contain(s) the query gene or lncRNA. We also classified TADs into families. To achieve that, we used the TM-scores between reconstructed 3D structures of TADs as structural similarities and the Pearson’s correlation coefficients between the fold enrichment of chromatin states as functional similarities. All of the TADs in one cell type were clustered based on structural and functional similarities respectively using the spectral clustering algorithm with various predefined numbers of clusters. We have compared the overlapping TADs from structural and functional clusters and found that most of the TADs in the functional clusters with depleted chromatin states are clustered into one or two structural clusters. This novel finding indicates a connection between the 3D structures of TADs and their DNA functions in terms of chromatin states. Conclusion TADKB is available at http://dna.cs.miami.edu/TADKB/. Electronic supplementary material The online version of this article (10.1186/s12864-019-5551-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tong Liu
- Department of Computer Science, University of Miami, 1365 Memorial Drive, Coral Gables, FL, 33124-4245, USA
| | - Jacob Porter
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Chenguang Zhao
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Hao Zhu
- School of Computing Sciences and Computer Engineering, University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA
| | - Nan Wang
- Department of Computer Science, New Jersey City University, 2039 Kennedy Blvd, Jersey City, NJ, 07305, USA
| | - Zheng Sun
- Department of Electrical and Computer Engineering, California Baptist University, 3739 Adams Street, Riverside, CA, 92504, USA
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N State St, Jackson, MS, 39216, USA
| | - Zheng Wang
- Department of Computer Science, University of Miami, 1365 Memorial Drive, Coral Gables, FL, 33124-4245, USA.
| |
Collapse
|
8
|
Infectious Agents as Stimuli of Trained Innate Immunity. Int J Mol Sci 2018; 19:ijms19020456. [PMID: 29401667 PMCID: PMC5855678 DOI: 10.3390/ijms19020456] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.
Collapse
|
9
|
Wang Y, Zhao Q, Lan N, Wang S. Identification of methylated genes and miRNA signatures in nasopharyngeal carcinoma by bioinformatics analysis. Mol Med Rep 2018; 17:4909-4916. [PMID: 29393436 PMCID: PMC5865950 DOI: 10.3892/mmr.2018.8487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is prevalent in several regions, including. Southern China and Southeast Asia, with high mortality. The present study aimed to explore the epigenetic mechanisms of NPC and to provide novel biomarkers for prognosis. Two methylation data sets (GSE52068 and GSE62336) were downloaded from the Gene Expression Omnibus database. Following pretreatment of the raw data, differentially methylated regions (DMRs) and differentially methylated CpG islands (DMCs) were identified between the NPC samples and normal tissue controls using COHCAP software. The overlapped DMRs and DMCs in the two data sets were extracted and associated to relevant genes. Enrichment analysis and protein-protein interaction (PPI) network analyses were performed on the identified genes using Database for Annotation, Visualization and Integration Discovery and Cytoscape, respectively. MicroRNAs (miRNAs) targeting the overlapped genes were identified based on the miRWalk database. NPC-related genes were analyzed with the Comparative Toxicogenomics Database. Multiple overlapping DMRs between the two data sets were identified and were associated with 1,854 hypermethylated and 18 hypomethylated genes, which were revealed to be enriched in certain pathways, including the mitogen-activated protein kinase (MAPK) signaling pathway and the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. Several nodes in the predicted PPI network were highlighted, including proto-oncogene tyrosine-protein kinase SRC, SMAD family member 3 (SMAD3), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ζ (YWHAZ) and Heat shock protein family A member 4 (HSPA4), all of which were hypomethylated. A total of 14 miRNAs were identified that correlated with the overlapped genes such as miRNA (miR)-148a-3p, which was predicted to target of HSPA4; and 17 genes were identified as related to NPC, including SMAD3 and SRC. miR129-2 was hypermethylated. Several novel methylated genes or miRNAs were suggested as biomarkers for NPC prognosis: Hypomethylation of SRC, SMAD3, YWHAZ and HSPA4, and hypermethylation of miR129-2 may be linked to poor prognosis of NPC.
Collapse
Affiliation(s)
- Yingli Wang
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Qun Zhao
- Department of Otorhinolaryngology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Na Lan
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Shuqian Wang
- Department of Otorhinolaryngology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
10
|
Wu WY, Tao SQ, Wang XN, Lobie PE, Wu ZS. XIAP 3'-untranslated region serves as a competitor for HMGA2 by arresting endogenous let-7a-5p in human hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317719578. [PMID: 28691642 DOI: 10.1177/1010428317719578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
X-linked inhibitor of apoptosis protein functions as an intrinsic regulator of apoptosis by inhibition of caspase activity and possesses a pivotal role in human cancer development and progression. A growing body of literature has demonstrated that microRNAs lead to the degradation or translational repression of messenger RNAs by binding to the non-coding region of messenger RNA at the 3'-untranslated region. Here, we revealed that the expression of HMGA2 is upregulated with X-linked inhibitor of apoptosis protein after transfection of X-linked inhibitor of apoptosis protein 3'-untranslated region in hepatocellular carcinoma cells, suggesting that X-linked inhibitor of apoptosis protein 3'-untranslated region serves as a competitor for microRNAs and prevent the co-targeted messenger RNA, HMGA2, from being suppressed. We further identified that let-7a-5p could bind to both the X-linked inhibitor of apoptosis protein 3'-untranslated region and HMGA2 3'-untranslated region. Moreover, we demonstrated that the forced expression of X-linked inhibitor of apoptosis protein 3'-untranslated region increases the oncogenicity of hepatocellular carcinoma cells in vitro. Cell functional analyses were performed to examine the association of HMGA2 status and X-linked inhibitor of apoptosis protein 3'-untranslated region. We have also measured the functional readout of let-7a-5p and HMGA2, an assay often employed to provide substantial evidence for the effects of X-linked inhibitor of apoptosis protein 3'-untranslated region on hepatocellular carcinoma cells. In general, our findings suggest that X-linked inhibitor of apoptosis protein 3'-untranslated region serves as a competitive endogenous RNA for HMGA2 to activate hepatocellular carcinoma progression by arresting endogenous let-7a-5p.
Collapse
Affiliation(s)
- Wen-Yong Wu
- 1 Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Si-Qi Tao
- 2 Department of Pathology, Anhui Medical University, Hefei, China
| | - Xiao-Nan Wang
- 3 Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, China
| | - Peter E Lobie
- 4 Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore, Singapore.,5 Tsinghua Berkeley Shenzhen Institute, Tsinghua University Graduate School at Shenzhen, Shenzhen, China
| | - Zheng-Sheng Wu
- 2 Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Yang G, Chu PL, Rump LC, Le TH, Stegbauer J. ACE2 and the Homolog Collectrin in the Modulation of Nitric Oxide and Oxidative Stress in Blood Pressure Homeostasis and Vascular Injury. Antioxid Redox Signal 2017; 26:645-659. [PMID: 27889958 DOI: 10.1089/ars.2016.6950] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
SIGNIFICANCE Hypertension is the leading risk factor causing mortality and morbidity worldwide. Angiotensin (Ang) II, the most active metabolite of the renin-angiotensin system, plays an outstanding role in the pathogenesis of hypertension and vascular injury. Activation of angiotensin converting enzyme 2 (ACE2) has shown to attenuate devastating effects of Ang II in the cardiovascular system by reducing Ang II degradation and increasing Ang-(1-7) generation leading to Mas receptor activation. Recent Advances: Activation of the ACE2/Ang-(1-7)/Mas receptor axis reduces hypertension and improves vascular injury mainly through an increased nitric oxide (NO) bioavailability and decreased reactive oxygen species production. Recent studies reported that shedding of the enzymatically active ectodomain of ACE2 from the cell surface seems to regulate its activity and serves as an interorgan communicator in cardiovascular disease. In addition, collectrin, an ACE2 homolog with no catalytic activity, regulates blood pressure through an NO-dependent mechanism. CRITICAL ISSUES Large body of experimental data confirmed sustained beneficial effects of ACE2/Ang-(1-7)/Mas receptor axis activation on hypertension and vascular injury. Experimental studies also suggest that activation of collectrin might be beneficial in hypertension and endothelial dysfunction. Their role in clinical hypertension is unclear as selective and reliable activators of both axes are not yet available. FUTURE DIRECTIONS This review will highlight the results of recent research progress that illustrate the role of both ACE and collectrin in the modulation of NO and oxidative stress in blood pressure homeostasis and vascular injury, providing evidence for the potential therapeutic application of ACE2 and collectrin in hypertension and vascular disease. Antioxid. Redox Signal. 26, 645-659.
Collapse
Affiliation(s)
- Guang Yang
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Pei-Lun Chu
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia.,3 Department of Internal Medicine, Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Lars C Rump
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| | - Thu H Le
- 2 Division of Nephrology, Department of Medicine, University of Virginia , Charlottesville, Virginia
| | - Johannes Stegbauer
- 1 Department of Nephrology, Medical Faculty, Heinrich-Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
12
|
Ratovitski EA. Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression. Curr Genomics 2017; 18:175-205. [PMID: 28367075 PMCID: PMC5345332 DOI: 10.2174/1389202917666160803165229] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/24/2015] [Accepted: 11/29/2015] [Indexed: 11/30/2022] Open
Abstract
Accumulating evidence shows that hallmarks of cancer include: "genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development". Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics.
Collapse
Affiliation(s)
- Edward A. Ratovitski
- Head and Neck Cancer Research Division, Department of Otolaryngology/Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
13
|
Sailer V, Holmes EE, Gevensleben H, Goltz D, Dröge F, de Vos L, Franzen A, Schröck F, Bootz F, Kristiansen G, Schröck A, Dietrich D. PITX2 and PANCR DNA methylation predicts overall survival in patients with head and neck squamous cell carcinoma. Oncotarget 2016; 7:75827-75838. [PMID: 27716615 PMCID: PMC5342781 DOI: 10.18632/oncotarget.12417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Squamous cell carcinoma of the head and neck region (HNSCC) is a common malignant disease accompanied by a high risk of local or distant recurrence after curative-intent treatment. Biomarkers that allow for the prediction of disease outcome can guide clinicians with respect to treatment and surveillance strategies. Here, the methylation status of PITX2 and an adjacent lncRNA (PANCR) were evaluated for their ability to predict overall survival in HNSCC patients. RESULTS PITX2 hypermethylation was associated with a better overall survival (hazard ratio, HR = 0.51, 95%CI: 0.35-0.74, p<0.001), while PANCR hypermethylation was significantly associated with an increased risk of death (HR = 1.64, 95%CI: 1.12-2.39, p=0.010). METHODS Quantitative, methylation-specific real-time PCR assays for PITX2 and PANCR were employed to measure bisulfite-converted DNA from formalin-fixed, paraffin-embedded (FFPE) tissues in a cohort of 399 patients with localized or locally advanced HNSCC who received curative-intent treatment (surgery with optional adjuvant radiochemotherapy or definite radiochemotherapy). CONCLUSIONS PITX2 and PANCR methylation status were shown to be independent predictors for overall survival in HNSCC patients. Tissue-based methylation testing could therefore potentially be employed to identify patients with a high risk for death who might benefit from a more radical or alternative treatment.
Collapse
Affiliation(s)
- Verena Sailer
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Department of Pathology and Laboratory Medicine, New York, NY, USA
- Weill Medical College of Cornell University and New York Presbyterian Hospital, Englander Institute for Precision Medicine, New York, NY, USA
| | - Emily Eva Holmes
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | | | - Diane Goltz
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Freya Dröge
- Department of Otorhinolaryngology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Luka de Vos
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Alina Franzen
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Friederike Schröck
- Department of Addictive Disorders and Addiction Medicine, LVR Hospital Bonn, Bonn, Germany
| | - Friedrich Bootz
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
| | - Andreas Schröck
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| | - Dimo Dietrich
- Institute of Pathology, University Hospital of Bonn, Bonn, Germany
- University Hospital Bonn, Department of Otolaryngology, Head and Neck Surgery, Bonn, Germany
| |
Collapse
|
14
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
15
|
Yang JJ, Tao H, Deng ZY, Lu C, Li J. Non-coding RNA-mediated epigenetic regulation of liver fibrosis. Metabolism 2015; 64:1386-94. [PMID: 26362725 DOI: 10.1016/j.metabol.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/06/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
Abstract
Hepatic stellate cells (HSC) activation plays a key role in liver fibrosis. Numerous studies have indicated that non-coding RNAs (ncRNAs) control liver fibrosis and fibroblasts proliferation. Greater knowledge of the role of the ncRNAs-mediated epigenetic mechanism in liver fibrosis could improve understanding of the liver fibrosis pathogenesis. The aim of this review is to describe the present knowledge about the ncRNAs significantly participating in liver fibrosis and HSC activation, and look ahead on new perspectives of ncRNAs-mediated epigenetic mechanism research. Moreover, we will discuss examples of non-coding RNAs that interact with histone modification or DNA methylation to regulate gene expression in liver fibrosis. Diverse classes of ncRNAs, ranging from microRNAs (miRs) to long non-coding RNAs (LncRNAs), have emerged as key regulators of several important aspects of function, including cell proliferation, activation, etc. In addition, recent advances suggest the important role of ncRNAs transcripts in epigenetic gene regulation. Targeting the miRs and LncRNAs can be a promising direction in liver fibrosis treatment. We discuss new perspectives of miRs and LncRNAs in liver fibrosis and HSC activation, mainly including interaction with histone modification or DNA methylation to regulate gene expression. These epigenetic mechanisms form powerful ncRNAs surveillance systems that may represent new targets for liver fibrosis therapeutic intervention.
Collapse
Affiliation(s)
- Jing-Jing Yang
- Department of Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Zi-Yu Deng
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601.
| | - Chao Lu
- Department of Scientific and Educational, The Second Hospital of Anhui Medical University, Hefei, China, 230601
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China, 230032.
| |
Collapse
|
16
|
Paul B, Barnes S, Demark-Wahnefried W, Morrow C, Salvador C, Skibola C, Tollefsbol TO. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 2015; 7:112. [PMID: 26478753 PMCID: PMC4609101 DOI: 10.1186/s13148-015-0144-7] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Epigenetic modulation of gene activity occurs in response to non-genetic factors such as body weight status, physical activity, dietary factors, and environmental toxins. In addition, each of these factors is thought to affect and be affected by the gut microbiome. A primary mechanism that links these various factors together in mediating control of gene expression is the production of metabolites that serve as critical cofactors and allosteric regulators of epigenetic processes. Here, we review the involvement of the gut microbiota and its interactions with dietary factors, many of which have known cellular bioactivity, focusing on particular epigenetic processes affected and the influence they have on human health and disease, particularly cancer and response to treatment. Advances in DNA sequencing have expanded the capacity for studying the microbiome. Combining this with rapidly improving techniques to measure the metabolome provides opportunities to understand complex relationships that may underlie the development and progression of cancer as well as treatment-related sequelae. Given broad reaching and fundamental biology, both at the cellular and organismal levels, we propose that interactive research programs, which utilize a wide range of mutually informative experimental model systems—each one optimally suited for answering particular questions—provide the best path forward for breaking ground on new knowledge and ultimately understanding the epigenetic significance of the gut microbiome and its response to dietary factors in cancer prevention and therapy.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA
| | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Wendy Demark-Wahnefried
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Casey Morrow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA
| | - Carolina Salvador
- Division of Medical Oncology/Hematology, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA
| | - Christine Skibola
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 175 Campbell Hall, 1300 University Boulevard, Birmingham, AL 35294-1170 USA ; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL USA ; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL USA ; Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
17
|
Zhao H, Xu J, Pang L, Zhang Y, Fan H, Liu L, Liu T, Yu F, Zhang G, Lan Y, Bai J, Li X, Xiao Y. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis. BMC Med Genomics 2015; 8:62. [PMID: 26462620 PMCID: PMC4604612 DOI: 10.1186/s12920-015-0139-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND DNA methylation is thought to be extensively involved in the pathogenesis of many diseases, including major psychosis. However, most studies focus on DNA methylation alteration at promoters of protein-coding genes, despite the poor correlation between DNA methylation and gene expression. METHODS We analyzed differentially methylated regions and differentially expressed genes in patients with schizophrenia and bipolar disorder and normal subjects. Gene expression and DNA methylation were analyzed with RNA-seq and MeDIP-seq of post-mortem brain tissue (brain region BA9) cohort in five schizophrenia, seven bipolar disorder cases and six controls, respectively. RESULTS Here, we performed a large-scale integrative analysis using MeDIP-seq, coupled with RNA-seq, on brain samples from major psychotic and normal subjects and observed obvious discrepancy between DNA methylation and gene expression. We found that differentially methylated regions (DMRs) were distributed across different types of genomic elements, especially introns. These intronic DMRs were significantly enriched for diverse regulatory elements, such as enhancers and binding sites of certain transcriptional factors (e.g., Pol3). Notably, we found that parts of intronic DMRs overlapped with some intragenic miRNAs, such as hsa-mir-7-3. These intronic DMR-related miRNAs were found to target many differentially expressed genes. Moreover, functional analysis demonstrated that differential target genes of intronic DMR-related miRNAs were sufficient to capture many important biological processes in major psychosis, such as neurogenesis, suggesting that miRNAs may function as important linkers mediating the relationships between DNA methylation alteration and gene expression changes. CONCLUSIONS Collectively, our study indicated that DNA methylation alteration could induce expression changes indirectly by affecting miRNAs and the exploration of DMR-related miRNAs and their targets enhanced understanding of the molecular mechanisms underlying major psychosis.
Collapse
Affiliation(s)
- Hongying Zhao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jinyuan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Lin Pang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Huihui Fan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Ling Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Tingting Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Fulong Yu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Jing Bai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China. .,Key Laboratory of Cardiovascular Medicine Research, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, China.
| |
Collapse
|
18
|
Hoareau-Aveilla C, Valentin T, Daugrois C, Quelen C, Mitou G, Quentin S, Jia J, Spicuglia S, Ferrier P, Ceccon M, Giuriato S, Gambacorti-Passerini C, Brousset P, Lamant L, Meggetto F. Reversal of microRNA-150 silencing disadvantages crizotinib-resistant NPM-ALK(+) cell growth. J Clin Invest 2015; 125:3505-18. [PMID: 26258416 DOI: 10.1172/jci78488] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 06/23/2015] [Indexed: 01/20/2023] Open
Abstract
The regulatory microRNA miR-150 is involved in the development of hemopathies and is downregulated in T-lymphomas, such as anaplastic large-cell lymphoma (ALCL) tumors. ALCL is defined by the presence or absence of translocations that activate the anaplastic lymphoma kinase (ALK), with nucleophosmin-ALK (NPM-ALK) fusions being the most common. Here, we compared samples of primary NPM-ALK(+) and NPM-ALK(-) ALCL to investigate the role of miR-150 downstream of NPM-ALK. Methylation of the MIR150 gene was substantially elevated in NPM-ALK(+) biopsies and correlated with reduced miR-150 expression. In NPM-ALK(+) cell lines, DNA hypermethylation-mediated miR-150 repression required ALK-dependent pathways, as ALK inhibition restored miR-150 expression. Moreover, epigenetic silencing of miR-150 was due to the activation of STAT3, a major downstream substrate of NPM-ALK, in cooperation with DNA methyltransferase 1 (DNMT1). Accordingly, miR-150 repression was turned off following treatment with the DNMT inhibitor, decitabine. In murine NPM-ALK(+) xenograft models, miR-150 upregulation induced antineoplastic activity. Treatment of crizotinib-resistant NPM-ALK(+) KARPAS-299-CR06 cells with decitabine or ectopic miR-150 expression reduced viability and growth. Altogether, our results suggest that hypomethylating drugs, alone or in combination with other agents, may benefit ALK(+) patients harboring tumors resistant to crizotinib and other anti-ALK tyrosine kinase inhibitors (TKIs). Moreover, these results support further work on miR-150 in these and other ALK(+) malignancies.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Crizotinib
- DNA (Cytosine-5-)-Methyltransferase 1
- DNA (Cytosine-5-)-Methyltransferases/genetics
- DNA (Cytosine-5-)-Methyltransferases/metabolism
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Neoplastic
- Gene Silencing
- Humans
- Lymphoma, Large-Cell, Anaplastic/drug therapy
- Lymphoma, Large-Cell, Anaplastic/genetics
- Lymphoma, Large-Cell, Anaplastic/metabolism
- Lymphoma, Large-Cell, Anaplastic/pathology
- Male
- Mice
- Mice, Transgenic
- MicroRNAs/biosynthesis
- MicroRNAs/genetics
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Pyrazoles/pharmacology
- Pyridines/pharmacology
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
Collapse
|
19
|
Transcriptomic variation between different Chinese hamster ovary cell lines. Biotechnol Lett 2015; 37:1737-45. [PMID: 25967036 DOI: 10.1007/s10529-015-1850-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVES To identify transcription markers that uniquely determine specific Chinese hamster ovary (CHO) cell lines and can be used for the identification of cell lines in the process of biopharmaceutical cell-line development. RESULTS Five CHO cell lines with different origins were extensively characterised at the transcriptomic level and the results were compared to their karyotype characterisation. The analysed cell lines differ in their karyotype but, due to the genome instability observed during parental and recombinant cell-line establishment, karyotyping is not the preferred method for accurate identification of the various CHO cell lines. Marker genes unique to a specific cell line were identified by microarrays, and their expression was validated by reverse-transcription quantitative real-time PCR. The analysed cell lines can be differentiated by the presence/absence of detectable marker gene expression. Additionally, the similarity of the transcriptional profiles is dependent on cell-line history but independent of the manipulation steps involved in the recombinant cell-line development process. CONCLUSIONS Certain transcripts can be used as markers for the identification of a CHO cell line undergoing recombinant development and thus represent a powerful tool for ensuring the maintenance of high quality standards.
Collapse
|
20
|
Atwell LL, Beaver LM, Shannon J, Williams DE, Dashwood RH, Ho E. Epigenetic Regulation by Sulforaphane: Opportunities for Breast and Prostate Cancer Chemoprevention. ACTA ACUST UNITED AC 2015; 1:102-111. [PMID: 26042194 DOI: 10.1007/s40495-014-0002-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Sulforaphane (SFN) is a phytochemical derived from cruciferous vegetables that has multiple molecular targets and anti-cancer properties. Researchers have demonstrated several chemopreventive benefits of SFN consumption, such as reductions in tumor growth, increases in cancer cell apoptosis, and disruption of signaling within tumor microenvironments both in vitro and in vivo. Emerging evidence indicates that SFN exerts several of its chemopreventive effects by altering epigenetic mechanisms. This review summarizes evidence of the impact of SFN on epigenetic events and how they relate to the chemopreventive effects of SFN observed in preclinical and clinical studies of breast and prostate cancers. Specific areas of focus include the role of SFN in the regulation of cell cycle, apoptosis, inflammation, antioxidant defense, and cancer cell signaling and their relationships to epigenetic mechanisms. Finally, remaining challenges and research needs for translating mechanistic work with SFN into human studies and clinical intervention trials are discussed.
Collapse
Affiliation(s)
- Lauren L Atwell
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Laura M Beaver
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA ; 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Jackilen Shannon
- 3181 SW Sam Jackson Park Road, Mail Code CB L606, Department of Public Health and Preventive Medicine, Oregon Health and Science University, Portland, OR 97239, USA
| | - David E Williams
- 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ; 1007 Agriculture & Life Sciences Building, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Roderick H Dashwood
- 2121 West Holcombe Boulevard, Center for Epigenetics & Disease Prevention, Houston, TX 77030
| | - Emily Ho
- 103 Milam Hall, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA ; 307 Linus Pauling Science Center, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA ; 212 Milam Hall, Moore Family Center for Whole Grain Foods, Nutrition and Preventive Health, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
21
|
Chekouo T, Stingo FC, Doecke JD, Do KA. miRNA-target gene regulatory networks: A Bayesian integrative approach to biomarker selection with application to kidney cancer. Biometrics 2015; 71:428-38. [PMID: 25639276 DOI: 10.1111/biom.12266] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 09/01/2014] [Accepted: 10/01/2014] [Indexed: 11/30/2022]
Abstract
The availability of cross-platform, large-scale genomic data has enabled the investigation of complex biological relationships for many cancers. Identification of reliable cancer-related biomarkers requires the characterization of multiple interactions across complex genetic networks. MicroRNAs are small non-coding RNAs that regulate gene expression; however, the direct relationship between a microRNA and its target gene is difficult to measure. We propose a novel Bayesian model to identify microRNAs and their target genes that are associated with survival time by incorporating the microRNA regulatory network through prior distributions. We assume that biomarkers involved in regulatory networks are likely associated with survival time. We employ non-local prior distributions and a stochastic search method for the selection of biomarkers associated with the survival outcome. We use KEGG pathway information to incorporate correlated gene effects within regulatory networks. Using simulation studies, we assess the performance of our method, and apply it to experimental data of kidney renal cell carcinoma (KIRC) obtained from The Cancer Genome Atlas. Our novel method validates previously identified cancer biomarkers and identifies biomarkers specific to KIRC progression that were not previously discovered. Using the KIRC data, we confirm that biomarkers involved in regulatory networks are more likely to be associated with survival time, showing connections in one regulatory network for five out of six such genes we identified.
Collapse
Affiliation(s)
- Thierry Chekouo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 1400 Pressler Street, Unit 1411, Texas, 77030-3722, U.S.A
| | - Francesco C Stingo
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 1400 Pressler Street, Unit 1411, Texas, 77030-3722, U.S.A
| | - James D Doecke
- CSIRO Computational Informatics/Australian e-Health Research Centre Level 5, UQ Health Sciences Building, 901/16 Royal Brisbane, Queensland, 4029, Australia
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 1400 Pressler Street, Unit 1411, Texas, 77030-3722, U.S.A
| |
Collapse
|
22
|
Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta Mol Basis Dis 2014; 1842:971-80. [DOI: 10.1016/j.bbadis.2014.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/11/2022]
|