1
|
Berens-Riha N, Andries P, Aerssens A, Ledure Q, Van Der Beken Y, Heyndrickx L, Genbrugge E, Tsoumanis A, Van Herrewege Y, Ariën KK, Van Innis M, Vanbrabant P, Soentjens P. Five accelerated schedules for the tick-borne encephalitis vaccine FSME-Immun® in last-minute travellers: an open-label, single-centre, randomized controlled pilot trial. J Travel Med 2024; 31:taad053. [PMID: 37074147 PMCID: PMC11500657 DOI: 10.1093/jtm/taad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
BACKGROUND The purpose of this exploratory study was to evaluate different accelerated tick-borne encephalitis (TBE) vaccine schedules for last-minute travellers. METHODS In a single-centre, open-label pilot study, 77 TBE-naïve Belgian soldiers were randomized to one of the following five schedules with FSME-Immun®: group 1 ('classical accelerated' schedule) received one intramuscular (IM) dose at Day 0 and Day 14, group 2 two IM doses at Day 0, group 3 two intradermal (ID) doses at Day 0, group 4 two ID doses at Day 0 and Day 7 and group 5 two ID doses at Day 0 and Day 14. The last dose(s) of the primary vaccination scheme were given after 1 year: IM (1 dose) or ID (2 doses). TBE virus neutralizing antibodies were measured in a plaque reduction neutralization test (PRNT90 and 50) at Days 0, 14, 21, 28, Months 3, 6, 12 and 12+21 days. Seropositivity was defined as neutralizing antibody titres ≥10. RESULTS The median age was 19-19.5 years in each group.Median time to seropositivity up to Day 28 was shortest for PRNT90 in ID-group 4 and for PRNT50 in all ID groups. Seroconversion until Day 28 peaked highest for PRNT90 in ID-group 4 (79%) and for PRNT50 in ID-groups 4 and 5 (both 100%). Seropositivity after the last vaccination after 12 months was high in all groups. Previous yellow fever vaccination was reported in 16% and associated with lower geometric mean titres of TBE-specific antibodies at all-time points.The vaccine was generally well tolerated. However, mild to moderate local reactions occurred in 73-100% of ID compared with 0-38% of IM vaccinations, and persistent discolouration was observed in nine ID vaccinated individuals. CONCLUSION The accelerated two-visit ID schedules might offer a better immunological alternative to the recommended classical accelerated IM schedule, but an aluminium-free vaccine would be preferable.
Collapse
Affiliation(s)
- Nicole Berens-Riha
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Petra Andries
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Annelies Aerssens
- Department of Internal Medicine and Infectious Diseases, Ghent University Hospital, Belgium
| | - Quentin Ledure
- Hospital Pharmacy, Queen Astrid Military Hospital, Brussels, Belgium
| | | | - Leo Heyndrickx
- Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Els Genbrugge
- Clinical Trials Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | | | | | - Kevin K Ariën
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Virology Unit, Institute of Tropical Medicine, Antwerp, Belgium
| | - Martine Van Innis
- Hospital Pharmacy, Queen Astrid Military Hospital, Brussels, Belgium
| | - Peter Vanbrabant
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Patrick Soentjens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Centre for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
2
|
Zacharias C, Torgler R, Cummins J. What makes patients tick? Vaccine preferences against tick-borne encephalitis in four European countries. BMC Infect Dis 2024; 24:1151. [PMID: 39396966 PMCID: PMC11472448 DOI: 10.1186/s12879-024-10045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND We explored vaccine motivation and preferences for tick-borne encephalitis (TBE) vaccine attributes among participants in TBE-endemic countries in Europe. METHODS An online survey was conducted among the general public in Austria, Germany, Switzerland, and Sweden. Participants were ≥ 18 years old, open to receiving vaccines, and living in, or regularly traveling to, TBE-endemic regions in the aforementioned countries. Participants were asked about their general vaccine knowledge and motivations for vaccination, before rating the importance of TBE vaccine attributes, such as efficacy, safety, dosing schedule, and booster interval. Thereafter, participants were shown three hypothetical TBE vaccine profiles with different combinations of attributes. Assuming equal efficacy and safety, participants were asked to select their preferred profile from 12 screens as part of a discrete-choice conjoint analysis. Utility scores were calculated to show the importance of each attribute. Data are presented for the overall survey group and by age and gender, using t-tests to compare means. RESULTS For 73% of participants (n = 1003/1379), self-protection was among the top three reasons to get vaccinated. Disease severity, protection of children or family, and advice or recommendation from a doctor/healthcare professional (HCP) were top three reasons for over half of participants. The majority (58-69%) agreed or strongly agreed that they trust their doctor/HCP on the subject of vaccines, they rely on their doctor/HCP's vaccine knowledge, and they prefer their doctor/HCP to make recommendations on which vaccines they or their families should take. Efficacy and safety were the most important standalone TBE vaccine attributes; however, among TBE vaccine profiles including 3-, 5- and 10-year booster intervals, the 10-year booster interval was the most influential attribute level when choosing a preferred vaccine profile (utility score: 0.58 [standard error: 0.01]). Differences in motivators and preferences were observed between age and gender subgroups. CONCLUSION The high level of doctor/HCP reliance highlights the key role doctors/HCPs play in influencing vaccine decision-making. Booster interval was the biggest driver of choice when selecting a hypothetical TBE vaccine profile, with the strongest preference for a 10-year booster interval. These findings could be used to inform TBE vaccination recommendations and in the further development of TBE vaccines.
Collapse
Affiliation(s)
| | - Ralph Torgler
- Bavarian Nordic Switzerland AG, Grafenauweg 8, Zug, CH-6301, Switzerland.
| | - Jennifer Cummins
- Bavarian Nordic Switzerland AG, Grafenauweg 8, Zug, CH-6301, Switzerland
| |
Collapse
|
3
|
Rosendal E, Lindqvist R, Chotiwan N, Henriksson J, Överby AK. Transcriptional Response to Tick-Borne Flavivirus Infection in Neurons, Astrocytes and Microglia In Vivo and In Vitro. Viruses 2024; 16:1327. [PMID: 39205301 PMCID: PMC11359927 DOI: 10.3390/v16081327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a neurotropic member of the genus Orthoflavivirus (former Flavivirus) and is of significant health concern in Europe and Asia. TBEV pathogenesis may occur directly via virus-induced damage to neurons or through immunopathology due to excessive inflammation. While primary cells isolated from the host can be used to study the immune response to TBEV, it is still unclear how well these reflect the immune response elicited in vivo. Here, we compared the transcriptional response to TBEV and the less pathogenic tick-borne flavivirus, Langat virus (LGTV), in primary monocultures of neurons, astrocytes and microglia in vitro, with the transcriptional response in vivo captured by single-nuclei RNA sequencing (snRNA-seq) of a whole mouse cortex. We detected similar transcriptional changes induced by both LGTV and TBEV infection in vitro, with the lower response to LGTV likely resulting from slower viral kinetics. Gene set enrichment analysis showed a stronger transcriptional response in vivo than in vitro for astrocytes and microglia, with a limited overlap mainly dominated by interferon signaling. Together, this adds to our understanding of neurotropic flavivirus pathogenesis and the strengths and limitations of available model systems.
Collapse
Affiliation(s)
- Ebba Rosendal
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| | - Nunya Chotiwan
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakarn 10540, Thailand
| | - Johan Henriksson
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Icelab, Umeå Centre for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Umeå University, 90185 Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
4
|
Porcelli S, Heckmann A, Deshuillers PL, Wu-Chuang A, Galon C, Mateos-Hernandez L, Rakotobe S, Canini L, Rego ROM, Simo L, Lagrée AC, Cabezas-Cruz A, Moutailler S. Co-infection dynamics of B. afzelii and TBEV in C3H mice: insights and implications for future research. Infect Immun 2024; 92:e0024924. [PMID: 38990046 PMCID: PMC11320977 DOI: 10.1128/iai.00249-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Ticks are important vectors of disease, particularly in the context of One Health, where tick-borne diseases (TBDs) are increasingly prevalent worldwide. TBDs often involve co-infections, where multiple pathogens co-exist in a single host. Patients with chronic Lyme disease often have co-infections with other bacteria or parasites. This study aimed to create a co-infection model with Borrelia afzelii and tick-borne encephalitis virus (TBEV) in C3H mice and to evaluate symptoms, mortality, and pathogen level compared to single infections. Successful co-infection of C3H mice with B. afzelii and TBEV was achieved. Outcomes varied, depending on the timing of infection. When TBEV infection followed B. afzelii infection by 9 days, TBEV symptoms worsened and virus levels increased. Conversely, mice infected 21 days apart with TBEV showed milder symptoms and lower mortality. Simultaneous infection resulted in mild symptoms and no deaths. However, our model did not effectively infect ticks with TBEV, possibly due to suboptimal dosing, highlighting the challenges of replicating natural conditions. Understanding the consequences of co-infection is crucial, given the increasing prevalence of TBD. Co-infected individuals may experience exacerbated symptoms, highlighting the need for a comprehensive understanding through refined animal models. This study advances knowledge of TBD and highlights the importance of exploring co-infection dynamics in host-pathogen interactions.
Collapse
Affiliation(s)
- Stefania Porcelli
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Aurélie Heckmann
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Pierre Lucien Deshuillers
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Cleménce Galon
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Lourdes Mateos-Hernandez
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sabine Rakotobe
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Laetitia Canini
- EPIMIM, Laboratoire de Santé Animale, Anses, Ecole Nationale Vétérinaire d’Alfort, Maisons-Alfort, France
| | - Ryan O. M. Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czechia
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czechia
| | - Ladislav Simo
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Anne-Claire Lagrée
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Sara Moutailler
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort, France
| |
Collapse
|
5
|
Kelly PH, Zhang P, Dobler G, Halsby K, Angulo FJ, Pilz A, Madhava H, Moïsi JC. Global Seroprevalence of Tick-Borne Encephalitis Antibodies in Humans, 1956-2022: A Literature Review and Meta-Analysis. Vaccines (Basel) 2024; 12:854. [PMID: 39203981 PMCID: PMC11360530 DOI: 10.3390/vaccines12080854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 09/03/2024] Open
Abstract
Despite the availability of tick-borne encephalitis (TBE) vaccines, the incidence of TBE is increasing. To understand the historical patterns of infection, we conducted a global meta-analysis of studies before December 2023 reporting human antibody prevalence against TBEV (TBE virus) among general or high-risk population groups stratified by country, collection year, serological method, and vaccination status. Pooled data were compared within groups over time by random-effects modeling. In total, 2403 articles were retrieved; 130 articles published since 1959 were included. Data were extracted from 96 general populations (117,620 participants) and 71 high-risk populations (53,986 participants) across 33 countries. Germany had the most population groups (21), and Poland had the most participants (44,688). Seven serological methods were used; conventional IgG/IgM ELISAs were the most common (44%). Four studies (1.7%) used NS1-ELISA serology. Between 1956-1991 and 1992-2022, anti-TBEV seroprevalence remained at ~2.75% across all population groups from "high-risk" areas (p = 0.458) but decreased within general populations (1.7% to 1%; p = 0.001) and high-risk populations (5.1% to 1.3%; p < 0.001), possibly due to differences in the study methodologies between periods. This global summary explores how serological methods can be used to assess TBE vaccination coverage and potential exposure to TBEV or measure TBE burden and highlights the need for standardized methodology when conducting TBE seroprevalence studies to compare across populations.
Collapse
Affiliation(s)
- Patrick H. Kelly
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, New York, NY 10001-2192, USA;
| | - Pingping Zhang
- Medical Affairs Evidence Generation Statistics, Pfizer Global Product Development Group, Collegeville, PA 19426-3982, USA;
| | - Gerhard Dobler
- Bundeswehr Institute for Microbiology, National TBEV Consultant Laboratory, 80937 Munchen, Germany;
| | - Kate Halsby
- Vaccines and Antivirals Medical Affairs, Pfizer Biopharma Group, Tadworth KT20 7NS, UK; (K.H.); (H.M.)
| | - Frederick J. Angulo
- Vaccines and Antivirals Medical Affairs, Pfizer US Commercial Division, New York, NY 10001-2192, USA;
| | - Andreas Pilz
- Vaccines and Antivirals Medical Affairs, Pfizer Biopharma Group, 1210 Vienna, Austria;
| | - Harish Madhava
- Vaccines and Antivirals Medical Affairs, Pfizer Biopharma Group, Tadworth KT20 7NS, UK; (K.H.); (H.M.)
| | - Jennifer C. Moïsi
- Vaccines and Antivirals Medical Affairs, Pfizer Biopharma Group, 75014 Paris, France;
| |
Collapse
|
6
|
Frasca F, Sorrentino L, Fracella M, D’Auria A, Coratti E, Maddaloni L, Bugani G, Gentile M, Pierangeli A, d’Ettorre G, Scagnolari C. An Update on the Entomology, Virology, Pathogenesis, and Epidemiology Status of West Nile and Dengue Viruses in Europe (2018-2023). Trop Med Infect Dis 2024; 9:166. [PMID: 39058208 PMCID: PMC11281579 DOI: 10.3390/tropicalmed9070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, increases in temperature and tropical rainfall have facilitated the spread of mosquito species into temperate zones. Mosquitoes are vectors for many viruses, including West Nile virus (WNV) and dengue virus (DENV), and pose a serious threat to public health. This review covers most of the current knowledge on the mosquito species associated with the transmission of WNV and DENV and their geographical distribution and discusses the main vertebrate hosts involved in the cycles of WNV or DENV. It also describes virological and pathogenic aspects of WNV or DENV infection, including emerging concepts linking WNV and DENV to the reproductive system. Furthermore, it provides an epidemiological analysis of the human cases of WNV and DENV reported in Europe, from 1 January 2018 to 31 December 2023, with a particular focus on Italy. The first autochthonous cases of DENV infection, with the most likely vector being Aedes albopictus, have been observed in several European countries in recent years, with a high incidence in Italy in 2023. The lack of treatments and effective vaccines is a serious challenge. Currently, the primary strategy to prevent the spread of WNV and DENV infections in humans remains to limit the spread of mosquitoes.
Collapse
Affiliation(s)
- Federica Frasca
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Leonardo Sorrentino
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Matteo Fracella
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra D’Auria
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Eleonora Coratti
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Massimo Gentile
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Alessandra Pierangeli
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (L.M.); (G.B.); (G.d.)
| | - Carolina Scagnolari
- Laboratory of Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (L.S.); (M.F.); (A.D.); (E.C.); (M.G.); (A.P.); (C.S.)
| |
Collapse
|
7
|
Ceconi M, Ariën KK, Delputte P. Diagnosing arthropod-borne flaviviruses: non-structural protein 1 (NS1) as a biomarker. Trends Microbiol 2024; 32:678-696. [PMID: 38135616 DOI: 10.1016/j.tim.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, the presence of flaviviruses of concern for human health in Europe has drastically increased,exacerbated by the effects of climate change - which has allowed the vectors of these viruses to expand into new territories. Co-circulation of West Nile virus (WNV), Usutu virus (USUV), and tick-borne encephalitis virus (TBEV) represents a threat to the European continent, and this is further complicated by the difficulty of obtaining an early and discriminating diagnosis of infection. Moreover, the possibility of introducing non-endemic pathogens, such as Japanese encephalitis virus (JEV), further complicates accurate diagnosis. Current flavivirus diagnosis is based mainly on RT-PCR and detection of virus-specific antibodies. Yet, both techniques suffer from limitations, and the development of new assays that can provide an early, rapid, low-cost, and discriminating diagnosis of viral infection is warranted. In the pursuit of ideal diagnostic assays, flavivirus non-structural protein 1 (NS1) serves as an excellent target for developing diagnostic assays based on both the antigen itself and the antibodies produced against it. This review describes the potential of such NS1-based diagnostic methods, focusing on the application of flaviviruses that co-circulate in Europe.
Collapse
Affiliation(s)
- Martina Ceconi
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Kevin K Ariën
- Virology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp 2000, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Peter Delputte
- Laboratory for Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium.
| |
Collapse
|
8
|
Domnich A, Ferrari A, Ogliastro M, Orsi A, Icardi G. Web search volume as a near-real-time complementary surveillance tool of tick-borne encephalitis (TBE) in Italy. Ticks Tick Borne Dis 2024; 15:102332. [PMID: 38484539 DOI: 10.1016/j.ttbdis.2024.102332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
The Internet is an important gateway for accessing health-related information, and data generated through web queries have been increasingly used as a complementary source for monitoring and forecasting of infectious diseases and they may partially address the issue of underreporting. In this study, we assessed whether tick-borne encephalitis (TBE)-related Internet search volume may be useful as a complementary tool for TBE surveillance in Italy. Monthly Google Trends (GT) data for TBE-related information were extracted for the period between January 2017 and September 2022, corresponding to the available time series of TBE notifications in Italy. Time series modeling was performed by applying seasonal autoregressive integrated moving average (SARIMA) models with or without GT data. The search terms relative to tick bites reflected best the observed temporal distribution of TBE cases, showing a correlation coefficient of 0.81 (95 % CI: 0.71-0.88). Particularly, both the reported number of TBE cases and GT searches occurred mainly during the summer. The peak of disease notifications coincided with that of Google searches in 4 of 6 years. Once calibrated, SARIMA models with or without GT data were applied to a validation set. Retrospective forecast made by the model with GT data was associated with a lower prediction error and accurately predicted the peak timing. By contrast, the traditional SARIMA model underestimated the actual number of TBE notifications by 65 %. Timeliness, easy availability, low cost and transparency make monitoring of the TBE-related Internet search queries a promising addition to the traditional methods of TBE surveillance in Italy.
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy.
| | - Allegra Ferrari
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | | | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy; Department of Health Sciences, University of Genoa, Genoa, Italy
| |
Collapse
|
9
|
Ruzek D, Kaucka K. A brief tale of two pioneering moments: Europe's first discovery of Tick-Borne Encephalitis (TBE) virus beyond the Soviet Union and the largest alimentary TBE outbreak in history. Ticks Tick Borne Dis 2024; 15:102314. [PMID: 38290295 DOI: 10.1016/j.ttbdis.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/05/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
The emergence of tick-borne encephalitis (TBE) in Europe marked several significant milestones. The discovery of TBE in Czechoslovakia in 1948, with Gallia and Krejčí simultaneously isolating the TBE virus (TBEV) from human samples for the first time in Europe outside the Soviet Union, was pivotal. Subsequent TBEV isolation from ticks suggested the viral transmission via this vector. In 1951, the outbreak in Rožňava in Slovakia (Czechoslovakia) revealed an unexpected mode of transmission, unpasteurized milk from a local dairy, challenging existing understanding. Investigations exposed illicit practices of mixing cow's milk with goat's milk for economic gains. Laboratory research confirmed the outbreak was caused by TBEV, which was substantiated by serological analyses. This was the first and largest documented alimentary TBE outbreak in history. In this review, we delve into both published sources and unpublished archival data, offering a comprehensive understanding of these historic accomplishments and shedding light on these pivotal moments.
Collapse
Affiliation(s)
- Daniel Ruzek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic.
| | - Kristyna Kaucka
- Masaryk Institute and Archives of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Du Y, Ou L, Zheng H, Lu D, Niu Y, Bao C, Zhang M, Mi Z. Proteomic and metabolomic analysis of the serum of patients with tick-borne encephalitis. J Proteomics 2024; 298:105111. [PMID: 38331167 DOI: 10.1016/j.jprot.2024.105111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/18/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
Tick-borne encephalitis virus (TBEV) is a common virus in Europe and Asia, causing around 10,000 to 10,500 infections annually. It affects the central nervous system and poses threats to public health. However, the exact molecular mechanisms of TBE pathogenesis are not yet fully understood due to the complex interactions between the virus and its host. In this study, a comprehensive analysis was conducted to characterize the serum metabolome and proteome of adult patients infected with TBEV, in comparison to a control group of healthy individuals. Liquid chromatography tandem mass spectrometry (LC-MS) was employed to monitor metabolic and proteomic alternations throughout the progression of the disease, significant physiological changes associated with different stages of the disease were identified. A total of 44 proteins and 115 metabolites exhibited significantly alternations in the sera of patients diagnosed with TBE. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of these metabolites and proteins revealed differential enrichment of genes associated with the extracellular matrix, complement binding, hemostasis, lipid metabolism, and amino acid metabolism between TBE patients and healthy controls. We gained valuable understanding of the specific metabolites implicated in the host's responses to TBE, establishing a basis for further research on TBE disease. SIGNIFICANCE: The current investigation revealed a comprehensive and systematic differences on TBE using LC-MS platform from human serum samples of TBE patients and healthy individuals providing the immune response to the invasion of TBE.
Collapse
Affiliation(s)
- YanDan Du
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - LePing Ou
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - HaiJun Zheng
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - DeSheng Lu
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - YiQing Niu
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - ChunXi Bao
- Department of clinical laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - Meng Zhang
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China
| | - ZhiHui Mi
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China.
| |
Collapse
|
11
|
Sidorenko M, Radzijevskaja J, Mickevičius S, Bratchikov M, Mardosaitė-Busaitienė D, Sakalauskas P, Paulauskas A. Phylogenetic characterisation of tick-borne encephalitis virus from Lithuania. PLoS One 2024; 19:e0296472. [PMID: 38324618 PMCID: PMC10849421 DOI: 10.1371/journal.pone.0296472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The Baltic states are the region in Europe where tick-borne encephalitis (TBE) is most endemic. The highest notification rate of TBE cases is reported in Lithuania, where the incidence of TBE has significantly increased since 1992. A recent study reported 0.4% prevalence of TBE virus (TBEV) in the two most common tick species distributed in Lithuania, Ixodes ricinus and Dermacentor reticulatus, with the existence of endemic foci confirmed in seven out of Lithuania's ten counties. However, until now, no comprehensive data on molecular characterisation and phylogenetic analysis have been available for the circulating TBEV strains. The aim of this study was to analyse TBEV strains derived from I. ricinus and D. reticulatus ticks collected from Lithuania and provide a genotypic characterisation of viruses based on sequence analysis of partial E protein and NS3 genes. The 54 nucleotide sequences obtained were compared with 81 TBEV strains selected from the NCBI database. Phylogenetic analysis of the partial E and NS3 gene sequences derived from 34 Lithuanian TBEV isolates revealed that these were specific to Lithuania, and all belonged to the European subtype, with a maximum identity to the Neudoerfl reference strain (GenBank accession no. U27495) of 98.7% and 97.4%, respectively. The TBEV strains showed significant regional genetic diversity. The detected TBEV genotypes were not specific to the tick species. However, genetic differences were observed between strains from different locations, while strains from the same location showed a high similarity.
Collapse
Affiliation(s)
- Marina Sidorenko
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Jana Radzijevskaja
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Saulius Mickevičius
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry, Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | | | - Povilas Sakalauskas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Algimantas Paulauskas
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| |
Collapse
|
12
|
Schelling J, Einmahl S, Torgler R, Larsen CS. Evidence for a 10-year TBE vaccine booster interval: an evaluation of current data. Expert Rev Vaccines 2024; 23:226-236. [PMID: 38288983 DOI: 10.1080/14760584.2024.2311359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Tick-borne encephalitis (TBE) is rapidly spreading to new areas in many parts of Europe. While vaccination remains the most effective method of protection against the disease, vaccine uptake is low in many endemic countries. AREAS COVERED We conducted a literature search of the MEDLINE database to identify articles published from 2018 to 2023 that evaluated the immunogenicity and effectiveness of TBE vaccines, particularly Encepur, when booster doses were administered up to 10 years apart. We searched PubMed with the MeSH terms 'Encephalitis, Tick-Borne/prevention and control' and 'Vaccination' for articles published in the English language. EXPERT OPINION Long-term immunogenicity data for Encepur and real-world data on vaccine effectiveness and breakthrough infections following the two European TBE vaccines, Encepur and FSME-Immun, have shown that extending the booster interval from 3-5 years to 10 years does not negatively impact protection against TBE, regardless of age. Such extension not only streamlines the vaccination schedules but may also increase vaccine uptake and compliance among those living in endemic regions.
Collapse
Affiliation(s)
- Jörg Schelling
- Department of Medicine IV, LMU University Hospital, LMU Munich, University of Munich, Munich, Germany
| | - Suzanne Einmahl
- Department of Medical Strategy, Bavarian Nordic AG, Zug, Switzerland
| | - Ralph Torgler
- Department of Medical Strategy, Bavarian Nordic AG, Zug, Switzerland
| | | |
Collapse
|
13
|
Ackermann-Gäumann R, Brêchet A, Smetana J, Salát J, Lienhard R, Croxatto A, Polcarová P, Chlíbek R, Růžek D. Vaccination against tick-borne encephalitis elicits a detectable NS1 IgG antibody response. J Virol Methods 2023; 322:114831. [PMID: 37838083 DOI: 10.1016/j.jviromet.2023.114831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Vaccine-induced protection against tick-borne encephalitis virus (TBEV) is mediated by antibodies to the viral particle/envelope protein. The detection of non-structural protein 1 (NS1) specific antibodies has been suggested as a marker indicative of natural infections. However, recent work has shown that TBEV vaccines contain traces of NS1, and immunization of mice induced low amounts of NS1-specific antibodies. In this study, we investigated if vaccination induces TBEV NS1-specific antibodies in humans. Healthy army members (n = 898) were asked to fill in a questionnaire relating to flavivirus vaccination or infection, and blood samples were collected. In addition, samples of 71 suspected acute TBE cases were included. All samples were screened for the presence of TBEV NS1-specific IgG antibodies using an in-house developed ELISA. Antibodies were quantified as percent positivity in reference to a positive control. For qualitative evaluation, cut-off for positivity was defined based on the mean OD of the lower 95% of the vaccinated individuals + 3 SD. We found significantly higher NS1-specific IgG antibody titers (i.e., quantitative evaluation) in individuals having received 2, 3, or 4 or more vaccine doses than in non-vaccinated individuals. Similarly, the percentage of individuals with a positive test result (i.e., qualitative evaluation) was higher in individuals vaccinated against tick-borne encephalitis than in unvaccinated study participants. Although NS1-specific IgG titers remained at a relatively low level when compared to TBE patients, a clear distinction was not always possible. Establishing a clear cut-off point in detection systems is critical for NS1-specific antibodies to serve as a marker for distinguishing the immune response after vaccination and infection.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland; Swiss National Reference Center for Tick-Transmitted Diseases, Switzerland.
| | - Arthur Brêchet
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
| | - Jan Smetana
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiři Salát
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic; Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Reto Lienhard
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland; Swiss National Reference Center for Tick-Transmitted Diseases, Switzerland
| | - Antony Croxatto
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland; Swiss National Reference Center for Tick-Transmitted Diseases, Switzerland
| | - Petra Polcarová
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Roman Chlíbek
- Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Daniel Růžek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic; Laboratory of Arbovirology, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Riccò M, Corrado S, Marchesi F, Bottazzoli M. Tick-Borne Encephalitis Virus Vaccination among Tourists in a High-Prevalence Area (Italy, 2023): A Cross-Sectional Study. Trop Med Infect Dis 2023; 8:491. [PMID: 37999610 PMCID: PMC10674593 DOI: 10.3390/tropicalmed8110491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
Tick-borne encephalitis (TBE) represents a potential health threat for tourists in high-risk areas, including the Dolomite Mountains in northeastern Italy. The present questionnaire-based survey was, therefore, designed in order to assess knowledge, attitudes, and preventive practices (KAP) in a convenience sample of Italian tourists visiting the Dolomite Mountains, who were recruited through online discussion groups. A total of 942 participants (39.2% males, with 60.2% aged under 50) filled in the anonymous survey from 28 March 2023 to 20 June 2023. Overall, 24.1% of participants were vaccinated against TBE; 13.8% claimed to have previously had tick bites, but no cases of TBE were reported. The general understanding of TBE was relatively low; while 79.9% of participants acknowledged TBE as a potentially severe disease, its occurrence was acknowledged as high/rather high or very high in the Dolomites area by only 51.6% of respondents. Factors associated with the TBE vaccine were assessed by the calculation of adjusted odds ratios (aOR) and 95% confidence intervals through a logistic regression analysis model. Living in areas considered at high risk for TBE (aOR 3.010, 95%CI 2.062-4.394), better knowledge on tick-borne disorders (aOR 1.515, 95%CI 1.071-2.142), high risk perception regarding tick-borne infections (aOR 2.566, 95%CI 1.806-3.646), a favorable attitude toward vaccinations (aOR 3.824, 95%CI 1.774-8.224), and a tick bite(s) in a previous season (aOR 5.479, 95%CI 3.582-8.382) were characterized as being positively associated with TBE vaccination uptake. Conversely, being <50 years old (aOR 0.646, 95%CI, 0.458-0.913) and with a higher risk perception regarding the TBE vaccine (aOR 0.541, 95%CI 0.379-0.772) were identified as the main barriers to vaccination. In summary, tourists to the high-risk area of the Dolomites largely underestimate the potential occurrence of TBE. Even though the uptake of the TBE vaccine in this research was in line with European data, public health communication on TBE is required in order to improve acceptance of this effective preventive option.
Collapse
Affiliation(s)
- Matteo Riccò
- Occupational Health and Safety Service on the Workplace/Servizio di Prevenzione e Sicurezza Ambienti di Lavoro (SPSAL), Department of Public Health, AUSL–IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Silvia Corrado
- ASST Rhodense, Dipartimento della donna e Area Materno-Infantile, UOC Pediatria, 20024 Garbagnate Milanese, Italy;
| | - Federico Marchesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Marco Bottazzoli
- Department of Otorhinolaryngology, APSS Trento, 31223 Trento, Italy;
| |
Collapse
|
15
|
Wang SS, Liu JY, Wang BY, Wang WJ, Cui XM, Jiang JF, Sun Y, Guo WB, Pan YS, Zhou YH, Lin ZT, Jiang BG, Zhao L, Cao WC. Geographical distribution of Ixodes persulcatus and associated pathogens: Analysis of integrated data from a China field survey and global published data. One Health 2023; 16:100508. [PMID: 36875889 PMCID: PMC9975318 DOI: 10.1016/j.onehlt.2023.100508] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
The increasing incidence and range expansion of tick-borne diseases have caused global threats to human and animal health under the background of climate and socioeconomic changes. As an efficient vector in transmission of tick-borne diseases, a growing burden caused by Ixodes persulcatus and associated pathogens could not be underestimated. This study summarized the distribution, hosts, and pathogens of I. persulcatus, and predicted the suitable habitats of this tick species worldwide. An integrated database involving a field survey, reference book, literature review, and related website was constructed. Location records of I. persulcatus and associated pathogens were incorporated into distribution maps using ArcGIS software. Positive rates for I. persulcatus-associated agents were estimated by meta-analysis. The global distribution of the tick species was predicted using Maxent model. I. persulcatus was distributed in 14 countries across the Eurasian continent, involving Russia, China, Japan, and several Baltic Sea states, which ranged between 21°N to 66°N. The tick species fed on 46 species of hosts, and 51 tick-borne agents could be harbored by I. persulcatus. The predictive model showed that I. persulcatus could be predominantly distributed in northern Europe, western Russia, and northern China. Our study fully clarified the potential public health risks posed by I. persulcatus and I. persulcatus-borne pathogens. Surveillance and control measures of tick-borne diseases should be enhanced to promote the health of humans, animals, and ecosystems.
Collapse
Affiliation(s)
- Shan-Shan Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bao-Yu Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wen-Jing Wang
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yi Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Wen-Bin Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Sheng Pan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yu-Hao Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bao-Gui Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
16
|
Cabezas-Cruz A, Banović P. Understanding Tick-Borne Encephalitis Virus Foci, a Tale of Two Mountains. Pathogens 2023; 12:pathogens12020265. [PMID: 36839537 PMCID: PMC9963062 DOI: 10.3390/pathogens12020265] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
What factors influence the formation and disappearance of tick-borne encephalitis virus (TBEV) foci [...].
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
- Correspondence: (A.C.-C.); (P.B.)
| | - Pavle Banović
- Clinic for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: (A.C.-C.); (P.B.)
| |
Collapse
|
17
|
Eyer L, Seley-Radtke K, Ruzek D. New directions in the experimental therapy of tick-borne encephalitis. Antiviral Res 2023; 210:105504. [PMID: 36574904 DOI: 10.1016/j.antiviral.2022.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022]
Abstract
Tick-borne encephalitis (TBE) is a potentially fatal disease common in much of Europe and Asia. There is no specific therapy for the treatment of TBE patients. However, several efforts are being made to develop small molecules that specifically interfere with the life cycle of TBE virus. In particular, recently various nucleoside analogues that can inhibit the viral replicase, such as the RNA-dependent RNA polymerase or viral methyltransferases, have been explored. In addition, human or chimeric (i.e., structural chimeras that combine mouse variable domains with human constant domains) monoclonal antibodies with promising potential for post-exposure prophylaxis or early therapy have been developed. This review summarizes the latest directions and experimental approaches that may be used to combat TBE in humans.
Collapse
Affiliation(s)
- Ludek Eyer
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Katherine Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Daniel Ruzek
- Laboratory of Emerging Viral Diseases, Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
18
|
Knowledge, Attitudes, and Behaviors Regarding Lyme Borreliosis Prevention in the Endemic Area of Northeastern Poland. Vaccines (Basel) 2022; 10:vaccines10122163. [PMID: 36560573 PMCID: PMC9788422 DOI: 10.3390/vaccines10122163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
(1) Background: The incidence of Lyme borreliosis (LB) is increasing in Europe. The new LB vaccine is still in clinical development, thus the dissemination of knowledge about the disease is essential. We assessed the knowledge, attitudes and preventive practices (KAP) against tick-borne diseases (TBDs) of people living in the endemic area in northeastern Poland. (2) Methods: We surveyed 406 adults using a 37-item anonymous paper survey. The data were analyzed with regression models. (3) Results: The two most popular knowledge sources were the Internet and doctors, selected by 77.8% and 53.4%, respectively. Respondents felt moderately knowledgeable about TBDs and tick bite prophylaxis (median scores 5/10, and 6/10, respectively), considered TBDs to be a significant health threat (median 8/10), attributed high risk to tick mouthparts remaining in the skin after tick removal (median 10/10), and shared multiple misconceptions regarding LB transmission, symptoms, and management. General knowledge scores (GKS) about TBDs and tick protection practices scores (TPS) were moderate (65.0%; IQR, 55.8−71.7%, 63.6%; 54.5−72.7%, respectively). Only 48.0% had a positive attitude towards TBE vaccination. A recent tick-bite was associated with higher GKS (OR, 2.55; 95% CI, 1.27−5.10; p = 0.008), higher TPS (OR 4.76, 95% CI, 2.0−11.1; p < 0.001), and a positive attitude towards TBE vaccine (OR 2.10, 1.07−4.10, p = 0.030). A positive vaccine attitude was also associated with obtaining TBD knowledge from doctors and other verified sources (OR, 2.654, 1.66−4.23; p < 0.001). Age, place of residence, and frequent exposure to ticks in green areas were not associated with GKS, TPS, nor vaccine attitude. (4) Conclusions: Increased risk perceptions are associated with adoption of behaviors preventing TBDs. Medical professionals play an important role in communicating knowledge about TBDs. There is a need to revise current communication strategies with respect to tick bites and prevention of LB and other TBDs.
Collapse
|
19
|
Ghiani M, Hagemann C, Friedrich J, Maywald U, Wilke T, von Eiff C, Malerczyk C. Can risk area designation help increase vaccination coverage for Tick-Borne Encephalitis? Evidence from German claims data. Vaccine 2022; 40:7335-7342. [PMID: 36347722 DOI: 10.1016/j.vaccine.2022.10.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/14/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND OBJECTIVES Although vaccine preventable, the incidence of tick-borne encephalitis (TBE) increased in Germany from 2001 to 2021 by on average 2% each year, with a peak of more than 700 TBE infections documented in 2020. TBE-risk areas, as designated by district based on incidence of human cases, expanded north- and northeastward, present in 11 of the 16 Federal States as of 2022. Using claims data from a German statutory health insurance in the Federal States of Saxony and Thuringia (AOK PLUS), we aimed to assess whether official assignment of a district to a risk area had an impact on vaccination rates in Germany. METHODS The data covered the period from 01/01/2010 to 31/12/2018 and included information on vaccine administrations from outpatient physicians. Yearly incident vaccination rates were reported overall and by district. To investigate the association between a new designation of an incident TBE-risk area and vaccination rates, a difference-in-difference analysis was conducted. RESULTS Overall, the incident vaccination rates increased from 6.2 to 9.5 per 1,000 person-years between 2012 and 2018, with a peak of 12.2 in 2015. While districts that had been risk-areas for the whole study period had always a higher vaccination rate compared to districts that were never categorized as risk areas, the increase between 2012 and 2018 was comparable in the two groups (3.0 and 3.2 per 1,000 person-years, respectively). In contrast, districts that were newly designated risk districts during the study period experienced a significantly larger increase in vaccination rates, going from 5.8 to 14.7 per 1,000 person-years between 2012 and 2018, with a peak of 19.6 in 2015. CONCLUSION The results suggest that the new designation of a district as risk area has a significant positive impact on vaccination rates, which is strongest immediately after designation of risk area.
Collapse
Affiliation(s)
- M Ghiani
- IPAM e.V, Alter Holzhafen 19, 23966 Wismar, Germany.
| | - C Hagemann
- Pfizer Pharma GmbH, Linkstr. 10, 10785 Berlin, Germany
| | - J Friedrich
- Pfizer Pharma GmbH, Linkstr. 10, 10785 Berlin, Germany
| | | | - T Wilke
- Ingress-Health HWM GmbH, Wismar, Germany
| | - C von Eiff
- Pfizer Pharma GmbH, Linkstr. 10, 10785 Berlin, Germany
| | - C Malerczyk
- Pfizer Pharma GmbH, Linkstr. 10, 10785 Berlin, Germany
| |
Collapse
|
20
|
Transmission Cycle of Tick-Borne Infections and Co-Infections, Animal Models and Diseases. Pathogens 2022; 11:pathogens11111309. [PMID: 36365060 PMCID: PMC9696261 DOI: 10.3390/pathogens11111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Tick-borne pathogens such as species of Borrelia, Babesia, Anaplasma, Rickettsia, and Ehrlichia are widespread in the United States and Europe among wildlife, in passerines as well as in domestic and farm animals. Transmission of these pathogens occurs by infected ticks during their blood meal, carnivorism, and through animal bites in wildlife, whereas humans can become infected either by an infected tick bite, through blood transfusion and in some cases, congenitally. The reservoir hosts play an important role in maintaining pathogens in nature and facilitate transmission of individual pathogens or of multiple pathogens simultaneously to humans through ticks. Tick-borne co-infections were first reported in the 1980s in white-footed mice, the most prominent reservoir host for causative organisms in the United States, and they are becoming a major concern for public health now. Various animal infection models have been used extensively to better understand pathogenesis of tick-borne pathogens and to reveal the interaction among pathogens co-existing in the same host. In this review, we focus on the prevalence of these pathogens in different reservoir hosts, animal models used to investigate their pathogenesis and host responses they trigger to understand diseases in humans. We also documented the prevalence of these pathogens as correlating with the infected ticks’ surveillance studies. The association of tick-borne co-infections with other topics such as pathogens virulence factors, host immune responses as they relate to diseases severity, identification of vaccine candidates, and disease economic impact are also briefly addressed here.
Collapse
|
21
|
Tick-Borne Encephalitis Virus Prevalence in Sheep, Wild Boar and Ticks in Belgium. Viruses 2022; 14:v14112362. [PMID: 36366458 PMCID: PMC9699201 DOI: 10.3390/v14112362] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 01/31/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the most important tick-borne zoonotic virus in Europe. In Belgium, antibodies to TBEV have already been detected in wildlife and domestic animals, but up-to-date prevalence data for TBEV are lacking, and no studies have assessed its seroprevalence in sheep. Serum samples of 480 sheep from all over Belgium and 831 wild boar hunted in Flanders (northern Belgium) were therefore screened for TBEV antibodies by ELISA and plaque reduction neutralization test (PRNT), respectively. The specificity of positive samples was assessed by PRNTs for TBEV and the Louping Ill, West Nile, and Usutu viruses. TBEV seroprevalence was 0.42% (2/480, CI 95%: 0.11-1.51) in sheep and 9.27% (77/831, CI 95%: 7.48-11.43) in wild boar. TBEV seroprevalence in wild boar from the province of Flemish Brabant was significantly higher (22.38%, 15/67) compared to Limburg (7.74%, 34/439) and Antwerp (8.61%, 28/325). Oud-Heverlee was the hunting area harboring the highest TBEV seroprevalence (33.33%, 11/33). In an attempt to obtain a Belgian TBEV isolate, 1983 ticks collected in areas showing the highest TBEV seroprevalence in wild boars were tested by real-time qPCR. No TBEV-RNA-positive tick was detected. The results of this study suggest an increase in TBEV prevalence over the last decade and highlight the need for One-Health surveillance in Belgium.
Collapse
|
22
|
Elbaz M, Gadoth A, Shepshelovich D, Shasha D, Rudoler N, Paran Y. Systematic Review and Meta-analysis of Foodborne Tick-Borne Encephalitis, Europe, 1980-2021. Emerg Infect Dis 2022; 28. [PMID: 36149234 PMCID: PMC9514354 DOI: 10.3201/eid2810.220498] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Most cases were associated with ingesting unpasteurized dairy products from goats; the clinical attack rate was 14%. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that occurs in many parts of Europe and Asia. Humans mainly acquire TBE through tick bites, but TBE occasionally is contracted through consuming unpasteurized milk products from viremic livestock. We describe cases of TBE acquired through alimentary transmission in Europe during the past 4 decades. We conducted a systematic review and meta-analysis of 410 foodborne TBE cases, mostly from a region in central and eastern Europe. Most cases were reported during the warmer months (April–August) and were associated with ingesting unpasteurized dairy products from goats. The median incubation period was short, 3.5 days, and neuroinvasive disease was common (38.9%). The clinical attack rate was 14% (95% CI 12%–16%), and we noted major heterogeneity. Vaccination programs and public awareness campaigns could reduce the number of persons affected by this potentially severe disease.
Collapse
|
23
|
Bogdanavičienė K, Gudavičiūtė G, Šeškutė M. A Retrospective Analysis of Tick-borne Encephalitis in Children Treated in Kaunas Hospital During 2012 to 2019. Pediatr Infect Dis J 2022; 41:702-705. [PMID: 35622424 DOI: 10.1097/inf.0000000000003595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lithuania has the highest tick-borne encephalitis (TBE) rates in Europe. Although TBE incidence in children is lower, it may still cause long-term consequences. So far pediatric epidemiological and clinical characteristics of TBE in Lithuania were not described. METHODS We performed a retrospective analysis of 87 cases of children who were hospitalized for TBE in Kaunas Hospital of the Lithuanian University of Health Sciences from 2012 to 2019. Each case was identified with neurological symptoms and positive serological tests. RESULTS Around half of the children (50.6%) reported having a tick bite, whereas 6.9% stated having exposure to unpasteurized milk. Biphasic course of the disease occurred in 70.1% of the cases. The most common clinical symptoms were headache (100%), fever (100%), nausea (85.1%), vomiting (78.2%), drowsiness (67.8%) and general weakness (66.7%). Meningeal symptoms were present in 93.1% of the cases, and 93.1% of the children had at least one focal neurological sign (tremor 82.3%, impaired balance 73.6%). Isolated meningitis was diagnosed in 57.5%, meningoencephalitis in 41.4% and meningoencephalomyelitis in 1.1% of the cases. Majority of younger children (1-8 years old) had meningitis (77.3%), whereas 49.2% of older children (9-17 years old) had more severe forms of TBE. Cerebrospinal fluid pleocytosis was found in 94.3% of cases (average white blood cell count: 111.7 per μL, protein: 0.5 g/L). Higher levels of cerebrospinal fluid protein were associated with more severe forms of TBE and older age. Duration of the symptomatic disease lasted ≈11 days. Early residual signs were observed in 75.9% of all cases. CONCLUSIONS The epidemiological and clinical characteristics of TBE in children in Lithuania are similar to those described in other countries. Only half of the subjects reported having a tick bite. Younger children tend to suffer from meningoencephalitis and meningoencephalomyelitis less frequently than elder ones. Focal neurological signs were commonly observed. Majority of children had lasting symptoms of TBE upon discharge from the hospital.
Collapse
Affiliation(s)
| | - Gerda Gudavičiūtė
- From the Lithuanian University of Health and Sciences, Kaunas, Lithuania
| | - Milda Šeškutė
- Kaunas Hospital of Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
24
|
Bjonholm E, Soderholm S, Stephansson O, Askling H. Tick-borne encephalitis in pregnant women – a mini narrative review. New Microbes New Infect 2022; 48:101017. [PMID: 36176540 PMCID: PMC9513166 DOI: 10.1016/j.nmni.2022.101017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
Tick-borne encephalitis (TBE) incidence has been increasing in Europe the last decades, but very few cases in pregnant women have been described. We present two cases and describe the serology of both mother and infant at the time of diagnosis and delivery, as well as at months 3, 6, 9, and 12 of follow-up. In both cases, pregnancies and infants developed normally. The mothers had moderate-to severe symptoms of TBE and were positive for IgM and IgG at the time of diagnosis, and throughout the follow up period whilst both infants were PCR- and IgM-negative and positive for IgG during their first months in life. Declining IgG titres were seen in the infants during follow-up until they became negative at the age of nine months. TBE IgG was vertically transmitted in these two cases of infants born to TBE-infected mothers.
Collapse
Affiliation(s)
- E. Bjonholm
- Department of Infectious Diseases, Mälarsjukhuset, Eskilstuna, Sweden
| | | | - O. Stephansson
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Women's Health, Karolinska University Hospital, Stockholm, Sweden
| | - H.H. Askling
- Department of Medicine, Division of Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
- Corresponding author: Helena Hervius Askling, Institutionen för medicin Solna (MedS), Karolinska Universitetssjukhuset Solna NB6:02, 17176 Stockholm, Sweden.
| |
Collapse
|
25
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
26
|
Kutschera LS, Wolfinger MT. Evolutionary traits of Tick-borne encephalitis virus: Pervasive non-coding RNA structure conservation and molecular epidemiology. Virus Evol 2022; 8:veac051. [PMID: 35822110 PMCID: PMC9272599 DOI: 10.1093/ve/veac051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/17/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is the aetiological agent of tick-borne
encephalitis, an infectious disease of the central nervous system that is often associated
with severe sequelae in humans. While TBEV is typically classified into three subtypes,
recent evidence suggests a more varied range of TBEV subtypes and lineages that differ
substantially in the architecture of their 3ʹ untranslated region (3ʹUTR). Building on
comparative genomic approaches and thermodynamic modelling, we characterize the TBEV UTR
structureome diversity and propose a unified picture of pervasive non-coding RNA structure
conservation. Moreover, we provide an updated phylogeny of TBEV, building on more than 220
publicly available complete genomes, and investigate the molecular epidemiology and
phylodynamics with Nextstrain, a web-based visualization framework for real-time pathogen
evolution.
Collapse
Affiliation(s)
- Lena S Kutschera
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| | - Michael T Wolfinger
- Department of Theoretical Chemistry, University of Vienna, Währinger Straße 17, Vienna 1090, Austria
| |
Collapse
|
27
|
Wondim MA, Czupryna P, Pancewicz S, Kruszewska E, Groth M, Moniuszko-Malinowska A. Epidemiological Trends of Trans-Boundary Tick-Borne Encephalitis in Europe, 2000-2019. Pathogens 2022; 11:pathogens11060704. [PMID: 35745558 PMCID: PMC9228375 DOI: 10.3390/pathogens11060704] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis is a neuroinfection widely distributed in the Euro-Asia region. Primarily, the virus is transmitted by the bite of infected ticks. From 2000-2019, the total number of confirmed cases in Europe reported to the European Centre for Disease Prevention and Control was 51,519. The number of cases decreased in 2014 and 2015; however, since 2015, a growing number of cases have been observed, with the involvement of countries in which TBE has not been previously reported. The determinant factors for the spread of TBE are host population size, weather conditions, movement of hosts, and local regulations on the socioeconomic dynamics of the local and travelling people around the foci areas. The mean incidence rate of tick-borne encephalitis from 2000-2019 in Europe was 3.27, while the age-adjusted mean incidence rate was 2.19 per 100,000 population size. This review used several articles and data sources from the European Centre for Diseases Prevention and Control.
Collapse
|
28
|
Voyiatzaki C, Papailia SI, Venetikou MS, Pouris J, Tsoumani ME, Papageorgiou EG. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe-How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116516. [PMID: 35682098 PMCID: PMC9180659 DOI: 10.3390/ijerph19116516] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022]
Abstract
Climate change has influenced the transmission of a wide range of vector-borne diseases in Europe, which is a pressing public health challenge for the coming decades. Numerous theories have been developed in order to explain how tick-borne diseases are associated with climate change. These theories include higher proliferation rates, extended transmission season, changes in ecological balances, and climate-related migration of vectors, reservoir hosts, or human populations. Changes of the epidemiological pattern have potentially catastrophic consequences, resulting in increasing prevalence of tick-borne diseases. Thus, investigation of the relationship between climate change and tick-borne diseases is critical. In this regard, climate models that predict the ticks’ geographical distribution changes can be used as a predicting tool. The aim of this review is to provide the current evidence regarding the contribution of the climatic changes to Lyme borreliosis (LB) disease and tick-borne encephalitis (TBE) and to present how computational models will advance our understanding of the relationship between climate change and tick-borne diseases in Europe.
Collapse
Affiliation(s)
- Chrysa Voyiatzaki
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
- Correspondence:
| | - Sevastiani I. Papailia
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Maria S. Venetikou
- Laboratory of Anatomy-Pathological Anatomy & Physiology Nutrition, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece;
| | - John Pouris
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Maria E. Tsoumani
- Laboratory of Molecular Microbiology & Immunology, Department of Biomedical Sciences, University of West Attica, 12243 Athens, Greece; (S.I.P.); (J.P.); (M.E.T.)
| | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece;
| |
Collapse
|
29
|
Banović P, Díaz-Sánchez AA, Đurić S, Sević S, Turkulov V, Lendak D, Mikić SS, Simin V, Mijatović D, Bogdan I, Potkonjak A, Savić S, Obregón D, Cabezas-Cruz A. Unexpected TBEV Seropositivity in Serbian Patients Who Recovered from Viral Meningitis and Encephalitis. Pathogens 2022; 11:pathogens11030371. [PMID: 35335695 PMCID: PMC8951648 DOI: 10.3390/pathogens11030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
The tick-borne encephalitis virus (TBEV) causes a life-threatening disease named Tick-borne encephalitis (TBE). The clinical symptoms associated with TBE range from non-specific to severe inflammation of the central nervous system and are very similar to the clinical presentation of other viral meningitis/encephalitis. In consequence, TBE is often misclassified by clinical physicians, mainly in the non-identified high-risk areas where none or only a few TBE cases have been reported. Considering this situation, we hypothesized that among persons from northern Serbia who recovered from viral meningitis or encephalitis, there would be evidence of TBEV infection. To test this hypothesis, in this observational study, we evaluated the seroreactivity against TBEV antigens in patients from northern Serbia who were hospitalized due to viral meningitis and/or viral encephalitis of unknown etiology. Three cases of seroreactivity to TBEV antigens were discovered among convalescent patients who recovered from viral meningitis and/or encephalitis and accepted to participate in the study (n = 15). The clinical and laboratory findings of these patients overlap with that of seronegative convalescent patients. Although TBE has been a notifiable disease in Serbia since 2004, there is no active TBE surveillance program for the serologic or molecular screening of TBEV infection in humans in the country. This study highlights the necessity to increase the awareness of TBE among physicians and perform active and systematic screening of TBEV antibodies among patients with viral meningitis and/or encephalitis.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Department of Microbiology with Parasitology and Immunology, Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia
- Correspondence: (P.B.); (A.C.-C.)
| | | | - Selena Đurić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
| | - Siniša Sević
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Vesna Turkulov
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Dajana Lendak
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Sandra Stefan Mikić
- Faculty of Medicine in Novi Sad, University of Novi Sad, 21000 Novi Sad, Serbia; (S.Đ.); (S.S.); (V.T.); (D.L.); (S.S.M.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (I.B.)
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Department of Prevention of Rabies and Other Infectious Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Ivana Bogdan
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (I.B.)
| | - Aleksandar Potkonjak
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Sara Savić
- Scientific Veterinary Institute “Novi Sad”, 21000 Novi Sad, Serbia;
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
- Correspondence: (P.B.); (A.C.-C.)
| |
Collapse
|
30
|
Hromníková D, Furka D, Furka S, Santana JAD, Ravingerová T, Klöcklerová V, Žitňan D. Prevention of tick-borne diseases: challenge to recent medicine. Biologia (Bratisl) 2022; 77:1533-1554. [PMID: 35283489 PMCID: PMC8905283 DOI: 10.1007/s11756-021-00966-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
Abstract Ticks represent important vectors and reservoirs of pathogens, causing a number of diseases in humans and animals, and significant damage to livestock every year. Modern research into protection against ticks and tick-borne diseases focuses mainly on the feeding stage, i.e. the period when ticks take their blood meal from their hosts during which pathogens are transmitted. Physiological functions in ticks, such as food intake, saliva production, reproduction, development, and others are under control of neuropeptides and peptide hormones which may be involved in pathogen transmission that cause Lyme borreliosis or tick-borne encephalitis. According to current knowledge, ticks are not reservoirs or vectors for the spread of COVID-19 disease. The search for new vaccination methods to protect against ticks and their transmissible pathogens is a challenge for current science in view of global changes, including the increasing migration of the human population. Highlights • Tick-borne diseases have an increasing incidence due to climate change and increased human migration • To date, there is no evidence of transmission of coronavirus COVID-19 by tick as a vector • To date, there are only a few modern, effective, and actively- used vaccines against ticks or tick-borne diseases • Neuropeptides and their receptors expressed in ticks may be potentially used for vaccine design
Collapse
Affiliation(s)
- Dominika Hromníková
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Daniel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Samuel Furka
- Faculty of Natural Sciences, Department of Physical and Theoretical Chemistry, Comenius University, Mlynská dolina, Ilkovičova 6, 84104 Bratislava, SK Slovakia
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Julio Ariel Dueñas Santana
- Chemical Engineering Department, University of Matanzas, Km 3 Carretera a Varadero, 44740 Matanzas, CU Cuba
| | - Táňa Ravingerová
- Department of Cardiovascular Physiology and Pathophysiology, Slovak Academy of Sciences, Institute of Heart Research, Dúbravská cesta 9, SK 84005 Bratislava, Slovakia
| | - Vanda Klöcklerová
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Department of Molecular Physiology, Slovak Academy of Sciences, Institute of Zoology, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
31
|
Vaccination against Tick-Borne Encephalitis (TBE) in Italy: Still a Long Way to Go. Microorganisms 2022; 10:microorganisms10020464. [PMID: 35208918 PMCID: PMC8880353 DOI: 10.3390/microorganisms10020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis (TBE) is endemic in several European countries, and its incidence has recently increased. Various factors may explain this phenomenon: social factors (changes in human behavior, duration and type of leisure activities and increased tourism in European high-risk areas), ecological factors (e.g., effects of climate change on the tick population and reservoir animals), and technological factors (improved diagnostics, increased medical awareness). Furthermore, the real burden of TBE is not completely known, as the performance of surveillance systems is suboptimal and cases of disease are under-reported in several areas. Given the potentially severe clinical course of the disease, the absence of any antiviral therapy, and the impossibility of interrupting the transmission of the virus in nature, vaccination is the mainstay of prevention and control. TBE vaccines are effective (protective effect of approximately 95% after completion of the basic vaccination—three doses) and well tolerated. However, their uptake in endemic areas is suboptimal. In the main endemic countries where vaccination is included in the national/regional immunization program (with reimbursed vaccination programs), this decision was driven by a cost-effectiveness assessment (CEA), which is a helpful tool in the decision-making process. All CEA studies conducted have demonstrated the cost-effectiveness of TBE vaccination. Unfortunately, CEA is still lacking in many endemic countries, including Italy. In the future, it will be necessary to fill this gap in order to introduce an effective vaccination strategy in endemic areas. Finally, raising awareness of TBE, its consequences and the benefit of vaccination is critical in order to increase vaccination coverage and reduce the burden of the disease.
Collapse
|
32
|
Food-Borne Transmission of Tick-Borne Encephalitis Virus—Spread, Consequences, and Prophylaxis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031812. [PMID: 35162837 PMCID: PMC8835261 DOI: 10.3390/ijerph19031812] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.
Collapse
|
33
|
Incidence of Tick-Borne Encephalitis during the COVID-19 Pandemic in Selected European Countries. J Clin Med 2022; 11:jcm11030803. [PMID: 35160255 PMCID: PMC8836726 DOI: 10.3390/jcm11030803] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ixodes ricinus ticks are one of the most important vectors and reservoirs of infectious diseases in Europe, and tick-borne encephalitis (TBE) is one of the most dangerous human diseases transmitted by these vectors. The aim of the present study was to investigate the TBE incidence in some European countries during the COVID-19 pandemic. To this end, we analyzed the data published by the European Center for Disease Prevention and Control (ECDC) and Eurostat on the number of reported TBE and COVID-19 cases in 2020 and TBE cases in 2015–2019 (reference period). Significant differences in the TBE incidence were found between the analyzed countries. The highest TBE incidence was found in Lithuania (25.45/100,000 inhabitants). A high TBE incidence was also observed in Central European countries. In 12 of the 23 analyzed countries, there was significant increase in TBE incidence during the COVID-19 pandemic during 2020 compared to 2015–2019. There was no correlation between the incidence of COVID-19 and TBE and between the availability of medical personnel and TBE incidence in the studied countries. In conclusion, Central Europe and the Baltic countries are areas with a high risk of TBE infection. Despite the COVID-19 pandemic and imposed restrictions, the incidence of TBE is increasing in more than half of the analyzed countries.
Collapse
|
34
|
The manifestation of myositis in tick-borne encephalitis as a prophet of severe disease course: a rare case report. Clin Rheumatol 2022; 41:1241-1245. [PMID: 35024987 DOI: 10.1007/s10067-022-06058-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most serious neurological tick-transmitted diseases. The initial phase usually occurs with non-specific symptoms such as fever, headache, and muscular pain. The clinical spectrum of the second phase of the disease typically ranges from mild meningitis to severe meningoencephalitis. Our case demonstrates a rare clinical case of acute myositis as manifestation of TBE virus infection. A 33-year-old female was admitted to the Rheumatology centre with a fever followed by proximal muscle pain and weakness. Despite the tick bite history and marginally positive anti-TBE virus IgM titre, the patient did not present any neurological symptoms. Laboratory test results showed elevated creatine kinase (CK) and myoglobin. Other infections, idiopathic inflammatory myopathies, were excluded. TBE virus infection was confirmed by rapid seroconversion of specific IgG class antibodies in serum. The second phase of the disease was followed by neurological symptoms and a repeated increase of CK and myoglobin. We suggest that in the case of acute myositis of unknown cause and the history of thick bite, TBE virus infection should be considered and creatine kinase might be considered as a laboratory marker of disease activity that correlates with the severity of the disease.
Collapse
|
35
|
Goryashchenko AS, Uvarova VI, Osolodkin DI, Ishmukhametov AA. Discovery of small molecule antivirals targeting tick-borne encephalitis virus. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2022. [DOI: 10.1016/bs.armc.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Ličková M, Fumačová Havlíková S, Sláviková M, Klempa B. Alimentary Infections by Tick-Borne Encephalitis Virus. Viruses 2021; 14:56. [PMID: 35062261 PMCID: PMC8779402 DOI: 10.3390/v14010056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes serious the neurological disease, tick-borne encephalitis (TBE). TBEV can be transmitted to humans by ticks as well as by the alimentary route, which is mediated through the consumption of raw milk products from infected ruminants such as sheep, goats, and cows. The alimentary route of TBEV was recognized in the early 1950s and many important experimental studies were performed shortly thereafter. Nowadays, alimentary TBEV infections are recognized as a relevant factor contributing to the overall increase in TBE incidences in Europe. This review aims to summarize the history and current extent of alimentary TBEV infections across Europe, to analyze experimental data on virus secretion in milk, and to review possible alimentary infection preventive measures.
Collapse
Affiliation(s)
| | | | | | - Boris Klempa
- Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (M.L.); (S.F.H.); (M.S.)
| |
Collapse
|
37
|
Prelog M, Almanzar G, Stern R, Robrade K, Holzer MT, Winzig C, Kleines M, Stiasny K, Meyer T, Speth F, Haas JP. Humoral and cellular immune response to tick-borne-encephalitis (TBE) vaccination depends on booster doses in patients with Juvenile Idiopathic Arthritis (JIA). Vaccine 2021; 39:5918-5927. [PMID: 34462165 DOI: 10.1016/j.vaccine.2021.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/29/2021] [Accepted: 08/06/2021] [Indexed: 11/15/2022]
Abstract
Juvenile Idiopathic Arthritis (JIA) patients living in areas with high prevalence of tick-borne-encephalitis-virus-(TBEV)-infection are recommended for administration of inactivated TBE-vaccination. However, there are serious concerns regarding protective vaccine-induced immune responses against TBEV in immunocompromised patients. The present study aimed to analyze the humoral and cellular immune response to TBE-vaccination in previously TBE-vaccinated JIA patients compared to healthy controls (HC) including investigation of IgG-anti-TBEV avidity, neutralization capacity, cellular reactivity by IFNgamma-ELISPOT and cytokine secretion assays. Similar IgG-anti-TBEV antibody concentrations, neutralization titers and cellular reactivity were found between JIA and HC. The number and the early timing of booster vaccinations after primary vaccination had the most prominent effect on neutralizing antibodies in JIA and on IgG-anti-TBEV concentrations in both JIA and HC. Administration of booster vaccinations made it more likely for JIA patients to have IgG-anti-TBEV concentrations ≥165 VIEU/ml and avidities >60%. TNF-alpha inhibitors had a positive and MTX administration a negative effect on humoral immune responses. In conclusion, irrespective of having JIA or not, vaccinated children showed similar humoral and cellular immunity against TBEV several years after primary TBE-vaccination. However, in JIA, booster vaccinations mounted a significantly higher humoral immune response than in JIA without boosters. Our results highlight the need for timely administration of boosters particularly in JIA. Although immunosuppressive treatment at vaccinations in diagnosed JIA had a negative effect mainly on TBEV-specific cellular immunity, most JIA patients mounted a favorable humoral immune response which was maintained over time. Thus, successful TBE-vaccination seems highly feasible in JIA patients with immunosuppressive regimens.
Collapse
Affiliation(s)
- M Prelog
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany.
| | - G Almanzar
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - R Stern
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - K Robrade
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - M T Holzer
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - C Winzig
- Department of Pediatrics, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - M Kleines
- Department of Medical Microbiology, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - K Stiasny
- Department of Virology, Medical University Vienna, Kinderspitalgasse 15, 1090 Vienna, Austria
| | - T Meyer
- Pediatric Surgery Unit, Department of Surgery, University Hospital Wuerzburg, Josef-Schneider-Straße 2, 97080 Wuerzburg, Germany
| | - F Speth
- German Center of Pediatric and Adolescent Rheumatology, Gehfeldstraße 24, 82467 Garmisch-Partenkirchen, Germany
| | - J P Haas
- German Center of Pediatric and Adolescent Rheumatology, Gehfeldstraße 24, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
38
|
Bertola M, Montarsi F, Obber F, Da Rold G, Carlin S, Toniolo F, Porcellato E, Falcaro C, Mondardini V, Ormelli S, Ravagnan S. Occurrence and Identification of Ixodes ricinus Borne Pathogens in Northeastern Italy. Pathogens 2021; 10:1181. [PMID: 34578213 PMCID: PMC8470124 DOI: 10.3390/pathogens10091181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
In Europe, Ixodes ricinus is the main vector for tick-borne pathogens (TBPs), the most common tick species in Italy, particularly represented in pre-alpine and hilly northern areas. From 2011 to 2017, ticks were collected by dragging in Belluno province (northeast Italy) and analyzed by molecular techniques for TBP detection. Several species of Rickettsia spp. and Borrelia spp. Anaplaspa phagocitophilum, Neoerlichia mikurensis and Babesia venatorum, were found to be circulating in the study area carried by I. ricinus (n = 2668, all stages). Overall, 39.1% of screened pools were positive for at least one TBP, with a prevalence of 12.25% and 29.2% in immature stages and adults, respectively. Pathogens were detected in 85% of the monitored municipalities, moreover the presence of TBPs varied from one to seven different pathogens in the same year. The annual TBPs prevalence fluctuations observed in each municipality highlights the necessity of performing continuous tick surveillance. In conclusion, the observation of TBPs in ticks remains an efficient strategy for monitoring the circulation of tick-borne diseases (TBDs) in a specific area.
Collapse
Affiliation(s)
- Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Obber
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Graziana Da Rold
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Sara Carlin
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Federica Toniolo
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Elena Porcellato
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Christian Falcaro
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | | | - Silvia Ormelli
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| | - Silvia Ravagnan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, Legnaro, 35020 Padua, Italy; (F.M.); (F.O.); (G.D.R.); (S.C.); (F.T.); (E.P.); (C.F.); (S.O.); (S.R.)
| |
Collapse
|
39
|
Hansen CA, Barrett ADT. The Present and Future of Yellow Fever Vaccines. Pharmaceuticals (Basel) 2021; 14:ph14090891. [PMID: 34577591 PMCID: PMC8468696 DOI: 10.3390/ph14090891] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/05/2022] Open
Abstract
The disease yellow fever (YF) is prevented by a live-attenuated vaccine, termed 17D, which has been in use since the 1930s. One dose of the vaccine is thought to give lifelong (35+ years) protective immunity, and neutralizing antibodies are the correlate of protection. Despite being a vaccine-preventable disease, YF remains a major public health burden, causing an estimated 109,000 severe infections and 51,000 deaths annually. There are issues of supply and demand for the vaccine, and outbreaks in 2016 and 2018 resulted in fractional dosing of the vaccine to meet demand. The World Health Organization (WHO) has established the “Eliminate Yellow Fever Epidemics” (EYE) initiative to reduce the burden of YF over the next 10 years. As with most vaccines, the WHO has recommendations to assure the quality, safety, and efficacy of the YF vaccine. These require the use of live 17D vaccine only produced in embryonated chicken eggs, and safety evaluated in non-human primates only. Thus, any second-generation vaccines would require modification of WHO recommendations if they were to be used in endemic countries. There are multiple second-generation YF vaccine candidates in various stages of development that must be shown to be non-inferior to the current 17D vaccine in terms of safety and immunogenicity to progress through clinical trials to potential licensing. The historic 17D vaccine continues to shape the global vaccine landscape in its use in the generation of multiple licensed recombinant chimeric live vaccines and vaccine candidates, in which its structural protein genes are replaced with those of other viruses, such as dengue and Japanese encephalitis. There is no doubt that the YF 17D live-attenuated vaccine will continue to play a role in the development of new vaccines for YF, as well as potentially for many other pathogens.
Collapse
Affiliation(s)
- Clairissa A. Hansen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
| | - Alan D. T. Barrett
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-4036, USA;
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555-4036, USA
- Correspondence:
| |
Collapse
|
40
|
In Vitro Characterization of the Innate Immune Pathways Engaged by Live and Inactivated Tick-Borne Encephalitis Virus. Vaccines (Basel) 2021; 9:vaccines9060664. [PMID: 34204532 PMCID: PMC8234070 DOI: 10.3390/vaccines9060664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) infection can lead to inflammation of the central nervous system. The disease can be effectively prevented by whole inactivated virus vaccines. Here, we investigated the innate immune profile induced in vitro by the antigen component of the vaccines, inactivated TBEV (I-TBEV), to gain insights into the mechanism of action of the TBE vaccine as compared to the live virus. To this end, we exposed human peripheral blood mononuclear cells (PBMCs) to inactivated and live TBEV and assessed cellular responses by RNA sequencing. Both inactivated and live TBEV significantly induced an interferon-dominated gene signature and an increased RIG-I-like receptor (RLR) expression. Using pathway-specific inhibitors, we assessed the involvement of pattern recognition receptors in the sensing of inactivated or live TBEV. Only RLR pathway inhibition significantly suppressed the downstream cascade induced by I-TBEV, while responses to the replicating virus were impacted by the inhibition of RIG-I-like, as well as Toll-like, receptors. Our results show that inactivated and live TBEV predominantly engaged an interferon response in our in vitro PBMC platform, and indicate RLRs as the main pattern recognition receptors involved in I-TBEV sensing.
Collapse
|
41
|
Hofhuis A, van den Berg OE, Meerstadt-Rombach FS, van den Wijngaard CC, Chung NH, Franz E, Reimerink JHJ. Exposure to tick-borne encephalitis virus among nature management workers in the Netherlands. Ticks Tick Borne Dis 2021; 12:101762. [PMID: 34147921 DOI: 10.1016/j.ttbdis.2021.101762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2021] [Accepted: 05/11/2021] [Indexed: 12/01/2022]
Abstract
Tick-borne encephalitis virus (TBEV) has only recently been detected in the Netherlands. With still few autochthonous tick-borne encephalitis (TBE) patients, human exposure to TBEV is expected to be very low among the general population. We aimed to assess the exposure to TBEV among persons with an occupationally high risk of tick bites in the Netherlands. In our cross-sectional serological survey, employees and volunteers of nature management organizations provided a single blood sample and completed an online questionnaire in 2017. The sera were screened in the anti-TBEV IgG Enzyme-Linked Immunosorbent Assay (ELISA), after which a TBEV-specific virus neutralization test (VNT) was applied to confirm positive ELISA outcomes. Ten sera tested positive for IgG antibodies in the TBEV ELISA, among 556 participants who did not report vaccination against TBEV. Through confirmation in VNT, TBEV-specific IgG antibodies were detected among 0.5% (3/556, 95%CI 0.1%-1.6%). During the five years prior to the questionnaire, 87% reported tick bites. Half of the participants considered that most of their tick bites (75% to 100%) had been acquired while being at work. A very low seroprevalence of TBEV exposure was observed among these nature management workers, even though they report a six times higher exposure to tick bites, compared to our general population. Nonetheless, the emergence of TBEV in the Netherlands reaffirms the need for education and preventative measures against tick bites and tick-borne diseases.
Collapse
Affiliation(s)
- A Hofhuis
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - O E van den Berg
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - F S Meerstadt-Rombach
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - C C van den Wijngaard
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - N H Chung
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - E Franz
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J H J Reimerink
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
42
|
Dueva EV, Tuchynskaya KK, Kozlovskaya LI, Osolodkin DI, Sedenkova KN, Averina EB, Palyulin VA, Karganova GG. Spectrum of antiviral activity of 4-aminopyrimidine N-oxides against a broad panel of tick-borne encephalitis virus strains. Antivir Chem Chemother 2021; 28:2040206620943462. [PMID: 32811155 PMCID: PMC7545520 DOI: 10.1177/2040206620943462] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein n-octyl-β-d-glucoside (β-OG) pocket, were reported earlier. In this work, these inhibitors were tested in vitro against seven strains representing three main TBEV subtypes. The most potent compound, 2-[(2-methyl-1-oxido-5,6,7,8-tetrahydroquinazolin-4-yl)amino]-phenol, showed EC50 values lower than 22 µM against all the tested strains. Nevertheless, EC50 values for virus samples of certain strains demonstrated a substantial variation, which appeared to be consistent with the presence of E protein not only in infectious virions, but also in non-infectious and immature virus particles, protein aggregates, and membrane complexes.
Collapse
Affiliation(s)
- Evgenia V Dueva
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Liubov I Kozlovskaya
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| | - Dmitry I Osolodkin
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| | | | - Elena B Averina
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | | | - Galina G Karganova
- FSBSI "Chumakov FSC R&D IBP RAS", Moscow, Russia.,Sechenov First Moscow State Medical University, Moscow, Russia *The work on the basis of the FSBSI "Chumakov FSC R&D IBP RAS" was performed by the author during her employment from 2012 to 2017
| |
Collapse
|
43
|
Akaberi D, Båhlström A, Chinthakindi PK, Nyman T, Sandström A, Järhult JD, Palanisamy N, Lundkvist Å, Lennerstrand J. Targeting the NS2B-NS3 protease of tick-borne encephalitis virus with pan-flaviviral protease inhibitors. Antiviral Res 2021; 190:105074. [PMID: 33872674 DOI: 10.1016/j.antiviral.2021.105074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022]
Abstract
Tick-borne encephalitis (TBE) is a severe neurological disorder caused by tick-borne encephalitis virus (TBEV), a member of the Flavivirus genus. Currently, two vaccines are available in Europe against TBEV. However, TBE cases have been rising in Sweden for the past twenty years, and thousands of cases are reported in Europe, emphasizing the need for antiviral treatments against this virus. The NS2B-NS3 protease is essential for flaviviral life cycle and has been studied as a target for the design of inhibitors against several well-known flaviviruses, but not TBEV. In the present study, Compound 86, a known tripeptidic inhibitor of dengue (DENV), West Nile (WNV) and Zika (ZIKV) proteases, was predicted to be active against TBEV protease using a combination of in silico techniques. Further, Compound 86 was found to inhibit recombinant TBEV protease with an IC50 = 0.92 μM in the in vitro enzymatic assay. Additionally, two more peptidic analogues were synthetized and they displayed inhibitory activities against both TBEV and ZIKV proteases. In particular, Compound 104 inhibited ZIKV protease with an IC50 = 0.25 μM. These compounds represent the first reported inhibitors of TBEV protease to date and provides valuable information for the further development of TBEV as well as pan-flavivirus protease inhibitors.
Collapse
Affiliation(s)
- Dario Akaberi
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Amanda Båhlström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Praveen K Chinthakindi
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Tomas Nyman
- Protein Science Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Anja Sandström
- The Beijer Laboratory, Department of Medicinal Chemistry, Drug Design and Discovery, Uppsala University, Uppsala, Sweden
| | - Josef D Järhult
- Department of Medical Sciences, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Johan Lennerstrand
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
44
|
An Epidemiological Survey Regarding Ticks and Tick-Borne Diseases among Livestock Owners in Punjab, Pakistan: A One Health Context. Pathogens 2021; 10:pathogens10030361. [PMID: 33803649 PMCID: PMC8003106 DOI: 10.3390/pathogens10030361] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/30/2022] Open
Abstract
Recent global changes have led to an increase in the spread of ticks and tick-borne diseases (TBDs) affecting domestic ruminants and humans, with an annual loss of US $13.9–$18.7 billion. The current study determined the perception and practices of livestock farmers regarding tick infestation. A total of 112 livestock farms were surveyed in Punjab, Pakistan, among which animals from 42 (37.5%) farms were infested with ticks. Only 28.6% (n = 32) of the dairy farmers were consulting veterinarians for ticks control, while 86.7% (n = 97) of the respondents did not consider biosecurity measures in the control of tick transmission. Most of the respondents, 71.4% (n = 80), did not consider manual tick removal from their animals (i.e., by hand, followed by physically crushing) as a risky practice for spreading zoonotic diseases. Improper disposal of bottles of acaricides in the farm drainage was also observed, putting the environment and aquatic life at risk. These wrong practices may contribute to high disease burdens and economic losses, increasing the possibility of transmission of zoonotic TBDs and pollution of the environment. Therefore, an integrated One Health approach is required for the control of TBDs through environmentally friendly approaches.
Collapse
|
45
|
Banović P, Obregón D, Mijatović D, Simin V, Stankov S, Budakov-Obradović Z, Bujandrić N, Grujić J, Sević S, Turkulov V, Díaz-Sánchez AA, Cabezas-Cruz A. Tick-Borne Encephalitis Virus Seropositivity among Tick Infested Individuals in Serbia. Pathogens 2021; 10:301. [PMID: 33807559 PMCID: PMC8001322 DOI: 10.3390/pathogens10030301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a life-threatening disease with clinical symptoms ranging from non-specific to severe inflammation of the central nervous system. Despite TBE is a notifiable disease in Serbia since 2004, there is no active TBE surveillance program for the serologic or molecular screening of TBEV infection in humans in the country. This prospective cohort study aimed to assess the TBEV exposure among tick-infested individuals in Serbia during the year 2020. A total of 113 individuals exposed to tick bites were recruited for the study and screened for anti-TBEV antibodies using a commercial indirect fluorescent antibody test (IFA) test. Blood samples from 50 healthy donors not exposed to tick bites were included as a control group. Most of the enrolled patients reported infestations with one tick, being I. ricinus the most frequent tick found in the participants. The TBEV seroprevalence was higher (13.27%, 15 total 113) in tick-infested individuals than in healthy donors (4%, 2 total 50), although the difference was not significant. Notably, male individuals exposed to tick bites showed five times higher relative risk (RR) of being TBEV-seropositive than healthy donors of the same gender (RR= 5.1, CI = 1.6-19; p = 0.007). None of the seropositive individuals developed clinical manifestations of TBE, but the first clinical-stage of Lyme borreliosis (i.e., erythema migrans) was detected in seven of them. Potential TBEV foci were identified in rural areas, mostly in proximity or within the Fruška Gora mountain. We conclude that the Serbian population is at high risk of TBEV exposure. Further epidemiological studies should focus on potential TBEV foci identified in this study. The implementation of active surveillance for TBEV might contribute to evaluating the potential negative impact of TBE in Serbia.
Collapse
Affiliation(s)
- Pavle Banović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP 13400-970, Brazil
| | - Dragana Mijatović
- Ambulance for Lyme Borreliosis and Other Tick-Borne Diseases, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia;
| | - Verica Simin
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (S.S.)
| | - Srdjan Stankov
- Department of Microbiology, Pasteur Institute Novi Sad, 21000 Novi Sad, Serbia; (V.S.); (S.S.)
| | - Zorana Budakov-Obradović
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Nevenka Bujandrić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Jasmina Grujić
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Blood Transfusion Institute Vojvodina, 21000 Novi Sad, Serbia
| | - Siniša Sević
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | - Vesna Turkulov
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.B.-O.); (N.B.); (J.G.); (S.S.); (V.T.)
- Clinic for Infectious Diseases, Clinical Center of Vojvodina, 21000 Novi Sad, Serbia
| | | | - Alejandro Cabezas-Cruz
- Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France
| |
Collapse
|
46
|
Schley K, Malerczyk C, Beier D, Schiffner-Rohe J, von Eiff C, Häckl D, Süß J. Vaccination rate and adherence of tick-borne encephalitis vaccination in Germany. Vaccine 2021; 39:830-838. [PMID: 33414049 DOI: 10.1016/j.vaccine.2020.12.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is an arboviral infection of the central nervous system. As there is no causal treatment of TBE, disease prevention by vaccination is especially important. Immunization consists of a three-dose primary vaccination schedule, followed by regular booster doses. In Germany, the Standing Committee on Vaccination (STIKO) at the Robert Koch-Institute recommends TBE vaccination for all those at high risk of contracting TBE. This includes individuals living in, traveling to and/or working in risk areas, and being exposed to ticks. To our knowledge, there are currently no reliable data on TBE vaccination rates in Germany available. METHODS This retrospective cohort study based on anonymized German health claims data was conducted to determine vaccination rates of TBE primary immunization in 2012 to 2015 by federal state, compliance with the vaccination schedule, and TBE vaccination uptake for the 2011 birth cohort. Vaccination protection rates for each federal state were simulated based on a compartmental model. RESULTS Vaccination rates of an initiated primary immunization ranged from about 3% in the southern federal states to <1% in the northern federal states. Across all federal states, compliance with the vaccination schedule decreased with each subsequent vaccination. Slightly higher TBE vaccination uptake was determined in the 2011 birth cohort, as compared to the German school entry health examination statistics in 2017. Simulated vaccination protection rates for each federal state ranged from 10% in Hamburg to 51% in Baden-Wuerttemberg. CONCLUSIONS While there was an overall low vaccination uptake and a discrepancy between areas of high vs. low TBE risk, this study also indicates a concerning decline in vaccination compliance. Vaccinating physicians should address the importance of adherence upon initiation of TBE vaccination.
Collapse
Affiliation(s)
| | | | - Dominik Beier
- InGef - Institute for Applied Health Research Berlin GmbH, Spittelmarkt 12, 10117 Berlin, Germany
| | | | | | | | - Jochen Süß
- BREHMS WELT - Tiere und Menschen, Dorfstraße 22, 07646 Renthendorf, Germany
| |
Collapse
|
47
|
Buczek A, Pilch J, Buczek W. Tick Preventive Behaviors and Practices Adopted by Medical Students from Poland, Germany, and Thailand in Relation to Socio-Demographic Conditions and Their Knowledge of Ticks and Tick-Borne Diseases. INSECTS 2020; 11:insects11120863. [PMID: 33287425 PMCID: PMC7761883 DOI: 10.3390/insects11120863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022]
Abstract
Given the high medical importance of ticks, we analyzed the most common preventive behaviors and practices adopted by medical students from Poland, Germany, and Thailand, and the level of their knowledge of ticks and tick-borne diseases. A survey consisting of 19 questions was conducted among 636 randomly selected students. The study showed that the Polish and German students preferred inspection of the body on their return home (86.9% and 63.5%, respectively) and wearing protective clothes (79.8% and 32.3%, respectively) as part of prophylaxis. The Thai students most often chose wearing protective clothes (54.7%) and preventive behavior in tick habitats (42.7%). Approximately 7% of the Polish medical students and as many as 22% of the German and Thai respondents did not use any means of prevention. Our analyses suggest that the use of preventive methods and respondents' behaviors depend on socio-demographic factors and the level of health education. The insufficient practical implementation of tick prevention measures by the medical students suggests a need for verification of health education programs in schools as well as effective popularization and educational activities. It is also necessary to develop a public health protection strategy against the effects of tick bites.
Collapse
|
48
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
49
|
Gillingham EL, Cull B, Pietzsch ME, Phipps LP, Medlock JM, Hansford K. The Unexpected Holiday Souvenir: The Public Health Risk to UK Travellers from Ticks Acquired Overseas. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7957. [PMID: 33138220 PMCID: PMC7663673 DOI: 10.3390/ijerph17217957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022]
Abstract
Overseas travel to regions where ticks are found can increase travellers' exposure to ticks and pathogens that may be unfamiliar to medical professionals in their home countries. Previous studies have detailed non-native tick species removed from recently returned travellers, occasionally leading to travel-associated human cases of exotic tick-borne disease. There are 20 species of tick endemic to the UK, yet UK travellers can be exposed to many other non-native species whilst overseas. Here, we report ticks received by Public Health England's Tick Surveillance Scheme from humans with recent travel history between January 2006 and December 2018. Altogether, 16 tick species were received from people who had recently travelled overseas. Confirmed imports (acquired outside of the UK) were received from people who recently travelled to 22 countries. Possible imports (acquired abroad or within the UK) were received from people who had recently travelled to eight European countries. Species-specific literature reviews highlighted nine of the sixteen tick species are known to vector at least one tick-borne pathogen to humans in the country of acquisition, suggesting travellers exposed to ticks may be at risk of being bitten by a species that is a known vector, with implications for novel tick-borne disease transmission to travellers.
Collapse
Affiliation(s)
- Emma L. Gillingham
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury SP4 0JG, UK; (B.C.); (M.E.P.); (J.M.M.); (K.H.)
| | - Benjamin Cull
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury SP4 0JG, UK; (B.C.); (M.E.P.); (J.M.M.); (K.H.)
| | - Maaike E. Pietzsch
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury SP4 0JG, UK; (B.C.); (M.E.P.); (J.M.M.); (K.H.)
| | - L. Paul Phipps
- Wildlife Zoonoses and Vector-Borne Research Group, Department of Virology, Animal and Plant Health Agency, Addlestone, Surrey KT15 3NB, UK;
| | - Jolyon M. Medlock
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury SP4 0JG, UK; (B.C.); (M.E.P.); (J.M.M.); (K.H.)
| | - Kayleigh Hansford
- Medical Entomology and Zoonoses Ecology, Emergency Response Department, Public Health England, Porton Down, Salisbury SP4 0JG, UK; (B.C.); (M.E.P.); (J.M.M.); (K.H.)
| |
Collapse
|
50
|
Baroutsou V, Zens KD, Sinniger P, Fehr J, Lang P. Analysis of Tick-borne Encephalitis vaccination coverage and compliance in adults in Switzerland, 2018. Vaccine 2020; 38:7825-7833. [PMID: 33164805 DOI: 10.1016/j.vaccine.2020.10.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND Overall incidence and geographic range of Tick-borne Encephalitis (TBE), a vaccine preventable infection, have steadily increased in Switzerland over the last 50 years. While fully subsidized vaccination has been recommended in many areas for well over a decade, vaccine coverage and variables associated with vaccination compliance among Swiss adults are poorly understood. METHODS In 2018 we conducted a national, cross-sectional survey of vaccination cards evaluating TBE vaccination coverage and compliance among adults (18-79) in Switzerland. RESULTS Nationwide TBE vaccination coverage was 41.7% (range 14.3% to 60.3%) for 1 dose and 32.9% (range 8.4% to 50.4%) for a complete primary series (3 doses). There was a significant correlation between average disease incidence by canton (2009-2018) and vaccine coverage at both 1 and 3 doses. Of the overall population, 9.5% had received at least one TBE booster vaccination with large regional coverage variation. We estimated that 23% of adults in Switzerland would be protected from infection based on their vaccination history and 135 (95% CI: 112-162) TBE cases were prevented in 2018. Individuals reporting previous experience with tick-associated health problems, those frequently in nature or those with "high" perceived risk of contracting TBE, were significantly more likely to have received at least one vaccine dose, indicating a positive impact of awareness on vaccination compliance. We also calculated a TBE incidence rate of 6.83/100,000 among the unvaccinated adult population in Switzerland and estimated vaccine effectiveness at 91.5% (95% CI: 90.9-92.0%). CONCLUSIONS These findings provide an important reference for TBE vaccination levels in Switzerland and further suggest that public health interventions promoting knowledge of TBE health impacts and risk factors may be beneficial in improving TBE vaccination coverage but should be tailored to account for heterogeneity in vaccine uptake.
Collapse
Affiliation(s)
- Vasiliki Baroutsou
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| | - Kyra D Zens
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland; Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Philipp Sinniger
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland
| | - Jan Fehr
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland; Department of Infectious Diseases and Hospital Epidemiology, University Hospital, Zurich, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, Department of Public and Global Health, University of Zurich, Zurich, Switzerland.
| |
Collapse
|