1
|
Dieng I, Talla C, Barry MA, Gaye A, Balde D, Ndiaye M, Kane M, Sagne SN, Diagne MM, Diop B, Diallo B, Sall AA, Faye O, Sow A, Fall G, Loucoubar C, Faye O. The Spatiotemporal Distribution and Molecular Characterization of Circulating Dengue Virus Serotypes/Genotypes in Senegal from 2019 to 2023. Trop Med Infect Dis 2024; 9:32. [PMID: 38393121 PMCID: PMC10891755 DOI: 10.3390/tropicalmed9020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/09/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Dengue virus is becoming a major public health threat worldwide, principally in Africa. From 2016 to 2020, 23 outbreaks were reported in Africa, principally in West Africa. In Senegal, dengue outbreaks have been reported yearly since 2017. Data about the circulating serotypes and their spatial and temporal distribution were limited to outbreaks that occurred between 2017 and 2018. Herein, we describe up-to-date molecular surveillance of circulating DENV serotypes in Senegal between 2019 to 2023 and their temporal and spatial distribution around the country. For this purpose, suspected DENV-positive samples were collected and subjected to dengue detection and serotyping using RT-qPCR methods. Positive samples were used for temporal and spatial mapping. A subset of DENV+ samples were then sequenced and subjected to phylogenetic analysis. Results show a co-circulation of three DENV serotypes with an overall predominance of DENV-3. In terms of abundance, DENV-3 is followed by DENV-1, with scarce cases of DENV-2 from February 2019 to February 2022. Interestingly, data show the extinction of both serotype 1 and serotype 2 and the only circulation of DENV-3 from March 2022 to February 2023. At the genotype level, the analysis shows that sequenced strains belong to same genotype as previously described: Senegalese DENV-1 strains belong to genotype V, DENV-2 strains to the cosmopolitan genotype, and DENV-3 strains to Genotype III. Interestingly, newly obtained DENV 1-3 sequences clustered in different clades within genotypes. This co-circulation of strains belonging to different clades could have an effect on virus epidemiology and transmission dynamics. Overall, our results highlight DENV serotype replacement by DENV-3, accompanied by a wider geographic distribution, in Senegal. These results highlight the importance of virus genomic surveillance and call for further viral fitness studies using both in vitro and in vivo models, as well as in-depth phylogeographic studies to uncover the virus dispersal patterns across the country.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Aboubacry Gaye
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mignane Ndiaye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Mouhamed Kane
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Moussa Moise Diagne
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Boly Diop
- Direction of Prevention, Ministry of Health, Dakar 220, Senegal
| | - Boubacar Diallo
- Department of Public Health, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Abdourahmane Sow
- Department of Public Health, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal
| |
Collapse
|
2
|
Dieng I, Balde D, Talla C, Camara D, Barry MA, Sagne SN, Gueye K, Dia CAKM, Sambe BS, Fall G, Sall AA, Faye O, Loucoubar C, Faye O. Molecular Evolution of Dengue Virus 3 in Senegal between 2009 and 2022: Dispersal Patterns and Implications for Prevention and Therapeutic Countermeasures. Vaccines (Basel) 2023; 11:1537. [PMID: 37896941 PMCID: PMC10610876 DOI: 10.3390/vaccines11101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.
Collapse
Affiliation(s)
- Idrissa Dieng
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Diamilatou Balde
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Cheikh Talla
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Diogop Camara
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Mamadou Aliou Barry
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Samba Niang Sagne
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Khadim Gueye
- EMBL’s European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK;
| | - Cheikh Abdou Khadre Mbacké Dia
- Department of Animal Biology, Faculty of Science et Technics, Université Cheikh Anta Diop de Dakar (UCAD), BP 5005 Fann, Dakar, Senegal; (C.A.K.M.D.); (B.S.S.)
| | - Babacar Souleymane Sambe
- Department of Animal Biology, Faculty of Science et Technics, Université Cheikh Anta Diop de Dakar (UCAD), BP 5005 Fann, Dakar, Senegal; (C.A.K.M.D.); (B.S.S.)
| | - Gamou Fall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Amadou Alpha Sall
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Ousmane Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| | - Cheikh Loucoubar
- Epidemiology, Clinical Research and Data Science Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (C.T.); (M.A.B.); (S.N.S.); (C.L.)
| | - Oumar Faye
- Arboviruses and Haemorrhagic Fever Viruses Unit, Virology Department, Institut Pasteur de Dakar, Dakar 220, Senegal; (D.B.); (D.C.); (G.F.); (A.A.S.); (O.F.); (O.F.)
| |
Collapse
|
3
|
Rivera JA, Rengifo AC, Rosales-Munar A, Díaz-Herrera TH, Ciro JU, Parra E, Alvarez-Díaz DA, Laiton-Donato K, Caldas ML. Genotyping of dengue virus from infected tissue samples embedded in paraffin. Virol J 2023; 20:100. [PMID: 37231481 DOI: 10.1186/s12985-023-02072-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023] Open
Abstract
Dengue has become one of the vector-borne diseases that affect humans worldwide. In Latin American countries, Colombia is historically one of the most affected by epidemics of this flavivirus. The underreporting of signs and symptoms of probable cases of dengue, the lack of characterization of the serotypes of the infection, and the few detailed studies of postmortem necropsies of patients are among other conditions that have delayed progress in the knowledge of the pathogenesis of the disease. This study presents the results of fragment sequencing assays on paraffin-embedded tissue samples from fatal DENV cases during the 2010 epidemic in Colombia. We found that the predominant serotype was DENV-2, with the Asian/American genotype of lineages 1 and 2. This work is one of the few reports of the circulating genotypes of dengue during the 2010 epidemic in Colombia, one of the most lethal dates in the country's history.
Collapse
Grants
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
- contract 757 project 2013 Instituto Nacional de Salud (INS), Dirección de Investigación en Salud Pública (DISP), and the Colombian Department of Science, Technology, and Innovation (Minciencias)
Collapse
Affiliation(s)
- Jorge Alonso Rivera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Aura Caterine Rengifo
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia.
| | - Alicia Rosales-Munar
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - Taylor H Díaz-Herrera
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| | - José Usme Ciro
- CIST-Centro de Investigaciones en Salud Para el Trópico, Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta, 47003, Colombia
| | - Edgar Parra
- Dirección de Redes en Salud Pública, Grupo de Patología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Diego A Alvarez-Díaz
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - Katherine Laiton-Donato
- Dirección de investigación en Salud Pública, Grupo de Genómica de Microorganismos Emergentes, Instituto Nacional de Salud, Bogotá, Colombia
| | - María Leonor Caldas
- Dirección de investigación en Salud Pública, Grupo de Morfología Celular, Instituto Nacional de Salud, Avenue 26 No. 51-20 - Zone 6 CAN, Bogotá, Colombia
| |
Collapse
|
4
|
Sy AK, Koo C, Privaldos KJR, Quinones MAT, Igoy MAU, Villanueva SYAM, Hibberd ML, Ng LC, Hapuarachchi HC. Genetic Diversity and Dispersal of DENGUE Virus among Three Main Island Groups of the Philippines during 2015-2017. Viruses 2023; 15:v15051079. [PMID: 37243165 DOI: 10.3390/v15051079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Dengue has been one of the major public health concerns in the Philippines for more than a century. The annual dengue case burden has been increasing in recent years, exceeding 200,000 in 2015 and 2019. However, there is limited information on the molecular epidemiology of dengue in the Philippines. We, therefore, conducted a study to understand the genetic composition and dispersal of DENV in the Philippines from 2015 to 2017 under UNITEDengue. Our analyses included 377 envelope (E) gene sequences of all 4 serotypes obtained from infections in 3 main island groups (Luzon, Visayas, and Mindanao) of the Philippines. The findings showed that the overall diversity of DENV was generally low. DENV-1 was relatively more diverse than the other serotypes. Virus dispersal was evident among the three main island groups, but each island group demonstrated a distinct genotype composition. These observations suggested that the intensity of virus dispersal was not substantive enough to maintain a uniform heterogeneity among island groups so that each island group behaved as an independent epidemiological unit. The analyses suggested Luzon as one of the major sources of DENV emergence and CAR, Calabarzon, and CARAGA as important hubs of virus dispersal in the Philippines. Our findings highlight the importance of virus surveillance and molecular epidemiological analyses to gain deep insights into virus diversity, lineage dominance, and dispersal patterns that could assist in understanding the epidemiology and transmission risk of dengue in endemic regions.
Collapse
Affiliation(s)
- Ava Kristy Sy
- National Reference Laboratory for Dengue and Other Arbovirus, Virology Department, Research Institute for Tropical Medicine, Filinvest Corporate City Compound, Alabang, Muntinlupa City 1781, Philippines
| | - Carmen Koo
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| | - Kristine J R Privaldos
- National Reference Laboratory for Dengue and Other Arbovirus, Virology Department, Research Institute for Tropical Medicine, Filinvest Corporate City Compound, Alabang, Muntinlupa City 1781, Philippines
| | - Mary Ann T Quinones
- National Reference Laboratory for Dengue and Other Arbovirus, Virology Department, Research Institute for Tropical Medicine, Filinvest Corporate City Compound, Alabang, Muntinlupa City 1781, Philippines
| | - Mary A U Igoy
- National Reference Laboratory for Dengue and Other Arbovirus, Virology Department, Research Institute for Tropical Medicine, Filinvest Corporate City Compound, Alabang, Muntinlupa City 1781, Philippines
| | - Sharon Y A M Villanueva
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, 625, Pedro Gil Street, Ermita, Manila 1000, Philippines
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Philippine Genome Centre, Dilliman Campus, University of the Philippines, Dilman, Ma. Regidor, U.P. Campus, Quezon City 1101, Philippines
- National Institutes of Health, University of the Philippines Manila, 623, Pedro Gil Street, Ermita, Manila 1000, Philippines
- Genome Institute of Singapore, 60, Biopolis Street, Genome, #02-01, Singapore 138672, Singapore
| | - Lee Ching Ng
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| | - Hapuarachchige C Hapuarachchi
- Environmental Health Institute, National Environment Agency, 11, Biopolis Way, #06-05-08, Singapore 138667, Singapore
| |
Collapse
|
5
|
Jagtap S, Pattabiraman C, Sankaradoss A, Krishna S, Roy R. Evolutionary dynamics of dengue virus in India. PLoS Pathog 2023; 19:e1010862. [PMID: 37011104 PMCID: PMC10101646 DOI: 10.1371/journal.ppat.1010862] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/13/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
More than a hundred thousand dengue cases are diagnosed in India annually, and about half of the country's population carries dengue virus-specific antibodies. Dengue propagates and adapts to the selection pressures imposed by a multitude of factors that can lead to the emergence of new variants. Yet, there has been no systematic analysis of the evolution of the dengue virus in the country. Here, we present a comprehensive analysis of all DENV gene sequences collected between 1956 and 2018 from India. We examine the spatio-temporal dynamics of India-specific genotypes, their evolutionary relationship with global and local dengue virus strains, interserotype dynamics and their divergence from the vaccine strains. Our analysis highlights the co-circulation of all DENV serotypes in India with cyclical outbreaks every 3-4 years. Since 2000, genotype III of DENV-1, cosmopolitan genotype of DENV-2, genotype III of DENV-3 and genotype I of DENV-4 have been dominating across the country. Substitution rates are comparable across the serotypes, suggesting a lack of serotype-specific evolutionary divergence. Yet, the envelope (E) protein displays strong signatures of evolution under immune selection. Apart from drifting away from its ancestors and other contemporary serotypes in general, we find evidence for recurring interserotype drift towards each other, suggesting selection via cross-reactive antibody-dependent enhancement. We identify the emergence of the highly divergent DENV-4-Id lineage in South India, which has acquired half of all E gene mutations in the antigenic sites. Moreover, the DENV-4-Id is drifting towards DENV-1 and DENV-3 clades, suggesting the role of cross-reactive antibodies in its evolution. Due to the regional restriction of the Indian genotypes and immunity-driven virus evolution in the country, ~50% of all E gene differences with the current vaccines are focused on the antigenic sites. Our study shows how the dengue virus evolution in India is being shaped in complex ways.
Collapse
Affiliation(s)
- Suraj Jagtap
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Arun Sankaradoss
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sudhir Krishna
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa, Ponda, India
| | - Rahul Roy
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Cardona-Ospina JA, Stittleburg V, Millan-Benavidez N, Restrepo-Chica J, Key A, Rojas-Gallardo DM, Piantadosi A, Collins MH, Waggoner JJ. Sensitive and Stable Molecular Detection of Dengue, Chikungunya, and Zika Viruses from Dried Blood Spots. Am J Trop Med Hyg 2022; 107:296-299. [PMID: 35895398 PMCID: PMC9393429 DOI: 10.4269/ajtmh.21-1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/05/2022] [Indexed: 08/03/2023] Open
Abstract
Standard molecular detection of many pathogens, in particular RNA viruses, requires appropriate handling in the field for preserving the quality of the sample until processing. This could be challenging in remote tropical areas. Dengue virus (DENV), chikungunya virus (CHIKV), and Zika virus (ZIKV) are RNA viruses, prominent among the causes of fever in the tropics. We aimed to test the stability of arboviral RNA in contrived dried blood spots prepared on Whatman 903 Protein saver cards as a means of sample collection and storage. We were able to detect DENV, CHIKV, and ZIKV by real-time RT-PCR up to 180 days after card inoculation with stable Ct values across the study period. Our study supports dried blood spots (DBS) on protein saver cards as a platform for stable detection of arboviral RNA of sufficient quality to be used in diagnostic RT-PCR assays and next generation sequencing.
Collapse
Affiliation(s)
- Jaime A. Cardona-Ospina
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
- Emerging Infectious Diseases and Tropical Medicine Research Group, Sci-help, Pereira, Risaralda, Colombia
| | - Victoria Stittleburg
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
| | - Natalia Millan-Benavidez
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Juliana Restrepo-Chica
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Autum Key
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Diana Marcela Rojas-Gallardo
- Grupo de Investigación Biomedicina, Facultad de Medicina, Institución Universitaria Visión de las Américas, Pereira, Risaralda, Colombia
| | - Anne Piantadosi
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia
| | - Matthew H. Collins
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia
| | - Jesse J. Waggoner
- Department of Medicine, Division of Infectious Diseases, Emory University, Atlanta, Georgia
- Department of Global Health, Rollins School of Public Health, Atlanta, Georgia
| |
Collapse
|
7
|
Letizia AG, Pratt CB, Wiley MR, Fox AT, Mosore M, Agbodzi B, Yeboah C, Kumordjie S, Di Paola N, Assana KC, Coulidiaty D, Ouedraogo C, Bonney JHK, Ampofo W, Tarnagda Z, Sangaré L. Retrospective Genomic Characterization of a 2017 Dengue Virus Outbreak, Burkina Faso. Emerg Infect Dis 2022; 28:1198-1210. [PMID: 35608626 PMCID: PMC9155902 DOI: 10.3201/eid2806.212491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Knowledge of contemporary genetic composition of dengue virus (DENV) in Africa is lacking. By using next-generation sequencing of samples from the 2017 DENV outbreak in Burkina Faso, we isolated 29 DENV genomes (5 serotype 1, 16 serotype 2 [DENV-2], and 8 serotype 3). Phylogenetic analysis demonstrated the endemic nature of DENV-2 in Burkina Faso. We noted discordant diagnostic results, probably related to genetic divergence between these genomes and the Trioplex PCR. Forward and reverse1 primers had a single mismatch when mapped to the DENV-2 genomes, probably explaining the insensitivity of the molecular test. Although we observed considerable homogeneity between the Dengvaxia and TetraVax-DV-TV003 vaccine strains as well as B cell epitopes compared with these genomes, we noted unique divergence. Continual surveillance of dengue virus in Africa is needed to clarify the ongoing novel evolutionary dynamics of circulating virus populations and support the development of effective diagnostic, therapeutic, and preventive countermeasures.
Collapse
|
8
|
Jesus MCS, Chagas RDO, Santos CA, Santos RWF, Barros GS, La Corte R, Batista MVA, Storti-Melo LM. Molecular characterization and phylogenetic analysis of Chikungunya virus during the 2016 outbreak in Sergipe, northeastern Brazil. Trans R Soc Trop Med Hyg 2021; 115:779-784. [PMID: 33236121 DOI: 10.1093/trstmh/traa123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chikungunya (CHIKV) is an arbovirus transmitted mainly by Aedes aegypti females. CHIKV has been highlighted as the pathogen with the greatest impact due to the high morbidity caused by the infection. In 2016, Brazil experienced an outbreak that affected almost 272 000 people. Here, we performed a molecular characterization and phylogenetic analysis of the CHIKV circulating in 2016 in the state of Sergipe, Brazil. METHODS A partial region of the E1 gene of 16 CHIKV-positive samples from Sergipe State was amplified and sequenced. RESULTS All sequences belonged to the East-Central-South-African genotype and three point mutations were verified. Two of them were silent mutations and one was a non-synonymous mutation, which changed lysine to threonine at position 211 in the E1 protein. This mutation was present in 81.2% of the sequences, as well as in other five Brazilian sequences from previous studies. This study found that CHIKV strains circulating in Sergipe during the 2016 outbreak belonged to two different haplotypes. CONCLUSIONS The strains circulating in Sergipe are phylogenetically close to other Brazilian samples circulating in the northeast and southeast of the country, as well as viruses circulating during the same period in Haiti, indicating the rapid spread of these haplotypes.
Collapse
Affiliation(s)
- Myrela C S Jesus
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil
| | - Rynat D O Chagas
- Departamento de Medicina, Universidade Federal de Sergipe, Aracaju, 49060-108. Sergipe, Brasil
| | - Cliomar A Santos
- Laboratório Central de Saúde Pública de Sergipe, LACEN, Aracaju, 49020-590, Sergipe, Brasil
| | - Rafaela W F Santos
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil.,Laboratório Central de Saúde Pública de Sergipe, LACEN, Aracaju, 49020-590, Sergipe, Brasil
| | - Gerlane S Barros
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil.,Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, 49100-000, Sergipe, Brasil
| | - Roseli La Corte
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil.,Departamento de Morfologia, Universidade Federal de Sergipe, São Cristóvão, 49100-000, Sergipe, Brasil
| | - Marcus V A Batista
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil.,Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, 49100-000, Sergipe, Brasil
| | - Luciane M Storti-Melo
- Programa de Pós-Graduação em Biologia Parasitária, Universidade Federal de Sergipe, São Cristóvão 49100-000, Sergipe, Brasil.,Departamento de Biologia, Universidade Federal de Sergipe, São Cristóvão, 49100-000, Sergipe, Brasil
| |
Collapse
|
9
|
Rosales-Munar A, Alvarez-Diaz DA, Laiton-Donato K, Peláez-Carvajal D, Usme-Ciro JA. Efficient Method for Molecular Characterization of the 5' and 3' Ends of the Dengue Virus Genome. Viruses 2020; 12:v12050496. [PMID: 32365696 PMCID: PMC7290889 DOI: 10.3390/v12050496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Dengue is a mosquito-borne disease that is of major importance in public health. Although it has been extensively studied at the molecular level, sequencing of the 5′ and 3′ ends of the untranslated regions (UTR) commonly requires specific approaches for completion and corroboration. The present study aimed to characterize the 5′ and 3′ ends of dengue virus types 1 to 4. The 5′ and 3′ ends of twenty-nine dengue virus isolates from acute infections were amplified through a modified protocol of the rapid amplification cDNA ends approach. For the 5′ end cDNA synthesis, specific anti-sense primers for each serotype were used, followed by polyadenylation of the cDNA using a terminal transferase and subsequent PCR amplification with oligo(dT) and internal specific reverse primer. At the 3′ end of the positive-sense viral RNA, an adenine tail was directly synthetized using an Escherichia coli poly(A) polymerase, allowing subsequent hybridization of the oligo(dT) during cDNA synthesis. The incorporation of the poly(A) tail at the 5′ and 3′ ends of the dengue virus cDNA and RNA, respectively, allowed for successful primer hybridization, PCR amplification and direct sequencing. This approach can be used for completing dengue virus genomes obtained through direct and next-generation sequencing methods.
Collapse
Affiliation(s)
- Alicia Rosales-Munar
- Sequencing and Genomics Unit, Virology Laboratory, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.R.-M.); (D.A.A.-D.); (K.L.-D.); (D.P.-C.)
| | - Diego Alejandro Alvarez-Diaz
- Sequencing and Genomics Unit, Virology Laboratory, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.R.-M.); (D.A.A.-D.); (K.L.-D.); (D.P.-C.)
| | - Katherine Laiton-Donato
- Sequencing and Genomics Unit, Virology Laboratory, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.R.-M.); (D.A.A.-D.); (K.L.-D.); (D.P.-C.)
| | - Dioselina Peláez-Carvajal
- Sequencing and Genomics Unit, Virology Laboratory, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.R.-M.); (D.A.A.-D.); (K.L.-D.); (D.P.-C.)
| | - Jose A. Usme-Ciro
- Sequencing and Genomics Unit, Virology Laboratory, Dirección de Redes en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.R.-M.); (D.A.A.-D.); (K.L.-D.); (D.P.-C.)
- Centro de Investigación en Salud para el Trópico-CIST, Facultad de Medicina, Universidad Cooperativa de Colombia, Santa Marta 470003, Colombia
- Correspondence: ; Tel.: +57-314-628-9435
| |
Collapse
|
10
|
Quaresma JAS. Organization of the Skin Immune System and Compartmentalized Immune Responses in Infectious Diseases. Clin Microbiol Rev 2019; 32:e00034-18. [PMID: 31366611 PMCID: PMC6750136 DOI: 10.1128/cmr.00034-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The skin is an organ harboring several types of immune cells that participate in innate and adaptive immune responses. The immune system of the skin comprises both skin cells and professional immune cells that together constitute what is designated skin-associated lymphoid tissue (SALT). In this review, I extensively discuss the organization of SALT and the mechanisms involved in its responses to infectious diseases of the skin and mucosa. The nature of these SALT responses, and the cellular mediators involved, often determines the clinical course of such infections. I list and describe the components of innate immunity, such as the roles of the keratinocyte barrier and of inflammatory and natural killer cells. I also examine the mechanisms involved in adaptive immune responses, with emphasis on new cytokine profiles, and the role of cell death phenomena in host-pathogen interactions and control of the immune responses to infectious agents. Finally, I highlight the importance of studying SALT in order to better understand host-pathogen relationships involving the skin and detail future directions in the immunological investigation of this organ, especially in light of recent findings regarding the skin immune system.
Collapse
Affiliation(s)
- Juarez Antonio Simões Quaresma
- Center of Biological and Health Sciences, State University of Pará, Belém, PA, Brazil
- Evandro Chagas Institute, Ministry of Health, Ananindeua, PA, Brazil
- Tropical Medicine Center, Federal University of Pará, Belém, PA, Brazil
- School of Medicine, São Paulo University, São Paulo, SP, Brazil
| |
Collapse
|
11
|
Ayolabi CI, Olusola BA, Ibemgbo SA, Okonkwo GO. Detection of Dengue viruses among febrile patients in Lagos, Nigeria and phylogenetics of circulating Dengue serotypes in Africa. INFECTION GENETICS AND EVOLUTION 2019; 75:103947. [PMID: 31276800 DOI: 10.1016/j.meegid.2019.103947] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/28/2019] [Accepted: 06/30/2019] [Indexed: 11/16/2022]
Abstract
Dengue fever, a mosquito borne viral disease, is caused by Dengue virus. This virus and its vector is endemic in most tropical countries including Nigeria. Dengue presents with febrile symptoms and is a major cause of morbidity and mortality in affected countries. The infection presently has no licensed drugs and vaccine is only available for previously exposed individuals. Despite the endemicity of Dengue in Nigeria, very few studies have identified circulating Dengue genotypes in the country. There is also sparse information on the occurrence, distribution and temporal patterns of circulating dengue virus serotypes as well as genotypes in Africa. This situation creates barriers to effective control of the infection in the continent. This study identified Dengue serotypes and genotypes among febrile patients in two health centers in Lagos, Nigeria. Phylogenetic analysis of Dengue sequences previously collected from African countries and submitted to GenBank database from 1944 till date was also performed. One hundred and thirty febrile persons were recruited for the study between April and August 2018. Eleven (8.5%) persons were Dengue virus positive. Dengue virus serotypes 1 (genotype I) and 3 (genotype I) were identified as actively circulating in Lagos, Nigeria. DENV 1 genotype V, DENV 2 cosmopolitan genotype and DENV 3 genotype III has over the years been the predominant circulating Dengue strains in Africa. Relative genotypic stability of circulating Dengue serotypes in Africa occurred over the past five decades. This may be due to limited investigations on circulating Dengue serotypes among asymptomatic individuals in the region as most studies focused on disease outbreaks and imported cases. There is the need to describe circulating Dengue genotypes in northern Africa, southern Africa as well as among asymptomatic individuals in other parts of Africa as this will provide further information on the diversity of Dengue genotypes circulating in the region.
Collapse
Affiliation(s)
| | | | - Sylvester Agha Ibemgbo
- Department of Microbiology, University of Lagos, Lagos, Nigeria; Department of Biological Sciences, Mountain Top University, Ogun State, Nigeria.
| | | |
Collapse
|
12
|
Harapan H, Michie A, Yohan B, Shu P, Mudatsir M, Sasmono RT, Imrie A. Dengue viruses circulating in Indonesia: A systematic review and phylogenetic analysis of data from five decades. Rev Med Virol 2019; 29:e2037. [DOI: 10.1002/rmv.2037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 12/08/2018] [Accepted: 12/11/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Harapan Harapan
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | - Alice Michie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
| | | | - Pei‐Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease ControlMinistry of Health and Welfare Taiwan Republic of China
| | - Mudatsir Mudatsir
- Medical Research Unit, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
- Department of Microbiology, School of MedicineUniversitas Syiah Kuala Banda Aceh Indonesia
| | | | - Allison Imrie
- School of Biomedical SciencesUniversity of Western Australia Nedlands Western Australia Australia
- Pathwest Laboratory Medicine Nedlands Western Australia Australia
| |
Collapse
|
13
|
Quintero-Gil DC, Uribe-Yepes A, Ospina M, Díaz FJ, Martinez-Gutierrez M. Differences in the replicative capacities of clinical isolates of dengue virus in C6/36 cells and in urban populations of Aedes aegypti from Colombia, South America. Braz J Infect Dis 2018; 22:257-272. [PMID: 30165044 PMCID: PMC9427825 DOI: 10.1016/j.bjid.2018.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 11/28/2022] Open
Abstract
Dengue, the most prevalent arboviral disease worldwide, is caused by any of the four dengue virus (DENV) serotypes that co-circulate constantly in hyperendemic areas such as Medellin (Colombia), and these serotypes are transmitted by mosquitoes of the genus Aedes. In this study, we evaluated the replicative capacity of strains isolated in Medellin between 2003 and 2007 in C6/36 cells and in colonies of Aedes aegypti collected during 2010–2011 from high or low-incidence areas within the same city. The phylogenetic analysis grouped isolates according to the predominant genotypes found in the Americas, and the in vitro characterization showed differences in the morphological changes induced by the isolates of each of the isolated serotypes compared to the reference serotypes. In vitro replicative capacity studies demonstrated that genomic copy number increased at four days post-infection and that cell viability decreased significantly compared to the control for all serotypes. The largest number of genomic copies in C6/36 was produced by DENV-2, followed by DENV-1 and DENV-4; DENV-3 produced the smallest number of genomic copies and had the smallest negative effect on cell viability. Finally, differences in the in vivo replication of intercolonial serotypes between the Rockefeller colony and the field colonies and among the intracolonial serotypes were found. The replication of DENV-2 at 7 and 14 days in both high- and low-incidence colonies was higher than that of the other serotypes, and replication of DENV-3 in the mosquito colonies was the most stable on the days evaluated. Our results support the notion that replication and, possibly, DENV transmission and severity depend on many factors, including serotype and vector characteristics.
Collapse
Affiliation(s)
- Diana Carolina Quintero-Gil
- Universidad de Antioquia, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Medellin, Colombia
| | - Alexander Uribe-Yepes
- Universidad de Antioquia, Programa de Estudio y Control de Enfermedades Tropicales-PECET, Medellin, Colombia
| | - Marta Ospina
- Laboratorio Departamental de Salud de Antioquia, Medellin, Colombia
| | | | - Marlen Martinez-Gutierrez
- Universidad Cooperativa de Colombia, Facultad de Medicina Veterinaria y Zootecnia, Grupo de Investigación en Ciencias Animales-GRICA, Bucaramanga, Colombia.
| |
Collapse
|
14
|
Azami NAM, Moi ML, Ami Y, Suzaki Y, Lim CK, Taniguchi S, Saijo M, Takasaki T, Kurane I. Genotype-specific and cross-reactive neutralizing antibodies induced by dengue virus infection: detection of antibodies with different levels of neutralizing activities against homologous and heterologous genotypes of dengue virus type 2 in common marmosets (Callithrix jacchus). Virol J 2018; 15:51. [PMID: 29587780 PMCID: PMC5870686 DOI: 10.1186/s12985-018-0967-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/19/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND A vaccine against all four dengue virus (DENV) serotypes includes the formulation of one genotype of each serotype. Although genetic similarities among genotypes within a serotype are higher as compared to those among serotypes, differences in the immunogenicity of the included genotypes would be a critical issue in maximizing successful dengue vaccine development. Thus, we determined the neutralizing antibody responses against three genotypes of dengue virus serotype 2 (DENV-2), namely Cosmopolitan, Asian I, and Asian/American, after primary and secondary inoculation with DENV-2 in a dengue animal model, the common marmoset (Callithrix jacchus). METHODS A total of fifty-four plasma samples were obtained from thirty-four marmosets that were inoculated with clinically-isolated DENV strains or DENV candidate vaccines, were used in this study. Plasma samples were obtained from marmosets after primary inoculation with DENV-2 infection, secondary inoculation with homologous or heterologous genotypes, and tertiary inoculation with heterologous DENV. Neutralizing antibody titers against DENV-2 (Cosmopolitan, Asian I, and Asian/American genotypes) and DENV-1 were determined using a conventional plaque reduction neutralization assay. RESULTS In marmosets that were inoculated with the Cosmopolitan genotype in primary infection, neutralizing antibody neutralized 3 genotypes, and the titers to Asian I genotype were significantly higher than those to homologous Cosmopolitan genotype. After secondary DENV-2 infection with heterologous genotype (Asian I in primary and Asian/American in secondary), neutralizing antibody titers to Asian/American genotype was significantly higher than those against Cosmopolitan and Asian I genotypes. Following tertiary infection with DENV-1 following DENV-2 Asian I and Cosmopolitan genotypes, neutralizing antibody titers to Asian/American were also significantly higher than those against Cosmopolitan and Asian I genotypes. CONCLUSION The present study demonstrated that different levels of neutralizing antibodies were induced against variable DENV-2 genotypes after primary, secondary and tertiary infections, and that neutralizing antibody titers to some heterologous genotypes were higher than those to homologous genotypes within a serotype. The results indicate that heterogeneity and homogeneity of infecting genotypes influence the levels and cross-reactivity of neutralizing antibodies induced in following infections. The results also suggest that certain genotypes may possess advantage in terms of breakthrough infections against vaccination.
Collapse
Affiliation(s)
- Nor Azila Muhammad Azami
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, Japan
| | - Meng Ling Moi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yasushi Ami
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuriko Suzaki
- Division of Experimental Animal Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Ichiro Kurane
- National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo, 162-8640 Japan
| |
Collapse
|
15
|
Wichmann O, Vannice K, Asturias EJ, de Albuquerque Luna EJ, Longini I, Lopez AL, Smith PG, Tissera H, Yoon IK, Hombach J. Live-attenuated tetravalent dengue vaccines: The needs and challenges of post-licensure evaluation of vaccine safety and effectiveness. Vaccine 2018; 35:5535-5542. [PMID: 28893477 DOI: 10.1016/j.vaccine.2017.08.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
Abstract
Since December 2015, the first dengue vaccine has been licensed in several Asian and Latin American countries for protection against disease from all four dengue virus serotypes. While the vaccine demonstrated an overall good safety and efficacy profile in clinical trials, some key research questions remain which make risk-benefit-assessment for some populations difficult. As for any new vaccine, several questions, such as very rare adverse events following immunization, duration of vaccine-induced protection and effectiveness when used in public health programs, will be addressed by post-licensure studies and by data from national surveillance systems after the vaccine has been introduced. However, the complexity of dengue epidemiology, pathogenesis and population immunity, as well as some characteristics of the currently licensed vaccine, and potentially also future, live-attenuated dengue vaccines, poses a challenge for evaluation through existing monitoring systems, especially in low and middle-income countries. Most notable are the different efficacies of the currently licensed vaccine by dengue serostatus at time of first vaccination and by dengue virus serotype, as well as the increased risk of dengue hospitalization among young vaccinated children observed three years after the start of vaccination in one of the trials. Currently, it is unknown if the last phenomenon is restricted to younger ages or could affect also seronegative individuals aged 9years and older, who are included in the group for whom the vaccine has been licensed. In this paper, we summarize scientific and methodological considerations for public health surveillance and targeted post-licensure studies to address some key research questions related to live-attenuated dengue vaccines. Countries intending to introduce a dengue vaccine should assess their capacities to monitor and evaluate the vaccine's effectiveness and safety and, where appropriate and possible, enhance their surveillance systems accordingly. Targeted studies are needed, especially to better understand the effects of vaccinating seronegative individuals.
Collapse
Affiliation(s)
- Ole Wichmann
- World Health Organization, Department of Immunizations, Vaccines and Biologicals, Geneva, Switzerland; Robert Koch Institute, Berlin, Germany
| | - Kirsten Vannice
- World Health Organization, Department of Immunizations, Vaccines and Biologicals, Geneva, Switzerland
| | - Edwin J Asturias
- University of Colorado School of Medicine, Aurora, CO, United States; Colorado School of Public Health, Aurora, CO, United States
| | | | - Ira Longini
- University of Florida, Gainesville, FL, United States
| | - Anna Lena Lopez
- University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Peter G Smith
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Hasitha Tissera
- National Dengue Control Unit, Ministry of Health, Colombo, Sri Lanka
| | - In-Kyu Yoon
- International Vaccine Institute, Seoul, South Korea
| | - Joachim Hombach
- World Health Organization, Department of Immunizations, Vaccines and Biologicals, Geneva, Switzerland.
| |
Collapse
|
16
|
Usme-Ciro JA, Lopera JA, Alvarez DA, Enjuanes L, Almazán F. Generation of a DNA-Launched Reporter Replicon Based on Dengue Virus Type 2 as a Multipurpose Platform. Intervirology 2017. [DOI: 10.1159/000476066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Lestari CSW, Yohan B, Yunita A, Meutiawati F, Hayati RF, Trimarsanto H, Sasmono RT. Phylogenetic and evolutionary analyses of dengue viruses isolated in Jakarta, Indonesia. Virus Genes 2017; 53:778-788. [PMID: 28600724 DOI: 10.1007/s11262-017-1474-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 06/03/2017] [Indexed: 02/01/2023]
Abstract
Dengue has affected Indonesia for the last five decades and become a major health problem in many cities in the country. Jakarta, the capital of Indonesia, reports dengue cases annually, with several outbreaks documented. To gain information on the dynamic and evolutionary history of dengue virus (DENV) in Jakarta, we conducted phylogenetic and evolutionary analyses of DENV isolated in 2009. Three hundred thirty-three dengue-suspected patients were recruited. Our data revealed that dengue predominantly affected young adults, and the majority of cases were due to secondary infection. A total of 171 virus isolates were successfully serotyped. All four DENV serotypes were circulating in the city, and DENV-1 was the predominant serotype. The DENV genotyping of 17 isolates revealed the presence of Genotypes I and IV in DENV-1, while DENV-2 isolates were grouped into the Cosmopolitan genotype. The grouping of isolates into Genotype I and II was seen for DENV-3 and DENV-4, respectively. Evolutionary analysis revealed the relatedness of Jakarta isolates with other isolates from other cities in Indonesia and isolates from imported cases in other countries. We revealed the endemicity of DENV and the role of Jakarta as the potential source of imported dengue cases in other countries. Our study provides genetic information regarding DENV from Jakarta, which will be useful for upstream applications, such as the study of DENV epidemiology and evolution and transmission dynamics.
Collapse
Affiliation(s)
- C S Whinie Lestari
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Benediktus Yohan
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Anisa Yunita
- Center for Research and Development of Biomedical and Basic Health Technology, National Institute of Health Research and Development, Ministry of Health, Jakarta, Indonesia
| | - Febrina Meutiawati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Rahma Fitri Hayati
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia
| | - R Tedjo Sasmono
- Eijkman Institute for Molecular Biology, Ministry of Research, Technology, and Higher Education, Jakarta, Indonesia.
| |
Collapse
|
18
|
Villabona-Arenas CJ, Ocazionez Jimenez RE, Jimenez Silva CL. Dengue Vaccine: Considerations before Rollout in Colombia. PLoS Negl Trop Dis 2016; 10:e0004653. [PMID: 27280803 PMCID: PMC4900517 DOI: 10.1371/journal.pntd.0004653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Christian Julian Villabona-Arenas
- UMI233, Institut de Recherche pour le Développement (IRD), Université de Montpellier, Montpellier, France
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier (LIRMM), Institut de Biologie Computationnelle (IBC), Université de Montpellier, Montpellier, France
| | - Raquel Elvira Ocazionez Jimenez
- Laboratorio de Arbovirus, Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Universidad Industrial de Santander, Santander, Colombia
| | - Cinthy Lorena Jimenez Silva
- Laboratorio de Arbovirus, Centro de Investigaciones en Enfermedades Tropicales (CINTROP), Universidad Industrial de Santander, Santander, Colombia
| |
Collapse
|
19
|
Yamanaka A, Oddgun D, Chantawat N, Okabayashi T, Ramasoota P, Churrotin S, Kotaki T, Kameoka M, Soegijanto S, Konishi E. Dengue virus infection-enhancing antibody activities against Indonesian strains in inhabitants of central Thailand. Microbes Infect 2015; 18:277-84. [PMID: 26645957 DOI: 10.1016/j.micinf.2015.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 12/30/2022]
Abstract
Dengue virus (DENV) infection-enhancing antibodies are a hypothetic factor to increase the dengue disease severity. In this study, we investigated the enhancing antibodies against Indonesian strains of DENV-1-4 in 50 healthy inhabitants of central Thailand (Bangkok and Uthai Thani). Indonesia and Thailand have seen the highest dengue incidence in Southeast Asia. The infection history of each subject was estimated by comparing his/her neutralizing antibody titers against prototype DENV-1-4 strains. To resolve the difficulty in obtaining foreign live viruses for use as assay antigens, we used a recombinant system to prepare single-round infectious dengue viral particles based on viral sequence information. Irrespective of the previously infecting serotype(s), most serum samples showed significantly higher enhancement titers against Indonesian DENV-2 strains than against Thai DENV-2 strains, whereas the opposite effect was observed for the DENV-3 strains. Equivalent enhancing activities were observed against both DENV-1 and DENV-4. These results suggest that the genotype has an impact on enhancing antibody activities against DENV-2 and DENV-3, because the predominant circulating genotypes of each serotype differ between Indonesia and Thailand.
Collapse
Affiliation(s)
- Atsushi Yamanaka
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | - Duangjai Oddgun
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Nantarat Chantawat
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Tamaki Okabayashi
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand.
| | - Siti Churrotin
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia
| | - Tomohiro Kotaki
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia; Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo 654-0142, Japan
| | - Masanori Kameoka
- Department of International Health, Kobe University Graduate School of Health Sciences, Hyogo 654-0142, Japan
| | - Soegeng Soegijanto
- Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases, Institute of Tropical Disease, Airlangga University, Surabaya 60015, Indonesia
| | - Eiji Konishi
- BIKEN Endowed Department of Dengue Vaccine Development, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; BIKEN Endowed Department of Dengue Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|