1
|
Zheng L, Zhang J, He H, Meng Z, Wang Y, Guo S, Liang C. Anthocyanin gene enrichment in the distal region of cotton chromosome A07: mechanisms of reproductive organ coloration. FRONTIERS IN PLANT SCIENCE 2024; 15:1381071. [PMID: 38699538 PMCID: PMC11063239 DOI: 10.3389/fpls.2024.1381071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Introduction The biosynthesis of secondary metabolites like anthocyanins is often governed by metabolic gene clusters (MGCs) in the plant ancestral genome. However, the existence of gene clusters specifically regulating anthocyanin accumulation in certain organs is not well understood. Methods and results In this study, we identify MGCs linked to the coloration of cotton reproductive organs, such as petals, spots, and fibers. Through genetic analysis and map-based cloning, we pinpointed key genes on chromosome A07, such as PCC/GhTT19, which is involved in anthocyanin transport, and GbBM and GhTT2-3A, which are associated with the regulation of anthocyanin and proanthocyanidin biosynthesis. Our results demonstrate the coordinated control of anthocyanin and proanthocyanidin pathways, highlighting the evolutionary significance of MGCs in plant adaptation. The conservation of these clusters in cotton chromosome A07 across species underscores their importance in reproductive development and color variation. Our study sheds light on the complex biosynthesis and transport mechanisms for plant pigments, emphasizing the role of transcription factors and transport proteins in pigment accumulation. Discussion This research offers insights into the genetic basis of color variation in cotton reproductive organs and the potential of MGCs to enhance our comprehension of plant secondary metabolism.
Collapse
Affiliation(s)
- Liuchang Zheng
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jilong Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haiyan He
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhigang Meng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengzhen Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
2
|
Stander EA, Cuello C, Birer-Williams C, Kulagina N, Jansen HJ, Carqueijeiro I, Méteignier LV, Vergès V, Oudin A, Papon N, Dirks RP, Jensen MK, O’Connor SE, Dugé de Bernonville T, Besseau S, Courdavault V. The Vinca minor genome highlights conserved evolutionary traits in monoterpene indole alkaloid synthesis. G3 (BETHESDA, MD.) 2022; 12:jkac268. [PMID: 36200869 PMCID: PMC9713385 DOI: 10.1093/g3journal/jkac268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/26/2023]
Abstract
Vinca minor, also known as the lesser periwinkle, is a well-known species from the Apocynaceae, native to central and southern Europe. This plant synthesizes monoterpene indole alkaloids, which are a class of specialized metabolites displaying a wide range of bioactive- and pharmacologically important properties. Within the almost 50 monoterpene indole alkaloids it produces, V. minor mainly accumulates vincamine, which is commercially used as a nootropic. Using a combination of Oxford Nanopore Technologies long read- and Illumina short-read sequencing, a 679,098 Mb V. minor genome was assembled into 296 scaffolds with an N50 scaffold length of 6 Mb, and encoding 29,624 genes. These genes were functionally annotated and used in a comparative genomic analysis to establish gene families and to investigate gene family expansion and contraction across the phylogenetic tree. Furthermore, homology-based monoterpene indole alkaloid gene predictions together with a metabolic analysis across 4 different V. minor tissue types guided the identification of candidate monoterpene indole alkaloid genes. These candidates were finally used to identify monoterpene indole alkaloid gene clusters, which combined with synteny analysis allowed for the discovery of a functionally validated vincadifformine-16-hydroxylase, reinforcing the potential of this dataset for monoterpene indole alkaloids gene discovery. It is expected that access to these resources will facilitate the elucidation of unknown monoterpene indole alkaloid biosynthetic routes with the potential of transferring these pathways to heterologous expression systems for large-scale monoterpene indole alkaloid production.
Collapse
Affiliation(s)
- Emily Amor Stander
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Clément Cuello
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Hans J Jansen
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Ines Carqueijeiro
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | | | - Valentin Vergès
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Audrey Oudin
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, F-49000 Angers, France
| | - Ron P Dirks
- Future Genomics Technologies, 2333 BE Leiden, The Netherlands
| | - Michael Krogh Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Sarah Ellen O’Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | | | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200 Tours, France
| |
Collapse
|
3
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
4
|
McGowan MT, Zhang Z, Ficklin SP. Chromosomal characteristics of salt stress heritable gene expression in the rice genome. BMC Genom Data 2021; 22:17. [PMID: 34044788 PMCID: PMC8162008 DOI: 10.1186/s12863-021-00970-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gene expression is potentially an important heritable quantitative trait that mediates between genetic variation and higher-level complex phenotypes through time and condition-dependent regulatory interactions. Therefore, we sought to explore both the genomic and condition-specific characteristics of gene expression heritability within the context of chromosomal structure. RESULTS Heritability was estimated for biological gene expression using a diverse, 84-line, Oryza sativa (rice) population under optimal and salt-stressed conditions. Overall, 5936 genes were found to have heritable expression regardless of condition and 1377 genes were found to have heritable expression only during salt stress. These genes with salt-specific heritable expression are enriched for functional terms associated with response to stimulus and transcription factor activity. Additionally, we discovered that highly and lowly expressed genes, and genes with heritable expression are distributed differently along the chromosomes in patterns that follow previously identified high-throughput chromosomal conformation capture (Hi-C) A/B chromatin compartments. Furthermore, multiple genomic hot-spots enriched for genes with salt-specific heritability were identified on chromosomes 1, 4, 6, and 8. These hotspots were found to contain genes functionally enriched for transcriptional regulation and overlaps with a previously identified major QTL for salt-tolerance in rice. CONCLUSIONS Investigating the heritability of traits, and in-particular gene expression traits, is important towards developing a basic understanding of how regulatory networks behave across a population. This work provides insights into spatial patterns of heritable gene expression at the chromosomal level.
Collapse
Affiliation(s)
- Matthew T McGowan
- Molecular Plant Sciences Program, Washington State University, French Ad 324G, Pullman, WA, 99164, USA.
| | - Zhiwu Zhang
- Molecular Plant Sciences Program, Washington State University, French Ad 324G, Pullman, WA, 99164, USA.,Department of Crops and Soils, Washington State University, 105 Johnson Hall, Pullman, WA, 99164, USA
| | - Stephen P Ficklin
- Molecular Plant Sciences Program, Washington State University, French Ad 324G, Pullman, WA, 99164, USA.,Department of Horticulture, Washington State University, 149 Johnson Hall, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Dar MS, Dholakia BB, Kulkarni AP, Oak PS, Shanmugam D, Gupta VS, Giri AP. Influence of domestication on specialized metabolic pathways in fruit crops. PLANTA 2021; 253:61. [PMID: 33538903 DOI: 10.1007/s00425-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.
Collapse
Affiliation(s)
- M Saleem Dar
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Dhanasekaran Shanmugam
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
6
|
Reimegård J, Kundu S, Pendle A, Irish VF, Shaw P, Nakayama N, Sundström JF, Emanuelsson O. Genome-wide identification of physically clustered genes suggests chromatin-level co-regulation in male reproductive development in Arabidopsis thaliana. Nucleic Acids Res 2017; 45:3253-3265. [PMID: 28175342 PMCID: PMC5389543 DOI: 10.1093/nar/gkx087] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/31/2017] [Indexed: 12/02/2022] Open
Abstract
Co-expression of physically linked genes occurs surprisingly frequently in eukaryotes. Such chromosomal clustering may confer a selective advantage as it enables coordinated gene regulation at the chromatin level. We studied the chromosomal organization of genes involved in male reproductive development in Arabidopsis thaliana. We developed an in-silico tool to identify physical clusters of co-regulated genes from gene expression data. We identified 17 clusters (96 genes) involved in stamen development and acting downstream of the transcriptional activator MS1 (MALE STERILITY 1), which contains a PHD domain associated with chromatin re-organization. The clusters exhibited little gene homology or promoter element similarity, and largely overlapped with reported repressive histone marks. Experiments on a subset of the clusters suggested a link between expression activation and chromatin conformation: qRT-PCR and mRNA in situ hybridization showed that the clustered genes were up-regulated within 48 h after MS1 induction; out of 14 chromatin-remodeling mutants studied, expression of clustered genes was consistently down-regulated only in hta9/hta11, previously associated with metabolic cluster activation; DNA fluorescence in situ hybridization confirmed that transcriptional activation of the clustered genes was correlated with open chromatin conformation. Stamen development thus appears to involve transcriptional activation of physically clustered genes through chromatin de-condensation.
Collapse
Affiliation(s)
- Johan Reimegård
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Solna SE-171 65, Sweden
| | - Snehangshu Kundu
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Ali Pendle
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Vivian F Irish
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Peter Shaw
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Naomi Nakayama
- Institute of Molecular Plant Science, SynthSys Centre for Synthetic and Systems Biology, and Centre for Science at Extreme Conditions, University of Edinburgh, King's Buildings, Edinburgh, UK
| | - Jens F Sundström
- Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, School of Biotechnology, Division of Gene Technology, KTH Royal Institute of Technology, Solna SE-171 65, Sweden
| |
Collapse
|
7
|
Tobias PA, Christie N, Naidoo S, Guest DI, Külheim C. Identification of the Eucalyptus grandis chitinase gene family and expression characterization under different biotic stress challenges. TREE PHYSIOLOGY 2017; 37:565-582. [PMID: 28338992 DOI: 10.1093/treephys/tpx010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/06/2017] [Indexed: 06/06/2023]
Abstract
Eucalyptus grandis (W. Hill ex Maiden) is an Australian Myrtaceae tree grown for timber in many parts of the world and for which the annotated genome sequence is available. Known to be susceptible to a number of pests and diseases, E. grandis is a useful study organism for investigating defense responses in woody plants. Chitinases are widespread in plants and cleave glycosidic bonds of chitin, the major structural component of fungal cell walls and arthropod exoskeletons. They are encoded by an important class of genes known to be up-regulated in plants in response to pathogens. The current study identified 67 chitinase gene models from two families known as glycosyl hydrolase 18 and 19 (36 GH18 and 31 GH19) within the E. grandis genome assembly (v1.1), indicating a recent gene expansion. Sequences were aligned and analyzed as conforming to currently recognized plant chitinase classes (I-V). Unlike other woody species investigated to date, E. grandis has a single gene encoding a putative vacuolar targeted Class I chitinase. In response to Leptocybe invasa (Fisher & La Salle) (the eucalypt gall wasp) and Chrysoporthe austroafricana (Gryzenhout & M.J. Wingf. 2004) (causal agent of fungal stem canker), this Class IA chitinase is strongly up-regulated in both resistant and susceptible plants. Resistant plants, however, indicate greater constitutive expression and increased up-regulation than susceptible plants following fungal challenge. Up-regulation within fungal resistant clones was further confirmed with protein data. Clusters of putative chitinase genes, particularly on chromosomes 3 and 8, are significantly up-regulated in response to fungal challenge, while a cluster on chromosome 1 is significantly down-regulated in response to gall wasp. The results of this study show that the E. grandis genome has an expanded group of chitinase genes, compared with other plants. Despite this expansion, only a single Class I chitinase is present and this gene is highly up-regulated within diverse biotic stress conditions. Our research provides insight into a major class of defense genes within E. grandis and indicates the importance of the Class I chitinase.
Collapse
Affiliation(s)
- Peri A Tobias
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - David I Guest
- School of Life and Environmental Science, Sydney Institute of Agriculture, University of Sydney, Eveleigh, NSW 2015, Australia
| | - Carsten Külheim
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
Biosynthesis of therapeutic natural products using synthetic biology. Adv Drug Deliv Rev 2016; 105:96-106. [PMID: 27094795 DOI: 10.1016/j.addr.2016.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/24/2016] [Accepted: 04/10/2016] [Indexed: 02/08/2023]
Abstract
Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production.
Collapse
|
9
|
Nützmann HW, Huang A, Osbourn A. Plant metabolic clusters - from genetics to genomics. THE NEW PHYTOLOGIST 2016; 211:771-89. [PMID: 27112429 PMCID: PMC5449196 DOI: 10.1111/nph.13981] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 05/18/2023]
Abstract
Contents 771 I. 771 II. 772 III. 780 IV. 781 V. 786 786 References 786 SUMMARY: Plant natural products are of great value for agriculture, medicine and a wide range of other industrial applications. The discovery of new plant natural product pathways is currently being revolutionized by two key developments. First, breakthroughs in sequencing technology and reduced cost of sequencing are accelerating the ability to find enzymes and pathways for the biosynthesis of new natural products by identifying the underlying genes. Second, there are now multiple examples in which the genes encoding certain natural product pathways have been found to be grouped together in biosynthetic gene clusters within plant genomes. These advances are now making it possible to develop strategies for systematically mining multiple plant genomes for the discovery of new enzymes, pathways and chemistries. Increased knowledge of the features of plant metabolic gene clusters - architecture, regulation and assembly - will be instrumental in expediting natural product discovery. This review summarizes progress in this area.
Collapse
Affiliation(s)
- Hans-Wilhelm Nützmann
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ancheng Huang
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
10
|
Yu N, Nützmann HW, MacDonald JT, Moore B, Field B, Berriri S, Trick M, Rosser SJ, Kumar SV, Freemont PS, Osbourn A. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res 2016; 44:2255-65. [PMID: 26895889 PMCID: PMC4797310 DOI: 10.1093/nar/gkw100] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/20/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022] Open
Abstract
Plants are a tremendous source of diverse chemicals, including many natural product-derived drugs. It has recently become apparent that the genes for the biosynthesis of numerous different types of plant natural products are organized as metabolic gene clusters, thereby unveiling a highly unusual form of plant genome architecture and offering novel avenues for discovery and exploitation of plant specialized metabolism. Here we show that these clustered pathways are characterized by distinct chromatin signatures of histone 3 lysine trimethylation (H3K27me3) and histone 2 variant H2A.Z, associated with cluster repression and activation, respectively, and represent discrete windows of co-regulation in the genome. We further demonstrate that knowledge of these chromatin signatures along with chromatin mutants can be used to mine genomes for cluster discovery. The roles of H3K27me3 and H2A.Z in repression and activation of single genes in plants are well known. However, our discovery of highly localized operon-like co-regulated regions of chromatin modification is unprecedented in plants. Our findings raise intriguing parallels with groups of physically linked multi-gene complexes in animals and with clustered pathways for specialized metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Nan Yu
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - James T MacDonald
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Moore
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Ben Field
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Souha Berriri
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Martin Trick
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, King's Building, Edinburgh, EH9 3JR, UK
| | - S Vinod Kumar
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Paul S Freemont
- Centre for Synthetic Biology and Innovation, Imperial College, South Kensington Campus, London, SW7 2AZ, UK
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
11
|
Zheng L, McMullen MD, Bauer E, Schön CC, Gierl A, Frey M. Prolonged expression of the BX1 signature enzyme is associated with a recombination hotspot in the benzoxazinoid gene cluster in Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3917-30. [PMID: 25969552 PMCID: PMC4473990 DOI: 10.1093/jxb/erv192] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Benzoxazinoids represent preformed protective and allelopathic compounds. The main benzoxazinoid in maize (Zea mays L.) is 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to herbivores and microbes. Protective concentrations are found predominantly in young plantlets. We made use of the genetic diversity present in the maize nested association mapping (NAM) panel to identify lines with significant benzoxazinoid concentrations at later developmental stages. At 24 d after imbibition (dai), only three lines, including Mo17, showed effective DIMBOA concentrations of 1.5mM or more; B73, by contrast, had low a DIMBOA content. Mapping studies based on Mo17 and B73 were performed to reveal mechanisms that influence the DIMBOA level in 24 dai plants. A major quantitative trait locus mapped to the Bx gene cluster located on the short arm of chromosome 4, which encodes the DIMBOA biosynthetic genes. Mo17 was distinguished from all other NAM lines by high transcriptional expression of the Bx1 gene at later developmental stages. Bx1 encodes the signature enzyme of the pathway. In Mo17×B73 hybrids at 24 dai, only the Mo17 Bx1 allele transcript was detected. A 3.9kb cis-element, termed DICE (distal cis-element), that is located in the Bx gene cluster approximately 140 kb upstream of Bx1, was required for high Bx1 transcript levels during later developmental stages in Mo17. The DICE region was a hotspot of meiotic recombination. Genetic analysis revealed that high 24 dai DIMBOA concentrations were not strictly dependent on high Bx1 transcript levels. However, constitutive expression of Bx1 in transgenics increased DIMBOA levels at 24 dai, corroborating a correlation between DIMBOA content and Bx1 transcription.
Collapse
MESH Headings
- Alleles
- Base Pairing/genetics
- Benzoxazines/metabolism
- Biosynthetic Pathways/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Crosses, Genetic
- Gene Expression Regulation, Plant
- Genes, Plant
- Genotype
- Inbreeding
- Multigene Family
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- Quantitative Trait Loci
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic
- Seedlings/metabolism
- Transcription, Genetic
- Zea mays/genetics
- Zea mays/growth & development
Collapse
Affiliation(s)
- Linlin Zheng
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | | | - Eva Bauer
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Chris-Carolin Schön
- Lehrstuhl für Pflanzenzüchtung, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Alfons Gierl
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| | - Monika Frey
- Lehrstuhl für Genetik, Wissenschaftszentrum Weihenstephan, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
12
|
Boycheva S, Daviet L, Wolfender JL, Fitzpatrick TB. The rise of operon-like gene clusters in plants. TRENDS IN PLANT SCIENCE 2014; 19:447-59. [PMID: 24582794 DOI: 10.1016/j.tplants.2014.01.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/19/2014] [Accepted: 01/30/2014] [Indexed: 05/18/2023]
Abstract
Gene clusters are common features of prokaryotic genomes also present in eukaryotes. Most clustered genes known are involved in the biosynthesis of secondary metabolites. Although horizontal gene transfer is a primary source of prokaryotic gene cluster (operon) formation and has been reported to occur in eukaryotes, the predominant source of cluster formation in eukaryotes appears to arise de novo or through gene duplication followed by neo- and sub-functionalization or translocation. Here we aim to provide an overview of the current knowledge and open questions related to plant gene cluster functioning, assembly, and regulation. We also present potential research approaches and point out the benefits of a better understanding of gene clusters in plants for both fundamental and applied plant science.
Collapse
Affiliation(s)
- Svetlana Boycheva
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Laurent Daviet
- Biotechnology Department, Corporate R&D Division, FIRMENICH SA, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
13
|
Tobias PA, Guest DI. Tree immunity: growing old without antibodies. TRENDS IN PLANT SCIENCE 2014; 19:367-70. [PMID: 24556378 DOI: 10.1016/j.tplants.2014.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 05/04/2023]
Abstract
Perennial plants need to cope with changing environments and pathogens over their lifespan. Infections are compartmentalised by localised physiological responses, and multiple apical meristems enable repair and regrowth, but genes are another crucial component in the perception and response to pathogens. In this opinion article we suggest that the mechanism for dynamic pathogen-specific recognition in long-lived plants could be explained by extending our current understanding of plant defence genes. We propose that, in addition to physiological responses, tree defence uses a three-pronged genomic approach involving: (i) gene numbers, (ii) genomic architecture, and (iii) mutation loads accumulated over long lifespans.
Collapse
Affiliation(s)
- Peri A Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Biomedical Building C81, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia.
| | - David I Guest
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of Sydney, Biomedical Building C81, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW 2015, Australia
| |
Collapse
|
14
|
Zhao J, Shi H, Ahituv N. Classification of topological domains based on gene expression and regulation. Genome 2013; 56:415-23. [PMID: 24099394 DOI: 10.1139/gen-2013-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tissue-specific gene expression is thought to be one of the major forces shaping mammalian gene order. A recent study that used whole-genome chromosome conformation assays has shown that the mammalian genome is divided into specific topological domains that are shared between different tissues and organisms. Here, we wanted to assess whether gene expression and regulation are involved in shaping these domains and can be used to classify them. We analyzed gene expression and regulation levels in these domains by using RNA-seq and enhancer-associated ChIP-seq datasets for 17 different mouse tissues. We found 162 domains that are active (high gene expression and regulation) in all 17 tissues. These domains are significantly shorter, contain less repeats, and have more housekeeping genes. In contrast, we found 29 domains that are inactive (low gene expression and regulation) in all analyzed tissues and are significantly longer, have more repeats, and gene deserts. Tissue-specific active domains showed some correlation with tissue-type and gene ontology. Domain temporal gene regulation and expression differences also displayed some gene ontology terms fitting their temporal function. Combined, our results provide a catalog of shared and tissue-specific topological domains and suggest that gene expression and regulation could have a role in shaping them.
Collapse
Affiliation(s)
- Jingjing Zhao
- a Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
15
|
Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds. Proc Natl Acad Sci U S A 2013; 110:11481-6. [PMID: 23798424 DOI: 10.1073/pnas.1304461110] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genomic analyses have proliferated without being tied to tangible phenotypes. For example, although coordination of both gene expression and genetic linkage have been offered as genetic mechanisms for the frequently observed clustering of genes participating in fungal metabolic pathways, elucidation of the phenotype(s) favored by selection, resulting in cluster formation and maintenance, has not been forthcoming. We noted that the cause of certain well-studied human metabolic disorders is the accumulation of toxic intermediate compounds (ICs), which occurs when the product of an enzyme is not used as a substrate by a downstream neighbor in the metabolic network. This raises the hypothesis that the phenotype favored by selection to drive gene clustering is the mitigation of IC toxicity. To test this, we examined 100 diverse fungal genomes for the simplest type of cluster, gene pairs that are both metabolic neighbors and chromosomal neighbors immediately adjacent to each other, which we refer to as "double neighbor gene pairs" (DNGPs). Examination of the toxicity of their corresponding ICs shows that, compared with chromosomally nonadjacent metabolic neighbors, DNGPs are enriched for ICs that have acutely toxic LD50 doses or reactive functional groups. Furthermore, DNGPs are significantly more likely to be divergently oriented on the chromosome; remarkably, ∼40% of these DNGPs have ICs known to be toxic. We submit that the structure of synteny in metabolic pathways of fungi is a signature of selection for protection against the accumulation of toxic metabolic intermediates.
Collapse
|
16
|
Matsuba Y, Nguyen TT, Wiegert K, Falara V, Gonzales-Vigil E, Leong B, Schäfer P, Kudrna D, Wing RA, Bolger AM, Usadel B, Tissier A, Fernie AR, Barry CS, Pichersky E. Evolution of a complex locus for terpene biosynthesis in solanum. THE PLANT CELL 2013; 25:2022-36. [PMID: 23757397 PMCID: PMC3723610 DOI: 10.1105/tpc.113.111013] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/30/2013] [Accepted: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence. In the orthologous cluster in Solanum habrochaites, a new sesquiterpene synthase gene was created by a duplication event of a monoterpene synthase followed by a localized gene conversion event directed by a diterpene synthase gene. The TPS genes in the Solanum cluster encoding cis-prenyl diphosphate-utilizing enzymes are closely related to a tobacco (Nicotiana tabacum; Solanaceae) diterpene synthase encoding Z-abienol synthase (Nt-ABS). Nt-ABS uses the substrate copal-8-ol diphosphate, which is made from the all-trans geranylgeranyl diphosphate by copal-8-ol diphosphate synthase (Nt-CPS2). The Solanum gene cluster also contains an ortholog of Nt-CPS2, but it appears to encode a nonfunctional protein. Thus, the Solanum functional gene cluster evolved by duplication and divergence of TPS genes, together with alterations in substrate specificity to utilize cis-prenyl diphosphates and through the acquisition of CPT genes.
Collapse
Affiliation(s)
- Yuki Matsuba
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Thuong T.H. Nguyen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Krystle Wiegert
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Vasiliki Falara
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Bryan Leong
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Petra Schäfer
- Leibniz-Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, 06120 Halle (Saale), Germany
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Rod A. Wing
- Arizona Genomics Institute, School of Plant Sciences, BIO5 Institute, University of Arizona, Tucson, Arizona 85721
| | - Anthony M. Bolger
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Institut für Biologie 1, Botanik, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Björn Usadel
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Institut für Biologie 1, Botanik, Rheinisch-Westfälische Technische Hochschule Aachen University, 52062 Aachen, Germany
| | - Alain Tissier
- Leibniz-Institute of Plant Biochemistry, Department of Cell and Metabolic Biology, 06120 Halle (Saale), Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Cornelius S. Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
- Address correspondence to
| |
Collapse
|