1
|
Shatskikh AS, Fefelova EA, Klenov MS. Functions of RNAi Pathways in Ribosomal RNA Regulation. Noncoding RNA 2024; 10:19. [PMID: 38668377 PMCID: PMC11054153 DOI: 10.3390/ncrna10020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets. In this review, we consider the impact of small RNA pathways, specifically siRNAs and piRNAs, on rRNA gene regulation. Data from diverse eukaryotic organisms suggest the potential involvement of small RNAs in various molecular processes related to the rDNA transcription and rRNA fate. Endogenous siRNAs are integral to the chromatin-based silencing of rDNA loci in plants and have been shown to repress rDNA transcription in animals. Small RNAs also play a role in maintaining the integrity of rDNA clusters and may function in the cellular response to rDNA damage. Studies on the impact of RNAi and small RNAs on rRNA provide vast opportunities for future exploration.
Collapse
Affiliation(s)
- Aleksei S. Shatskikh
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia;
| | - Elena A. Fefelova
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
| | - Mikhail S. Klenov
- Institute of Molecular Genetics, Russian Academy of Sciences, 2 Kurchatov Sq., 123182 Moscow, Russia
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, 368 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Ren Z, Gou R, Zhuo W, Chen Z, Yin X, Cao Y, Wang Y, Mi Y, Liu Y, Wang Y, Fan LM, Deng XW, Qian W. The MBD-ACD DNA methylation reader complex recruits MICRORCHIDIA6 to regulate ribosomal RNA gene expression in Arabidopsis. THE PLANT CELL 2024; 36:1098-1118. [PMID: 38092516 PMCID: PMC10980342 DOI: 10.1093/plcell/koad313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/11/2023] [Indexed: 04/01/2024]
Abstract
DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.
Collapse
Affiliation(s)
- Zhitong Ren
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Runyu Gou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Wanqing Zhuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Zhiyu Chen
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xiaochang Yin
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yuxin Cao
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yue Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yingjie Mi
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
| | - Yannan Liu
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
- College of Life Sciences, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liu-Min Fan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Weiqiang Qian
- National Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Peking University Institute of advanced Agricultural Sciences, Weifang, Shandong 261325, China
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Montacié C, Riondet C, Wei L, Darrière T, Weiss A, Pontvianne F, Escande ML, de Bures A, Jobet E, Barbarossa A, Carpentier MC, Aarts MGM, Attina A, Hirtz C, David A, Marchand V, Motorin Y, Curie C, Mari S, Reichheld JP, Sáez-Vásquez J. NICOTIANAMINE SYNTHASE activity affects nucleolar iron accumulation and impacts rDNA silencing and RNA methylation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4384-4400. [PMID: 37179467 PMCID: PMC10433931 DOI: 10.1093/jxb/erad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
In plant cells, a large pool of iron (Fe) is contained in the nucleolus, as well as in chloroplasts and mitochondria. A central determinant for intracellular distribution of Fe is nicotianamine (NA) generated by NICOTIANAMINE SYNTHASE (NAS). Here, we used Arabidopsis thaliana plants with disrupted NAS genes to study the accumulation of nucleolar iron and understand its role in nucleolar functions and more specifically in rRNA gene expression. We found that nas124 triple mutant plants, which contained lower quantities of the iron ligand NA, also contained less iron in the nucleolus. This was concurrent with the expression of normally silenced rRNA genes from nucleolar organizer regions 2 (NOR2). Notably, in nas234 triple mutant plants, which also contained lower quantities of NA, nucleolar iron and rDNA expression were not affected. In contrast, in both nas124 and nas234, specific RNA modifications were differentially regulated in a genotype dependent manner. Taken together, our results highlight the impact of specific NAS activities in RNA gene expression. We discuss the interplay between NA and nucleolar iron with rDNA functional organization and RNA methylation.
Collapse
Affiliation(s)
- Charlotte Montacié
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Christophe Riondet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Lili Wei
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Tommy Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Alizée Weiss
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Frédéric Pontvianne
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Line Escande
- Observatoire Océanologique de Banyuls s/ mer, CNRS, 66650 Banyuls-sur-mer, France
- BioPIC Platform of the OOB, 66650 Banyuls-sur-mer, France
| | - Anne de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Edouard Jobet
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Adrien Barbarossa
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, 6700AA Wageningen, Netherlands
| | - Aurore Attina
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Christophe Hirtz
- INSERM, CHU Montpellier, CNRS, IRMB, Université Montpellier, 34090Montpellier, France
| | - Alexandre David
- IGF, CNRS, INSERM, Université Montpellier, 34090Montpellier, France
| | - Virginie Marchand
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
| | - Yuri Motorin
- Epitranscriptomics and RNA Sequencing (EpiRNA-Seq) Core Facility, CNRS, INSERM, IBSLor (UMS2008/US40), Université de Lorraine, F-54000 Nancy, France
- CNRS, IMoPA (UMR 7365), Université de Lorraine, F-54000 Nancy, France
| | - Catherine Curie
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Stéphane Mari
- Institut Agro, BPMP, CNRS, INRAE, Université Montpellier, 34060 Montpellier, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860 Perpignan, France
- LGDP, UMR 5096, Université Perpignan Via Domitia, 66860 Perpignan, France
| |
Collapse
|
4
|
Borowska-Zuchowska N, Mykhailyk S, Robaszkiewicz E, Matysiak N, Mielanczyk L, Wojnicz R, Kovarik A, Hasterok R. Switch them off or not: selective rRNA gene repression in grasses. TRENDS IN PLANT SCIENCE 2023; 28:661-672. [PMID: 36764871 DOI: 10.1016/j.tplants.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 05/13/2023]
Abstract
Nucleolar dominance (ND) is selective epigenetic silencing of 35-48S rDNA loci. In allopolyploids, it is frequently manifested at the cytogenetic level by the inactivation of nucleolar organiser region(s) (NORs) inherited from one or several evolutionary ancestors. Grasses are ecologically and economically one of the most important land plant groups, which have frequently evolved through hybridisation and polyploidisation events. Here we review common and unique features of ND phenomena in this monocot family from cytogenetic, molecular, and genomic perspectives. We highlight recent advances achieved by using an allotetraploid model grass, Brachypodium hybridum, where ND commonly occurs at a population level, and we cover modern genomic approaches that decipher structural features of core arrays of NORs.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland
| | - Natalia Matysiak
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland
| | - Lukasz Mielanczyk
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Romuald Wojnicz
- Department of Histology and Cell Pathology, the Medical University of Silesia in Katowice, School of Medicine with the Division of Dentistry, Zabrze, Poland; Silesian Nanomicroscopy Centre in Zabrze, Silesia LabMed - Research and Implementation Centre, Medical University of Silesia, Katowice, Poland
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, CZ-61200 Brno, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice 40-032, Poland.
| |
Collapse
|
5
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
6
|
Borowska‐Zuchowska N, Kovarik A, Robaszkiewicz E, Tuna M, Tuna GS, Gordon S, Vogel JP, Hasterok R. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1810-1825. [PMID: 32506573 PMCID: PMC7497271 DOI: 10.1111/tpj.14869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 05/22/2023]
Abstract
Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.
Collapse
Affiliation(s)
- Natalia Borowska‐Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Ales Kovarik
- Department of Molecular EpigeneticsInstitute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.Královopolská 135Brno612 65Czech Republic
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Metin Tuna
- Department of Field CropsFaculty of AgricultureTekirdag Namik Kemal UniversitySuleymanpasaTekirdag59030Turkey
| | | | - Sean Gordon
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
| | - John P. Vogel
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
- University CaliforniaBerkeley, BerkeleyCA94720USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| |
Collapse
|
7
|
Regulation of Nucleolar Dominance in Drosophila melanogaster. Genetics 2020; 214:991-1004. [PMID: 32122935 PMCID: PMC7153946 DOI: 10.1534/genetics.119.302471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
In eukaryotic genomes, ribosomal RNA (rRNA) genes exist as tandemly repeated clusters, forming ribosomal DNA (rDNA) loci. Each rDNA locus typically contains hundreds of rRNA genes to meet the high demand of ribosome biogenesis. Nucleolar dominance is a phenomenon whereby individual rDNA loci are entirely silenced or transcribed, and is believed to be a mechanism to control rRNA dosage. Nucleolar dominance was originally noted to occur in interspecies hybrids, and has been shown to occur within a species (i.e., nonhybrid context). However, studying nucleolar dominance within a species has been challenging due to the highly homogenous sequence across rDNA loci. By utilizing single nucleotide polymorphisms between X rDNA and Y rDNA loci in males, as well as sequence variations between two X rDNA loci in females, we conducted a thorough characterization of nucleolar dominance throughout development of Drosophila melanogaster. We demonstrate that nucleolar dominance is a developmentally regulated program that occurs in nonhybrid, wild-type D. melanogaster, where Y rDNA dominance is established during male embryogenesis, whereas females normally do not exhibit dominance between two X rDNA loci. By utilizing various chromosomal complements (e.g., X/Y, X/X, X/X/Y) and a chromosome rearrangement, we show that the short arm of the Y chromosome including the Y rDNA likely contains information that instructs the state of nucleolar dominance. Our study begins to reveal the mechanisms underlying the selection of rDNA loci for activation/silencing in nucleolar dominance in the context of nonhybrid D. melanogaster.
Collapse
|
8
|
Borowska-Zuchowska N, Robaszkiewicz E, Wolny E, Betekhtin A, Hasterok R. Ribosomal DNA loci derived from Brachypodium stacei are switched off for major parts of the life cycle of Brachypodium hybridum. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:805-815. [PMID: 30481334 PMCID: PMC6363085 DOI: 10.1093/jxb/ery425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/21/2018] [Indexed: 05/15/2023]
Abstract
Nucleolar dominance is an epigenetic phenomenon that occurs in some plant and animal allopolyploids and hybrids, whereby only one ancestral set of 35S rRNA genes retains the ability to form the nucleolus while the rDNA loci derived from the other progenitor are transcriptionally silenced. There is substantial evidence that nucleolar dominance is regulated developmentally. This study focuses upon the establishment and/or maintenance of nucleolar dominance during different stages of development in the model grass allotetraploid Brachypodium hybridum. Fluorescence in situ hybridization with a 25S rDNA probe to cells in three-dimensional cytogenetic preparations showed that nucleolar dominance is present not only in root meristematic and differentiated cells of this species, but also in male meiocytes at prophase I, tetrads of microspores, and different embryonic tissues. The inactive state of Brachypodium stacei-originated rDNA loci was confirmed by silver staining. Only B. distachyon-derived 35S rDNA loci formed nucleoli in the aforementioned tissues, whereas B. stacei-like loci remained highly condensed and thus transcriptionally suppressed. The establishment of nucleolar dominance during earlier stages of B. hybridum embryo development cannot be ruled out. However, we propose that gradual pseudogenization of B. stacei-like loci in the evolution of the allotetraploid seems to be more likely.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
- Correspondence:
| | - Ewa Robaszkiewicz
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Elzbieta Wolny
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Alexander Betekhtin
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
9
|
AtMBD4: A methylated DNA binding protein negatively regulates a subset of phosphate starvation genes. J Biosci 2019. [DOI: 10.1007/s12038-018-9843-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Borowska-Zuchowska N, Hasterok R. Epigenetics of the preferential silencing of Brachypodium stacei-originated 35S rDNA loci in the allotetraploid grass Brachypodium hybridum. Sci Rep 2017; 7:5260. [PMID: 28706212 PMCID: PMC5509716 DOI: 10.1038/s41598-017-05413-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/30/2017] [Indexed: 01/16/2023] Open
Abstract
Nucleolar dominance (ND), initially described as ‘differential amphiplasty’, is a phenomenon observed in some plant and animal allopolyploids and hybrids in which the selective suppression of the activity of 35S rRNA gene loci that have been inherited from one of the two or more ancestral genomes occurs. Although more than 80 years have passed since the discovery of ND, there is still a significant lack in our understanding of the mechanisms that determine this phenomenon. Here, we aimed to investigate the epigenetic status of 35S rRNA gene loci in the monocotyledonous Brachypodium hybridum, which is an allotetraploid that has resulted from a cross between B. distachyon and B. stacei. We revealed that the repressed B. stacei-inherited rDNA loci are characterised by a high level of DNA methylation. The global hypomethylation of B. hybridum nuclear DNA induced by 5-azacytidine, however, seems to be insufficient for the transcriptional reactivation of these loci, which indicates that factors other than DNA methylation are behind the suppression of B. stacei-originated loci. We also showed that the transcriptionally active and silenced fractions of rRNA genes that had been inherited from B. distachyon occupy different domains within the chromocentres adjacent to the nucleolus, depending on their epigenetic status.
Collapse
Affiliation(s)
- Natalia Borowska-Zuchowska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland.
| | - Robert Hasterok
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, University of Silesia in Katowice, 28 Jagiellonska Street, 40-032, Katowice, Poland
| |
Collapse
|
11
|
AtMBD6, a methyl CpG binding domain protein, maintains gene silencing in Arabidopsis by interacting with RNA binding proteins. J Biosci 2017; 42:57-68. [PMID: 28229965 DOI: 10.1007/s12038-016-9658-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
DNA methylation, mediated by double-stranded RNA, is a conserved epigenetic phenomenon that protects a genome from transposons, silences unwanted genes and has a paramount function in plant or animal development. Methyl CpG binding domain proteins are members of a class of proteins that bind to methylated DNA. The Arabidopsis thaliana genome encodes 13 methyl CpG binding domain (MBD) proteins, but the molecular/biological functions of most of these proteins are still not clear. In the present study, we identified four proteins that interact with AtMBD6. Interestingly, three of them contain RNA binding domains and are co-localized with AtMBD6 in the nucleus. The interacting partners includes AtRPS2C (a 40S ribosomal protein), AtNTF2 (nuclear transport factor 2) and AtAGO4 (Argonoute 4). The fourth protein that physically interacts with AtMBD6 is a histone-modifying enzyme, histone deacetylase 6 (AtHDA6), which is a known component of the RNA-mediated gene silencing system. Analysis of genomic DNA methylation in the atmbd6, atrps2c and atntf2 mutants, using methylation-sensitive PCR detected decreased DNA methylation at miRNA/siRNA producing loci, pseudogenes and other targets of RNA-directed DNA methylation. Our results indicate that AtMBD6 is involved in RNA-mediated gene silencing and it binds to RNA binding proteins like AtRPS2C, AtAGO4 and AtNTF2. AtMBD6 also interacts with histone deacetylase AtHDA6 that might have a role in chromatin condensation at the targets of RdDM.
Collapse
|
12
|
Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity (Edinb) 2014; 114:356-65. [PMID: 25537492 DOI: 10.1038/hdy.2014.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 11/08/2022] Open
Abstract
To study the relationship between uniparental rDNA (encoding 18S, 5.8S and 26S ribosomal RNA) silencing (nucleolar dominance) and rRNA gene dosage, we studied a recently emerged (within the last 80 years) allotetraploid Tragopogon mirus (2n=24), formed from the diploid progenitors T. dubius (2n=12, D-genome donor) and T. porrifolius (2n=12, P-genome donor). Here, we used molecular, cytogenetic and genomic approaches to analyse rRNA gene activity in two sibling T. mirus plants (33A and 33B) with widely different rRNA gene dosages. Plant 33B had ~400 rRNA genes at the D-genome locus, which is typical for T. mirus, accounting for ~25% of total rDNA. We observed characteristic expression dominance of T. dubius-origin genes in all organs. Its sister plant 33A harboured a homozygous macrodeletion that reduced the number of T. dubius-origin genes to about 70 copies (~4% of total rDNA). It showed biparental rDNA expression in root, flower and callus, but not in leaf where D-genome rDNA dominance was maintained. There was upregulation of minor rDNA variants in some tissues. The RNA polymerase I promoters of reactivated T. porrifolius-origin rRNA genes showed reduced DNA methylation, mainly at symmetrical CG and CHG nucleotide motifs. We hypothesise that active, decondensed rDNA units are most likely to be deleted via recombination. The silenced homeologs could be used as a 'first reserve' to ameliorate mutational damage and contribute to evolutionary success of polyploids. Deletion and reactivation cycles may lead to bidirectional homogenisation of rRNA arrays in the long term.
Collapse
|