1
|
High Expression of POGK Predicts Poor Prognosis in Patients with Hepatocellular Carcinoma. Curr Oncol 2022; 29:8650-8667. [PMID: 36421335 PMCID: PMC9688978 DOI: 10.3390/curroncol29110682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Kruppel-associated box (KRAB) proteins reportedly play a dual role in neoplastic transformation. At present, little is known about the function of the proteins encoded by the human pogo transposable element derived with KRAB domain (POGK) gene. Herein, we evaluated the prognostic significance of POGK expression in patients with hepatocellular carcinoma (HCC). METHODS The data of HCC patients was downloaded from The Cancer Genome Atlas (TCGA) database. To determine the relationship between POGK and clinical features, logistic regression was applied. Cox regression and Kaplan-Meier analyses were used to evaluate the correlation between POGK and survival rates. Gene ontology (GO) analysis and Gene set enrichment analysis (GSEA) were conducted to identify the enriched pathways and functions associated with POGK. RESULTS A total of 374 HCC patients were identified in TCGA. POGK was significantly upregulated in HCC and correlated with tumor status (p = 0.036), race (p = 0.025), weight (p = 0.002), body mass index (p = 0.033), histologic grade (p < 0.001), and alpha-fetoprotein (p < 0.001). High POGK expression in HCC patients correlated with a poor outcome in terms of overall survival (p = 0.0018), progression-free survival (p = 0.0087), relapse-free survival (p = 0.045), and disease-specific survival (p = 0.014), according to Kaplan-Meier analysis. Receiver operating characteristic curve analysis showed that the area under the curve of POGK expression for HCC diagnosis was 0.891. GSEA showed that high POGK expression might activate mitotic prometaphase, kinesins, homologous DNA pairing and strand exchange, MET activates PTK2 signaling pathway, G1 to S cell cycle control, Aurora B pathway, ncRNAs involved in WNT signaling pathway, hepatitis C, and ncRNAs involved in the STAT3 signaling pathway. POGK expression correlated with the abundance of adaptive and innate immunocytes in HCC. CONCLUSION High expression of POGK has high diagnostic and prognostic values in patients with HCC. Moreover, POGK expression is correlated with immune infiltration in HCC.
Collapse
|
2
|
Shah PA, Boutros-Suleiman S, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The Emerging Role of E3 Ubiquitin Ligase SMURF2 in the Regulation of Transcriptional Co-Repressor KAP1 in Untransformed and Cancer Cells and Tissues. Cancers (Basel) 2022; 14:cancers14071607. [PMID: 35406379 PMCID: PMC8997158 DOI: 10.3390/cancers14071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary KAP1 plays an essential role in different molecular and cellular processes central to carcinogenesis, disease progression, and treatment response, revealing both tumor promoting and anticancer functions. The mechanisms that control the steady-state levels of KAP1 and its protein abundance are not well known. Our findings show that SMURF2, a ubiquitously-expressed HECT-type E3 ubiquitin ligase with suggested anticancer activities, is capable to directly bind, ubiquitinate, and regulate KAP1 expression levels in non-cancerous and tumor cells and tissues. The data further show that SMURF2 has a significant influence on KAP1 interactome, regulating its protein–protein interactions and functions in a catalytically-dependent manner. These findings reveal SMURF2 as a pivotal regulator of KAP1, laying a foundation for the investigation of the role of the SMURF2–KAP1 axis in carcinogenic processes and therapeutic responses to anticancer treatment. Abstract KAP1 is an essential nuclear factor acting as a scaffold for protein complexes repressing transcription. KAP1 plays fundamental role in normal and cancer cell biology, affecting cell proliferation, DNA damage response, genome integrity maintenance, migration and invasion, as well as anti-viral and immune response. Despite the foregoing, the mechanisms regulating KAP1 cellular abundance are poorly understood. In this study, we identified the E3 ubiquitin ligase SMURF2 as an important regulator of KAP1. We show that SMURF2 directly interacts with KAP1 and ubiquitinates it in vitro and in the cellular environment in a catalytically-dependent manner. Interestingly, while in the examined untransformed cells, SMURF2 mostly exerted a negative impact on KAP1 expression, a phenomenon that was also monitored in certain Smurf2-ablated mouse tissues, in tumor cells SMURF2 stabilized KAP1. This stabilization relied on the unaltered E3 ubiquitin ligase function of SMURF2. Further investigations showed that SMURF2 regulates KAP1 post-translationally, interfering with its proteasomal degradation. The conducted immunohistochemical studies showed that the reciprocal relationship between the expression of SMURF2 and KAP1 also exists in human normal and breast cancer tissues and suggested that this relationship may be disrupted by the carcinogenic process. Finally, through stratifying KAP1 interactome in cells expressing either SMURF2 wild-type or its E3 ligase-dead form, we demonstrate that SMURF2 has a profound impact on KAP1 protein–protein interactions and the associated functions, adding an additional layer in the SMURF2-mediated regulation of KAP1. Cumulatively, these findings uncover SMURF2 as a novel regulator of KAP1, governing its protein expression, interactions, and functions.
Collapse
Affiliation(s)
- Pooja Anil Shah
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Sandy Boutros-Suleiman
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel; (P.A.S.); (S.B.-S.); (A.E.); (G.L.-C.)
- Correspondence:
| |
Collapse
|
3
|
Cesaro E, Lupo A, Rapuano R, Pastore A, Grosso M, Costanzo P. ZNF224 Protein: Multifaceted Functions Based on Its Molecular Partners. Molecules 2021; 26:molecules26206296. [PMID: 34684876 PMCID: PMC8537547 DOI: 10.3390/molecules26206296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/05/2023] Open
Abstract
The transcription factor ZNF224 is a Kruppel-like zinc finger protein that consists of 707 amino acids and contains 19 tandemly repeated C2H2 zinc finger domains that mediate DNA binding and protein-protein interactions. ZNF224 was originally identified as a transcriptional repressor of genes involved in energy metabolism, and it was demonstrated that ZNF224-mediated transcriptional repression needs the interaction of its KRAB repressor domain with the co-repressor KAP1 and its zinc finger domains 1-3 with the arginine methyltransferase PRMT5. Furthermore, the protein ZNF255 was identified as an alternative isoform of ZNF224 that possesses different domain compositions mediating distinctive functional interactions. Subsequent studies showed that ZNF224 is a multifunctional protein able to exert different transcriptional activities depending on the cell context and the variety of its molecular partners. Indeed, it has been shown that ZNF224 can act as a repressor, an activator and a cofactor for other DNA-binding transcription factors in different human cancers. Here, we provide a brief overview of the current knowledge on the multifaceted interactions of ZNF224 and the resulting different roles of this protein in various cellular contexts.
Collapse
Affiliation(s)
- Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| | - Angelo Lupo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Roberta Rapuano
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy; (A.L.); (R.R.)
| | - Arianna Pastore
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (M.G.)
- Correspondence: (E.C.); (P.C.)
| |
Collapse
|
4
|
Shen P, Xu A, Hou Y, Wang H, Gao C, He F, Yang D. Conserved paradoxical relationships among the evolutionary, structural and expressional features of KRAB zinc-finger proteins reveal their special functional characteristics. BMC Mol Cell Biol 2021; 22:7. [PMID: 33482715 PMCID: PMC7821633 DOI: 10.1186/s12860-021-00346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 01/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background One striking feature of the large KRAB domain-containing zinc finger protein (KZFP) family is its rapid evolution, leading to hundreds of member genes with various origination time in a certain mammalian genome. However, a comprehensive genome-wide and across-taxa analysis of the structural and expressional features of KZFPs with different origination time is lacking. This type of analysis will provide valuable clues about the functional characteristics of this special family. Results In this study, we found several conserved paradoxical phenomena about this issue. 1) Ordinary young domains/proteins tend to be disordered, but most of KRAB domains are completely structured in 64 representative species across the superclass of Sarcopterygii and most of KZFPs are also highly structured, indicating their rigid and unique structural and functional characteristics; as exceptions, old-zinc-finger-containing KZFPs have relatively disordered KRAB domains and linker regions, contributing to diverse interacting partners and functions. 2) In general, young or highly structured proteins tend to be spatiotemporal specific and have low abundance. However, by integrated analysis of 29 RNA-seq datasets, including 725 samples across early embryonic development, embryonic stem cell differentiation, embryonic and adult organs, tissues in 7 mammals, we found that KZFPs tend to express ubiquitously with medium abundance regardless of evolutionary age and structural disorder degree, indicating the wide functional requirements of KZFPs in various states. 3) Clustering and correlation analysis reveal that there are differential expression patterns across different spatiotemporal states, suggesting the specific-high-expression KZFPs may play important roles in the corresponding states. In particular, part of young-zinc-finger-containing KZFPs are highly expressed in early embryonic development and ESCs differentiation into endoderm or mesoderm. Co-expression analysis revealed that young-zinc-finger-containing KZFPs are significantly enriched in five co-expression modules. Among them, one module, including 13 young-zinc-finger-containing KZFPs, showed an ‘early-high and late-low’ expression pattern. Further functional analysis revealed that they may function in early embryonic development and ESC differentiation via participating in cell cycle related processes. Conclusions This study shows the conserved and special structural, expressional features of KZFPs, providing new clues about their functional characteristics and potential causes of their rapid evolution. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-021-00346-w.
Collapse
Affiliation(s)
- Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Aishi Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Animal Sciences College of Jilin University, Changchun, 130062, China
| | - Yushan Hou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Huqiang Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chao Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.
| |
Collapse
|
5
|
Perdomo-Sabogal Á, Nowick K. Genetic Variation in Human Gene Regulatory Factors Uncovers Regulatory Roles in Local Adaptation and Disease. Genome Biol Evol 2019; 11:2178-2193. [PMID: 31228201 PMCID: PMC6685493 DOI: 10.1093/gbe/evz131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 01/13/2023] Open
Abstract
Differences in gene regulation have been suggested to play essential roles in the evolution of phenotypic changes. Although DNA changes in cis-regulatory elements affect only the regulation of its corresponding gene, variations in gene regulatory factors (trans) can have a broader effect, because the expression of many target genes might be affected. Aiming to better understand how natural selection may have shaped the diversity of gene regulatory factors in human, we assembled a catalog of all proteins involved in controlling gene expression. We found that at least five DNA-binding transcription factor classes are enriched among genes located in candidate regions for selection, suggesting that they might be relevant for understanding regulatory mechanisms involved in human local adaptation. The class of KRAB-ZNFs, zinc-finger (ZNF) genes with a Krüppel-associated box, stands out by first, having the most genes located on candidate regions for positive selection. Second, displaying most nonsynonymous single nucleotide polymorphisms (SNPs) with high genetic differentiation between populations within these regions. Third, having 27 KRAB-ZNF gene clusters with high extended haplotype homozygosity. Our further characterization of nonsynonymous SNPs in ZNF genes located within candidate regions for selection, suggests regulatory modifications that might influence the expression of target genes at population level. Our detailed investigation of three candidate regions revealed possible explanations for how SNPs may influence the prevalence of schizophrenia, eye development, and fertility in humans, among other phenotypes. The genetic variation we characterized here may be responsible for subtle to rough regulatory changes that could be important for understanding human adaptation.
Collapse
Affiliation(s)
- Álvaro Perdomo-Sabogal
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| | - Katja Nowick
- Human Biology Group, Department of Biology, Chemistry and Pharmacy, Institute for Zoology, Freie Universität Berlin, Germany
| |
Collapse
|
6
|
Abstract
Krüppel-associated box domain zinc finger proteins (KRAB-ZFPs) are the largest family of transcriptional regulators in higher vertebrates. Characterized by an N-terminal KRAB domain and a C-terminal array of DNA-binding zinc fingers, they participate, together with their co-factor KAP1 (also known as TRIM28), in repression of sequences derived from transposable elements (TEs). Until recently, KRAB-ZFP/KAP1-mediated repression of TEs was thought to lead to irreversible silencing, and the evolutionary selection of KRAB-ZFPs was considered to be just the host component of an arms race against TEs. However, recent advances indicate that KRAB-ZFPs and their TE targets also partner up to establish species-specific regulatory networks. Here, we provide an overview of the KRAB-ZFP gene family, highlighting how its evolutionary history is linked to that of TEs, and how KRAB-ZFPs influence multiple aspects of development and physiology.
Collapse
Affiliation(s)
- Gabriela Ecco
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Michael Imbeault
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Station19, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Solera J, Álvarez S, Botet J, de Cabo C. A newly homozygous variant in ZNF808: A possible candidate gene for Satoyoshi Syndrome? J Neurol Sci 2017; 379:226-228. [PMID: 28716247 DOI: 10.1016/j.jns.2017.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/15/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Javier Solera
- Department of Internal Medicine, Albacete General Hospital and School of Medicine, UCLM, Spain.
| | - Sara Álvarez
- NIMGenetics, Department of Genomics and Medicine, Madrid, Spain.
| | - Javier Botet
- NIMGenetics, Department of Genomics and Medicine, Madrid, Spain.
| | - Carlos de Cabo
- Research Department, Neuropsychopharmacology Unit, Albacete General Hospital, Spain.
| |
Collapse
|
8
|
Cesaro E, Sodaro G, Montano G, Grosso M, Lupo A, Costanzo P. The Complex Role of the ZNF224 Transcription Factor in Cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 107:191-222. [PMID: 28215224 DOI: 10.1016/bs.apcsb.2016.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ZNF224 is a member of the Kruppel-associated box zinc finger proteins (KRAB-ZFPs) family. It was originally identified as a transcriptional repressor involved in gene-specific silencing through the recruitment of the corepressor KAP1, chromatin-modifying activities, and the arginine methyltransferase PRMT5 on the promoter of its target genes. Recent findings indicate that ZNF224 can behave both as a tumor suppressor or an oncogene in different human cancers. The transcriptional regulatory properties of ZNF224 in these systems appear to be complex and influenced by specific sets of interactors. ZNF224 can also act as a transcription cofactor for other DNA-binding proteins. A role for ZNF224 in transcriptional activation has also emerged. Here, we review the state of the literature supporting both roles of ZNF224 in cancer. We also examine the functional activity of ZNF224 as a transcription factor and the influence of protein partners on its dual behavior. Increasing information on the mechanism through which ZNF224 can operate could lead to the identification of agents capable of modulating ZNF224 function, thus potentially paving the way to new therapeutic strategies for treatment of cancer.
Collapse
Affiliation(s)
- E Cesaro
- University of Naples Federico II, Naples, Italy
| | - G Sodaro
- University of Naples Federico II, Naples, Italy
| | - G Montano
- BioMedical Center, Lund University, Lund, Sweden
| | - M Grosso
- University of Naples Federico II, Naples, Italy
| | - A Lupo
- University of Sannio, Benevento, Italy
| | - P Costanzo
- University of Naples Federico II, Naples, Italy.
| |
Collapse
|
9
|
Ichida Y, Utsunomiya Y, Onodera M. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization. Biochem Biophys Res Commun 2016; 471:533-8. [PMID: 26879141 DOI: 10.1016/j.bbrc.2016.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
10
|
Fink KD, Deng P, Gutierrez J, Anderson JS, Torrest A, Komarla A, Kalomoiris S, Cary W, Anderson JD, Gruenloh W, Duffy A, Tempkin T, Annett G, Wheelock V, Segal DJ, Nolta JA. Allele-Specific Reduction of the Mutant Huntingtin Allele Using Transcription Activator-Like Effectors in Human Huntington's Disease Fibroblasts. Cell Transplant 2016; 25:677-86. [PMID: 26850319 DOI: 10.3727/096368916x690863] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG repeats. Although pathogenesis has been attributed to this polyglutamine expansion, the underlying mechanisms through which the huntingtin protein functions have yet to be elucidated. It has been suggested that postnatal reduction of mutant huntingtin through protein interference or conditional gene knockout could prove to be an effective therapy for patients suffering from HD. For allele-specific targeting, transcription activator-like effectors (TALE) were designed to target single-nucleotide polymorphisms (SNP) in the mutant allele and packaged into a vector backbone containing KRAB to promote transcriptional repression of the disease-associated allele. Additional TALEs were packaged into a vector backbone containing heterodimeric FokI and were designed to be used as nucleases (TALEN) to cause a CAG-collapse in the mutant allele. Human HD fibroblasts were treated with each TALE-SNP or TALEN. Allele-expression was measured using a SNP-genotyping assay and mutant protein aggregation was quantified with Western blots for anti-ubiquitin. The TALE-SNP and TALEN significantly reduced mutant allele expression (p < 0.05) when compared to control transfections while not affecting expression of the nondisease allele. This study demonstrates the potential of allele-specific gene modification using TALE proteins, and provides a foundation for targeted treatment for individuals suffering from Huntington's or other genetically linked diseases.
Collapse
Affiliation(s)
- Kyle D Fink
- Stem Cell Program and Institute for Regenerative Cures, University of California Davis Health Systems, Sacramento, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ichida Y, Utsunomiya Y, Onodera M. The third to fifth zinc fingers play an essential role in the binding of ZFP809 to the MLV-derived PBS. Biochem Biophys Res Commun 2016; 469:490-4. [DOI: 10.1016/j.bbrc.2015.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
|
12
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
13
|
Ichida Y, Utsunomiya Y, Yasuda T, Nakabayashi K, Sato T, Onodera M. Functional Domains of ZFP809 Essential for Nuclear Localization and Gene Silencing. PLoS One 2015; 10:e0139274. [PMID: 26417948 PMCID: PMC4587795 DOI: 10.1371/journal.pone.0139274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
Zinc finger protein 809 (ZFP809) is a member of the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family, and is highly expressed in mouse immature cells. ZFP809 is known to inhibit the expression of transduced genes driven by Moloney murine leukemia virus (MoMLV)-typed retroviral vectors by binding to the primer binding site (PBS) located downstream of the MLV-long terminal repeat (LTR) of the vectors and recruiting protein complexes that introduce epigenetic silencing marks such as histone modifications and DNA methylation at the MLV-LTR. However, it remains undetermined what domains of ZFP809 among the KRAB domain at N-terminus and the seven zinc fingers are critical for gene silencing. In this study, we assessed subcellular localization, gene silencing ability, and binding ability to the PBS of a series of truncated and mutated ZFP809 proteins. We revealed the essential role of the KRAB A box for all functions assessed, together with the accessory roles of a subset of zinc fingers. Our data also suggest that interaction between KAP1 and the KRAB A box of ZFP809 is critical in KAP1-dependent control of gene silencing for ZFP809 targets.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
14
|
Ying Y, Yang X, Zhao K, Mao J, Kuang Y, Wang Z, Sun R, Fei J. The Krüppel-associated box repressor domain induces reversible and irreversible regulation of endogenous mouse genes by mediating different chromatin states. Nucleic Acids Res 2015; 43:1549-61. [PMID: 25609696 PMCID: PMC4330378 DOI: 10.1093/nar/gkv016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain is a transcription repression module from the largest family of transcriptional regulators encoded by higher vertebrates. We developed a drug-controllable regulation system based on an artificial KRAB-containing repressor (tTS) that targets the endogenous Hprt gene to explore the regulatory mechanism and molecular basis of KRAB-containing regulators within the context of an endogenous gene in vivo. We show that KRAB can mediate irreversible and reversible regulation of endogenous genes in mouse that is dependent on embryonic developmental stage. KRAB-induced stable DNA methylation within the KRAB binding region during the early embryonic stage, resulting in irreversible gene repression. In later stages, KRAB mainly induced de-acetylation and methylation of histone, resulting in reversible gene repression. Thus, we have characterized the KRAB-mediated regulation system within the context of an endogenous gene and multiple spatiotemporal ranges, thereby providing a basis for identifying the function of KRAB-containing regulators and aiding development of novel KRAB-based gene regulation tools in vivo.
Collapse
Affiliation(s)
- Yue Ying
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Xingyu Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Kai Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China
| | - Jifang Mao
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Ying Kuang
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Zhugang Wang
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Ruilin Sun
- Shanghai Research Center For Model Organisms, Shanghai 201210, China
| | - Jian Fei
- School of Life Sciences and Technology, Tongji University, Shanghai 200072, China Shanghai Research Center For Model Organisms, Shanghai 201210, China
| |
Collapse
|