1
|
Interphase epichromatin: last refuge for the 30-nm chromatin fiber? Chromosoma 2021; 130:91-102. [PMID: 34091761 DOI: 10.1007/s00412-021-00759-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 05/16/2021] [Indexed: 01/08/2023]
Abstract
"Interphase epichromatin" describes the surface of chromatin located adjacent to the interphase nuclear envelope. It was discovered in 2011 using a bivalent anti-nucleosome antibody (mAb PL2-6), now known to be directed against the nucleosome acidic patch. The molecular structure of interphase epichromatin is unknown, but is thought to be heterochromatic with a high density of "exposed" acidic patches. In the 1960s, transmission electron microscopy of fixed, dehydrated, sectioned, and stained inactive chromatin revealed "unit threads," frequently organized into parallel arrays at the nuclear envelope, which were interpreted as regular helices with ~ 30-nm center-to-center distance. Also observed in certain cell types, the nuclear envelope forms a "sandwich" around a layer of closely packed unit threads (ELCS, envelope-limited chromatin sheets). Discovery of the nucleosome in 1974 led to revised helical models of chromatin. But these models became very controversial and the existence of in situ 30-nm chromatin fibers has been challenged. Development of cryo-electron microscopy (Cryo-EM) gave hope that in situ chromatin fibers, devoid of artifacts, could be structurally defined. Combining a contrast-enhancing phase plate and cryo-electron tomography (Cryo-ET), it is now possible to visualize chromatin in a "close-to-native" situation. ELCS are particularly interesting to study by Cryo-ET. The chromatin sheet appears to have two layers of ~ 30-nm chromatin fibers arranged in a criss-crossed pattern. The chromatin in ELCS is continuous with adjacent interphase epichromatin. It appears that hydrated ~ 30-nm chromatin fibers are quite rare in most cells, possibly confined to interphase epichromatin at the nuclear envelope.
Collapse
|
2
|
Cantsilieris S, Sunkin SM, Johnson ME, Anaclerio F, Huddleston J, Baker C, Dougherty ML, Underwood JG, Sulovari A, Hsieh P, Mao Y, Catacchio CR, Malig M, Welch AE, Sorensen M, Munson KM, Jiang W, Girirajan S, Ventura M, Lamb BT, Conlon RA, Eichler EE. An evolutionary driver of interspersed segmental duplications in primates. Genome Biol 2020; 21:202. [PMID: 32778141 PMCID: PMC7419210 DOI: 10.1186/s13059-020-02074-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The complex interspersed pattern of segmental duplications in humans is responsible for rearrangements associated with neurodevelopmental disease, including the emergence of novel genes important in human brain evolution. We investigate the evolution of LCR16a, a putative driver of this phenomenon that encodes one of the most rapidly evolving human-ape gene families, nuclear pore interacting protein (NPIP). RESULTS Comparative analysis shows that LCR16a has independently expanded in five primate lineages over the last 35 million years of primate evolution. The expansions are associated with independent lineage-specific segmental duplications flanking LCR16a leading to the emergence of large interspersed duplication blocks at non-orthologous chromosomal locations in each primate lineage. The intron-exon structure of the NPIP gene family has changed dramatically throughout primate evolution with different branches showing characteristic gene models yet maintaining an open reading frame. In the African ape lineage, we detect signatures of positive selection that occurred after a transition to more ubiquitous expression among great ape tissues when compared to Old World and New World monkeys. Mouse transgenic experiments from baboon and human genomic loci confirm these expression differences and suggest that the broader ape expression pattern arose due to mutational changes that emerged in cis. CONCLUSIONS LCR16a promotes serial interspersed duplications and creates hotspots of genomic instability that appear to be an ancient property of primate genomes. Dramatic changes to NPIP gene structure and altered tissue expression preceded major bouts of positive selection in the African ape lineage, suggestive of a gene undergoing strong adaptive evolution.
Collapse
Affiliation(s)
- Stuart Cantsilieris
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present Address: Centre for Eye Research Australia, Department of Surgery (Ophthalmology), University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, 3002, Australia
| | | | - Matthew E Johnson
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Fabio Anaclerio
- Department of Biology-Genetics, University of Bari, Bari, Italy
| | - John Huddleston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195, USA
| | - Carl Baker
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Max L Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Jason G Underwood
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA, 94025, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | | | - Maika Malig
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present Address: Department of Molecular and Cellular Biology, University of California, Davis, CA, 95616, USA
- Present Address: Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, 95616, USA
| | - AnneMarie E Welch
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present Address: Brain and Mitochondrial Research, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Melanie Sorensen
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Weihong Jiang
- Case Transgenic and Targeting Facility, Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Department of Anthropology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Mario Ventura
- Department of Biology-Genetics, University of Bari, Bari, Italy
| | - Bruce T Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ronald A Conlon
- Case Transgenic and Targeting Facility, Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington School of Medicine, 3720 15th Ave NE, S413C, Box 355065, Seattle, WA, 98195-5065, USA.
| |
Collapse
|
3
|
Teif VB, Gould TJ, Clarkson CT, Boyd L, Antwi EB, Ishaque N, Olins AL, Olins DE. Linker histone epitopes are hidden by in situ higher-order chromatin structure. Epigenetics Chromatin 2020; 13:26. [PMID: 32505195 PMCID: PMC7276084 DOI: 10.1186/s13072-020-00345-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 05/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Histone H1 is the most mobile histone in the cell nucleus. Defining the positions of H1 on chromatin in situ, therefore, represents a challenge. Immunoprecipitation of formaldehyde-fixed and sonicated chromatin, followed by DNA sequencing (xChIP-seq), is traditionally the method for mapping histones onto DNA elements. But since sonication fragmentation precedes ChIP, there is a consequent loss of information about chromatin higher-order structure. Here, we present a new method, xxChIP-seq, employing antibody binding to fixed intact in situ chromatin, followed by extensive washing, a second fixation, sonication and immunoprecipitation. The second fixation is intended to prevent the loss of specifically bound antibody during washing and subsequent sonication and to prevent antibody shifting to epitopes revealed by the sonication process. In many respects, xxChIP-seq is comparable to immunostaining microscopy, which also involves interaction of the primary antibody with fixed and permeabilized intact cells. The only epitopes displayed after immunostaining are the "exposed" epitopes, not "hidden" by the fixation of chromatin higher-order structure. Comparison of immunoprecipitated fragments between xChIP-seq versus xxChIP-seq should indicate which epitopes become inaccessible with fixation and identify their associated DNA elements. RESULTS We determined the genomic distribution of histone variants H1.2 and H1.5 in human myeloid leukemia cells HL-60/S4 and compared their epitope exposure by both xChIP-seq and xxChIP-seq, as well as high-resolution microscopy, illustrating the influences of preserved chromatin higher-order structure in situ. We found that xChIP and xxChIP H1 signals are in general negatively correlated, with differences being more pronounced near active regulatory regions. Among the intriguing observations, we find that transcription-related regions and histone PTMs (i.e., enhancers, promoters, CpG islands, H3K4me1, H3K4me3, H3K9ac, H3K27ac and H3K36me3) exhibit significant deficiencies (depletions) in H1.2 and H1.5 xxChIP-seq reads, compared to xChIP-seq. These observations suggest the existence of in situ transcription-related chromatin higher-order structures stabilized by formaldehyde. CONCLUSION Comparison of H1 xxChIP-seq to H1 xChIP-seq allows the development of hypotheses on the chromosomal localization of (stabilized) higher-order structure, indicated by the generation of "hidden" H1 epitopes following formaldehyde crosslinking. Changes in H1 epitope exposure surrounding averaged chromosomal binding sites or epigenetic modifications can also indicate whether these sites have chromatin higher-order structure. For example, comparison between averaged active or inactive promoter regions suggests that both regions can acquire stabilized higher-order structure with hidden H1 epitopes. However, the H1 xChIP-seq comparison cannot define their differences. Application of the xxChIP-seq versus H1 xChIP-seq method is particularly relevant to chromatin-associated proteins, such as linker histones, that play dynamic roles in establishing chromatin higher-order structure.
Collapse
Affiliation(s)
- Vladimir B Teif
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| | - Travis J Gould
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA
| | | | - Logan Boyd
- Department of Physics & Astronomy, Bates College, Lewiston, ME, USA.,StarBird Technologies, LLC, Brunswick, ME, USA
| | - Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany.,Molecular and Cellular Engineering, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, Freiburg im Breisgau, 79104 , Germany
| | - Naveed Ishaque
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178 , Germany
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME, 04103, USA.
| |
Collapse
|
4
|
Myers CG, Olins DE, Olins AL, Schlick T. Mesoscale Modeling of Nucleosome-Binding Antibody PL2-6: Mono- versus Bivalent Chromatin Complexes. Biophys J 2020; 118:2066-2076. [PMID: 31668748 PMCID: PMC7202932 DOI: 10.1016/j.bpj.2019.08.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/28/2022] Open
Abstract
Interactions of chromatin with bivalent immunoglobin nucleosome-binding antibodies and their monovalent (papain-derived) antigen-binding fragment analogs are useful probes for examining chromatin conformational states. To help interpret antibody-chromatin interactions and explore how antibodies might compete for interactions with chromatin components, we incorporate coarse-grained PL2-6 antibody modeling into our mesoscale chromatin model. We analyze interactions and fiber structures for the antibody-chromatin complexes in open and condensed chromatin, with and without H1 linker histone (LH). Despite minimal and transient interactions at physiological salt, we capture significant differences in antibody-chromatin complex configurations in open fibers, with more intense interactions between the bivalent antibody and chromatin compared to monovalent antigen-binding fragments. For these open chromatin fiber morphologies, antibody binding to histone tails is increased and compaction is greater for bivalent compared to monovalent and antibody-free systems. Differences between monovalent and bivalent binding result from antibody competition with internal chromatin fiber components (nucleosome core and linker DNA) for histone tail (H3, H4, H2A, H2B) interactions. This antibody competition for tail contacts reduces tail-core and tail-linker interactions and increases tail-antibody interactions. Such internal structural changes in open fibers resemble mechanisms of LH condensation, driven by charge screening and entropy changes. For condensed fibers at physiological salt, the three systems are much more similar overall, but some subtle tail interaction differences can be noted. Adding LH results in less-dramatic changes for all systems, except that the bivalent complex at physiological salt shows cooperative effects between LH and the antibodies in condensing chromatin fibers. Such dynamic interactions that depend on the internal structure and complex-stabilizing interactions within the chromatin fiber have implications for gene regulation and other chromatin complexes such as with LH, remodeling proteins, and small molecular chaperones that bind and modulate chromatin structure.
Collapse
Affiliation(s)
| | - Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, Maine
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, Maine
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry at New York University Shanghai, Shanghai, China.
| |
Collapse
|
5
|
Antwi EB, Olins A, Teif VB, Bieg M, Bauer T, Gu Z, Brors B, Eils R, Olins D, Ishaque N. Whole-genome fingerprint of the DNA methylome during chemically induced differentiation of the human AML cell line HL-60/S4. Biol Open 2020; 9:bio044222. [PMID: 31988093 PMCID: PMC7044446 DOI: 10.1242/bio.044222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 01/13/2020] [Indexed: 12/22/2022] Open
Abstract
Epigenomic regulation plays a vital role in cell differentiation. The leukemic HL-60/S4 [human myeloid leukemic cell line HL-60/S4 (ATCC CRL-3306)] promyelocytic cell can be easily differentiated from its undifferentiated promyelocyte state into neutrophil- and macrophage-like cell states. In this study, we present the underlying genome and epigenome architecture of HL-60/S4 through its differentiation. We performed whole-genome bisulphite sequencing of HL-60/S4 cells and their differentiated counterparts. With the support of karyotyping, we show that HL-60/S4 maintains a stable genome throughout differentiation. Analysis of differential Cytosine-phosphate-Guanine dinucleotide methylation reveals that most methylation changes occur in the macrophage-like state. Differential methylation of promoters was associated with immune-related terms. Key immune genes, CEBPA, GFI1, MAFB and GATA1 showed differential expression and methylation. However, we observed the strongest enrichment of methylation changes in enhancers and CTCF binding sites, implying that methylation plays a major role in large-scale transcriptional reprogramming and chromatin reorganisation during differentiation. Correlation of differential expression and distal methylation with support from chromatin capture experiments allowed us to identify putative proximal and long-range enhancers for a number of immune cell differentiation genes, including CEBPA and CCNF Integrating expression data, we present a model of HL-60/S4 differentiation in relation to the wider scope of myeloid differentiation.
Collapse
Affiliation(s)
- Enoch B Antwi
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Molecular and Cellular Engineering, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Heidelberg Biosciences International Graduate School (HBIGS), Heidelberg, Germany
| | - Ada Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Vladimir B Teif
- School of Life Sciences, University of Essex, Colchester, UK
| | - Matthias Bieg
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| | - Tobias Bauer
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zuguang Gu
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Core Center, Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), University of Heidelberg, Heidelberg, Germany
| | - Donald Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, USA
| | - Naveed Ishaque
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Center for Personalized Oncology (DKFZ-HIPO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health
- Digital Health Centre, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| |
Collapse
|
6
|
Erenpreisa J, Krigerts J, Salmina K, Selga T, Sorokins H, Freivalds T. Differential staining of peripheral nuclear chromatin with Acridine orange implies an A-form epichromatin conformation of the DNA. Nucleus 2019; 9:171-181. [PMID: 29363398 PMCID: PMC5973139 DOI: 10.1080/19491034.2018.1431081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chromatin observed by conventional electron microscopy under the nuclear envelope constitutes a single layer of dense 30–35 nm granules, while ∼30 nm fibrils laterally attached to them, form large patches of lamin-associated domains (LADs). This particular surface “epichromatin” can be discerned by specific (H2A+H2B+DNA) conformational antibody at the inner nuclear envelope and around mitotic chromosomes. In order to differentiate the DNA conformation of the peripheral chromatin we applied an Acridine orange (AO) DNA structural test involving RNAse treatment and the addition of AO after acid pre-treatment. MCF-7 cells treated in this way revealed yellow/red patches of LADs attached to a thin green nuclear rim and with mitotic chromosomes outlined in green, topologically corresponding to epichromatin epitope staining by immunofluorescence. Differentially from LADs, the epichromatin was unable to provide metachromatic staining by AO, unless thermally denatured at 94oC. DNA enrichment in GC stretches has been recently reported for immunoprecipitated ∼ 1Kb epichromatin domains. Together these data suggest that certain epichromatin segments assume the relatively hydrophobic DNA A-conformation at the nuclear envelope and surface of mitotic chromosomes, preventing AO side dimerisation. We hypothesize that epichromatin domains form nucleosome superbeads. Hydrophobic interactions stack these superbeads and align them at the nuclear envelope, while repulsing the hydrophilic LADs. The hydrophobicity of epichromatin explains its location at the surface of mitotic chromosomes and its function in mediating chromosome attachment to the restituting nuclear envelope during telophase.
Collapse
Affiliation(s)
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia.,b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Kristine Salmina
- a Latvian Biomedical Research & Study Centre , Ratsupites 1, Riga , Latvia
| | - Turs Selga
- c Faculty of Biology, University of Latvia , Raina bulvaris 19, Riga , Latvia
| | - Hermanis Sorokins
- b Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University , Kalku iela 1, Riga , Latvia
| | - Talivaldis Freivalds
- d Institute of Kardiology and Regenerative Medicine, University of Latvia , Raina bulvaris 19, Riga , Latvia
| |
Collapse
|
7
|
Vaquero-Sedas MI, Vega-Palas MA. Assessing the Epigenetic Status of Human Telomeres. Cells 2019; 8:cells8091050. [PMID: 31500249 PMCID: PMC6770363 DOI: 10.3390/cells8091050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/29/2019] [Accepted: 09/05/2019] [Indexed: 12/21/2022] Open
Abstract
The epigenetic modifications of human telomeres play a relevant role in telomere functions and cell proliferation. Therefore, their study is becoming an issue of major interest. These epigenetic modifications are usually analyzed by microscopy or by chromatin immunoprecipitation (ChIP). However, these analyses could be challenged by subtelomeres and/or interstitial telomeric sequences (ITSs). Whereas telomeres and subtelomeres cannot be differentiated by microscopy techniques, telomeres and ITSs might not be differentiated in ChIP analyses. In addition, ChIP analyses of telomeres should be properly controlled. Hence, studies focusing on the epigenetic features of human telomeres have to be carefully designed and interpreted. Here, we present a comprehensive discussion on how subtelomeres and ITSs might influence studies of human telomere epigenetics. We specially focus on the influence of ITSs and some experimental aspects of the ChIP technique on ChIP analyses. In addition, we propose a specific pipeline to accurately perform these studies. This pipeline is very simple and can be applied to a wide variety of cells, including cancer cells. Since the epigenetic status of telomeres could influence cancer cells proliferation, this pipeline might help design precise epigenetic treatments for specific cancer types.
Collapse
Affiliation(s)
- María I Vaquero-Sedas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| | - Miguel A Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, 41092 Seville, Spain.
| |
Collapse
|
8
|
Olins DE, Olins AL. Epichromatin and chromomeres: a 'fuzzy' perspective. Open Biol 2019; 8:rsob.180058. [PMID: 29875200 PMCID: PMC6030114 DOI: 10.1098/rsob.180058] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022] Open
Abstract
'Epichromatin', the surface of chromatin beneath the interphase nuclear envelope (NE) or at the surface of mitotic chromosomes, was discovered by immunostaining with a specific bivalent mouse monoclonal anti-nucleosome antibody (mAb PL2-6). 'Chromomeres', punctate chromatin particles approximately 200-300 nm in diameter, identified throughout the interphase chromatin and along mitotic chromosomes, were observed by immunostaining with the monovalent papain-derived Fab fragments of bivalent PL2-6. The specific target for PL2-6 appears to include the nucleosome acidic patch. Thus, within the epichromatin and chromomeric regions, this epitope is 'exposed'. Considering that histones possess unstructured 'tails' (i.e. intrinsically disordered peptide regions, IDPR), our perception of these chromatin regions becomes more 'fuzzy' (less defined). We suggest that epichromatin cationic tails facilitate interactions with anionic components of NE membranes. We also suggest that the unstructured histone tails (especially, histone H1 tails), with their presumed promiscuous binding, establish multivalent binding that stabilizes each chromomere as a unit of chromatin higher order structure. We propose an 'unstructured stability' hypothesis, which postulates that the stability of epichromatin and chromomeres (as well as other nuclear chromatin structures) is a consequence of the collective contributions of numerous weak histone IDPR binding interactions arising from the multivalent nucleosome, analogous to antibody avidity.
Collapse
Affiliation(s)
- Donald E Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| | - Ada L Olins
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, 716 Stevens Avenue, Portland, ME 04103, USA
| |
Collapse
|
9
|
Chirico G, Gansen A, Leuba SH, Olins AL, Olins DE, Smith JC, Tóth K. Jörg Langowski: his scientific legacy and the future it promises. BMC BIOPHYSICS 2018; 11:5. [PMID: 30026939 PMCID: PMC6048899 DOI: 10.1186/s13628-018-0045-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/27/2018] [Indexed: 11/10/2022]
Abstract
Background With the passing of Jörg Langowski 6 May 2017 in a sailplane accident, the scientific community was deprived of a strident and effective voice for DNA and chromatin molecular and computational biophysics, for open access publishing and for the creation of effective scientific research networks. Methods Here, after reviewing some of Jörg's key research contributions and ideas, we offer through the personal remembrance of his closest collaborators, a deep analysis of the major results of his research and the future directions they have engendered. Conclusions The legacy of Jörg Langowski has been to propel a way of viewing biological function that considers living systems as dynamic and in three dimensions. This physical view of biology that he pioneered is now, finally, becoming established also because of his great effort.
Collapse
Affiliation(s)
- Giuseppe Chirico
- 1Dipartimento di Fisica, Università di Milano-Bicocca, Milan, Italy
| | - Alexander Gansen
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sanford H Leuba
- 3Departments of Cell Biology and Bioengineering, 2.26a UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213 USA
| | - Ada L Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Donald E Olins
- 4Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME USA
| | - Jeremy C Smith
- 5Oak Ridge National Laboratory, P.O. Box 2008 MS6309, Oak Ridge, TN 37831-6309 USA.,6Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996 USA
| | - Katalin Tóth
- 2Biophysics of Macromolecules (B040), Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Gould TJ, Tóth K, Mücke N, Langowski J, Hakusui AS, Olins AL, Olins DE. Defining the epichromatin epitope. Nucleus 2017; 8:625-640. [PMID: 28960120 DOI: 10.1080/19491034.2017.1380141] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epichromatin is identified by immunostaining fixed and permeabilized cells with particular bivalent anti-nucleosome antibodies (mAbs PL2-6 and 1H6). During interphase, epichromatin resides adjacent to the inner nuclear membrane; during mitosis, at the outer surface of mitotic chromosomes. By STED (stimulated emission depletion) microscopy, PL2-6 stained interphase epichromatin is ∼76 nm thick and quite uniform; mitotic epichromatin is more variable in thickness, exhibiting a "wrinkled" surface with an average thickness of ∼78 nm. Co-immunostaining with anti-Ki-67 demonstrates Ki-67 deposition between the PL2-6 "ridges" of mitotic epichromatin. Monovalent papain-derived Fab fragments of PL2-6 yield a strikingly different punctate "chromomeric" immunostaining pattern throughout interphase nuclei and along mitotic chromosome arms. Evidence from electrophoretic mobility shift assay (EMSA) and from analytical ultracentrifugation characterize the Fab/mononucleosome complex, supporting the concept that there are two binding sites per nucleosome. The peptide sequence of the Hv3 region (heavy chain variable region 3) of the PL2-6 antibody binding site strongly resembles other nucleosome acidic patch binding proteins (especially, LANA and CENPC), supporting that the nucleosome acidic patch is included within the epichromatin epitope. It is speculated that the interphase epichromatin epitope is "exposed" with favorable geometric arrangements for binding bivalent PL2-6 at the surface chromatin; whereas, the epitope is "hidden" within internal chromatin. Furthermore, it is suggested that the "exposed" nucleosome surface of mitotic epichromatin may play a role in post-mitotic nuclear envelope reformation.
Collapse
Affiliation(s)
- Travis J Gould
- a Department of Physics & Astronomy , Bates College , Lewiston , ME , USA
| | - Katalin Tóth
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Norbert Mücke
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Langowski
- b Division of Biophysics of Macromolecules, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | | | - Ada L Olins
- c Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| | - Donald E Olins
- c Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| |
Collapse
|
11
|
Mark Welch DB, Jauch A, Langowski J, Olins AL, Olins DE. Transcriptomes reflect the phenotypes of undifferentiated, granulocyte and macrophage forms of HL-60/S4 cells. Nucleus 2017; 8:222-237. [PMID: 28152343 DOI: 10.1080/19491034.2017.1285989] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
To understand the chromatin changes underlying differential gene expression during induced differentiation of human leukemic HL-60/S4 cells, we conducted RNA-Seq analysis on quadruplicate cultures of undifferentiated, granulocytic- and macrophage-differentiated cell forms. More than half of mapped genes exhibited altered transcript levels in the differentiated cell forms. In general, more genes showed increased mRNA levels in the granulocytic form and in the macrophage form, than showed decreased levels. The majority of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were significantly enriched in genes that exhibited differential transcript levels after either RA or TPA treatment. Changes in transcript levels for groups of genes with characteristic protein phenotypes, such as genes encoding cytoplasmic granular proteins, nuclear envelope and cytoskeletal proteins, cell adhesion proteins, and proteins involved in the cell cycle and apoptosis illustrate the profound differences among the various cell states. In addition to the transcriptome analyses, companion karyotyping by M-FISH of undifferentiated HL-60/S4 cells revealed a plethora of chromosome alterations, compared with normal human cells. The present mRNA profiling provides important information related to nuclear shape changes (e.g., granulocyte lobulation), deformability of the nuclear envelope and linkage between the nuclear envelope and cytoskeleton during induced myeloid chromatin differentiation.
Collapse
Affiliation(s)
- David B Mark Welch
- a Josephine Bay Paul Center for Comparative Molecular Biology and Evolution , Marine Biological Laboratory , Woods Hole , MA , USA
| | - Anna Jauch
- b Institute of Human Genetics, University of Heidelberg , Heidelberg , Germany
| | - Jörg Langowski
- c Division Biophysics of Macromolecules, B040 , German Cancer Research Center (DKFZ), TP3 , Heidelberg , Germany
| | - Ada L Olins
- d University of New England, College of Pharmacy , Department of Pharmaceutical Sciences , Portland , ME , USA
| | - Donald E Olins
- d University of New England, College of Pharmacy , Department of Pharmaceutical Sciences , Portland , ME , USA
| |
Collapse
|
12
|
Teif VB, Mallm JP, Sharma T, Mark Welch DB, Rippe K, Eils R, Langowski J, Olins AL, Olins DE. Nucleosome repositioning during differentiation of a human myeloid leukemia cell line. Nucleus 2017; 8:188-204. [PMID: 28406749 PMCID: PMC5403151 DOI: 10.1080/19491034.2017.1295201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell differentiation is associated with changes in chromatin organization and gene expression. In this study, we examine chromatin structure following differentiation of the human myeloid leukemia cell line (HL-60/S4) into granulocytes with retinoic acid (RA) or into macrophage with phorbol ester (TPA). We performed ChIP-seq of histone H3 and its modifications, analyzing changes in nucleosome occupancy, nucleosome repeat length, eu-/heterochromatin redistribution and properties of epichromatin (surface chromatin adjacent to the nuclear envelope). Nucleosome positions changed genome-wide, exhibiting a specific class of alterations involving nucleosome loss in extended (∼1kb) regions, pronounced in enhancers and promoters. Genes that lost nucleosomes at their promoters showed a tendency to be upregulated. On the other hand, nucleosome gain did not show simple effects on transcript levels. The average genome-wide nucleosome repeat length (NRL) did not change significantly with differentiation. However, we detected an approximate 10 bp NRL decrease around the haematopoietic transcription factor (TF) PU.1 and the architectural protein CTCF, suggesting an effect on NRL proximal to TF binding sites. Nucleosome occupancy changed in regions associated with active promoters in differentiated cells, compared with untreated HL-60/S4 cells. Epichromatin regions revealed an increased GC content and high nucleosome density compared with surrounding chromatin. Epichromatin showed depletion of major histone modifications and revealed enrichment with PML body-associated genes. In general, chromatin changes during HL-60/S4 differentiation appeared to be more localized to regulatory regions, compared with genome-wide changes among diverse cell types studied elsewhere.
Collapse
Affiliation(s)
- Vladimir B Teif
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | | | - Tanvi Sharma
- a School of Biological Sciences , University of Essex, Wivenhoe Park , Colchester , UK
| | - David B Mark Welch
- c Josephine Bay Paul Center for Comparative Molecular Biology and Evolution , Marine Biological Laboratory , Woods Hole , MA , USA
| | - Karsten Rippe
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Roland Eils
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Jörg Langowski
- b German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Ada L Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| | - Donald E Olins
- d Department of Pharmaceutical Sciences , College of Pharmacy, University of New England , Portland , ME , USA
| |
Collapse
|
13
|
Salmina K, Huna A, Inashkina I, Belyayev A, Krigerts J, Pastova L, Vazquez-Martin A, Erenpreisa J. Nucleolar aggresomes mediate release of pericentric heterochromatin and nuclear destruction of genotoxically treated cancer cells. Nucleus 2017; 8:205-221. [PMID: 28068183 DOI: 10.1080/19491034.2017.1279775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The role of the nucleolus and autophagy in maintenance of nuclear integrity is poorly understood. In addition, the mechanisms of nuclear destruction in cancer cells senesced after conventional chemotherapy are unclear. In an attempt to elucidate these issues, we studied teratocarcinoma PA1 cells treated with Etoposide (ETO), focusing on the nucleolus. Following treatment, most cells enter G2 arrest, display persistent DNA damage and activate p53, senescence, and macroautophagy markers. 2-5 µm sized nucleolar aggresomes (NoA) containing fibrillarin (FIB) and damaged rDNA, colocalized with ubiquitin, pAMPK, and LC3-II emerge, accompanied by heterochromatin fragments, when translocated perinuclearly. Microscopic counts following application of specific inhibitors revealed that formation of FIB-NoA is dependent on deficiency of the ubiquitin proteasome system coupled to functional autophagy. In contrast, the accompanying NoAs release of pericentric heterochromatin, which exceeds their frequency, is favored by debilitation of autophagic flux. Potential survivors release NoA in the cytoplasm during rare mitoses, while exit of pericentric fragments often depleted of H3K9Me3, with or without encompassing by NoA, occurs through the nucleolar protrusions and defects of the nuclear envelope. Foci of LC3-II are accumulated in the nucleoli undergoing cessation of rDNA transcription. As an origin of heterochromatin fragmentation, the unscheduled DNA synthesis and circular DNAs were found in the perinucleolar heterochromatin shell, along with activation and retrotransposition of ALU elements, colocalized with 45S rDNA in NoAs. The data indicate coordination of the basic nucleolar function with autophagy regulation in maintenance of the integrity of the nucleolus associated domains secured by inactivity of retrotransposons.
Collapse
Affiliation(s)
| | - Anda Huna
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Inna Inashkina
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Alexander Belyayev
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | - Jekabs Krigerts
- a Latvian Biomedical Research & Study Centre , Riga , Latvia
| | - Ladislava Pastova
- b Botanical Institute AS CR , Czech Academy of Science , Prague, Czech Republic
| | | | | |
Collapse
|
14
|
Mita P, Boeke JD. How retrotransposons shape genome regulation. Curr Opin Genet Dev 2016; 37:90-100. [PMID: 26855260 DOI: 10.1016/j.gde.2016.01.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/30/2015] [Accepted: 01/17/2016] [Indexed: 12/30/2022]
Abstract
Retrotransposons are mutagenic units able to move within the genome. Despite many defenses deployed by the host to suppress potentially harmful activities of retrotransposons, these genetic units have found ways to meld with normal cellular functions through processes of exaptation and domestication. The same host mechanisms targeting transposon mobility allow for expansion and rewiring of gene regulatory networks on an evolutionary time scale. Recent works demonstrating retrotransposon activity during development, cell differentiation and neurogenesis shed new light on unexpected activities of transposable elements. Moreover, new technological advances illuminated subtler nuances of the complex relationship between retrotransposons and the host genome, clarifying the role of retroelements in evolution, development and impact on human disease.
Collapse
Affiliation(s)
- Paolo Mita
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA.
| | - Jef D Boeke
- Institute for Systems Genetics, Department of Biochemistry & Molecular Pharmacology, NYU Langone Medical Center, 430 East 29 Street, NY, NY 10016, USA
| |
Collapse
|
15
|
Cremer T, Cremer M, Hübner B, Strickfaden H, Smeets D, Popken J, Sterr M, Markaki Y, Rippe K, Cremer C. The 4D nucleome: Evidence for a dynamic nuclear landscape based on co-aligned active and inactive nuclear compartments. FEBS Lett 2015; 589:2931-43. [PMID: 26028501 DOI: 10.1016/j.febslet.2015.05.037] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 02/04/2023]
Abstract
Recent methodological advancements in microscopy and DNA sequencing-based methods provide unprecedented new insights into the spatio-temporal relationships between chromatin and nuclear machineries. We discuss a model of the underlying functional nuclear organization derived mostly from electron and super-resolved fluorescence microscopy studies. It is based on two spatially co-aligned, active and inactive nuclear compartments (ANC and INC). The INC comprises the compact, transcriptionally inactive core of chromatin domain clusters (CDCs). The ANC is formed by the transcriptionally active periphery of CDCs, called the perichromatin region (PR), and the interchromatin compartment (IC). The IC is connected to nuclear pores and serves nuclear import and export functions. The ANC is the major site of RNA synthesis. It is highly enriched in epigenetic marks for transcriptionally competent chromatin and RNA Polymerase II. Marks for silent chromatin are enriched in the INC. Multi-scale cross-correlation spectroscopy suggests that nuclear architecture resembles a random obstacle network for diffusing proteins. An increased dwell time of proteins and protein complexes within the ANC may help to limit genome scanning by factors or factor complexes to DNA exposed within the ANC.
Collapse
Affiliation(s)
- Thomas Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany.
| | - Marion Cremer
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Barbara Hübner
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Hilmar Strickfaden
- University of Alberta, Cross Cancer Institute Dept. of Oncology, Edmonton, AB, Canada
| | - Daniel Smeets
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Jens Popken
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Michael Sterr
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Yolanda Markaki
- Biocenter, Department Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) & BioQuant Center, Research Group Genome Organization & Function, Heidelberg, Germany.
| | - Christoph Cremer
- Institute of Molecular Biology (IMB), Mainz and Institute of Pharmacy and Molecular Biotechnology (IPMB), University of Heidelberg, Germany.
| |
Collapse
|
16
|
Gay S, Foiani M. Nuclear envelope and chromatin, lock and key of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:267-330. [PMID: 26008788 DOI: 10.1016/bs.ircmb.2015.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
More than as an inert separation between the inside and outside of the nucleus, the nuclear envelope (NE) constitutes an active toll, which controls the import and export of molecules, and also a hub for a diversity of genomic processes, such as transcription, DNA repair, and chromatin dynamics. Proteins localized at the inner surface of the NE (such as lamins, nuclear pore proteins, lamin-associated proteins) interact with chromatin in a dynamic manner, contributing to the establishment of topological domains. In this review, we address the complex interplay between chromatin and NE. We discuss the divergence of this cross talk during evolution and comment both on the current established models and the most recent findings. In particular, we focus our attention on how the NE cooperates with chromatin in protecting the genome integrity.
Collapse
Affiliation(s)
- Sophie Gay
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy; Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|