1
|
Gaafar A, Al-Omar HM, Manogaran PS, Almohareb F, Alhussein K. Prevalence of the BCR/ABL fusion gene and T cell stimulation capacity of dendritic cells in chronic myelogenous leukemia. Am J Transl Res 2023; 15:967-981. [PMID: 36915720 PMCID: PMC10006767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/18/2022] [Indexed: 03/16/2023]
Abstract
Dendritic cell (DC) vaccines are promising for immunotherapy, and their production using CD34+ hematopoietic stem cells (HPSCs) from patients with chronic myelogenous leukemia (CML) and healthy donors is well established. However, the generation of CD1a+CD14- DCs and their functional properties in patients with CML remain elusive. Here, we aimed to study the biology of DCs generated from CD34-/low HPSCs and evaluate the status of their BCR/ABL translocation, ability to stimulate T cells, and capacity of endocytosis compared to DCs derived from CD34+ HPSCs from both patients with CML and healthy donors. CD1a+CD14- DCs were generated from CD34-/low HPSCs and evaluated morphologically and functionally. CD34+ cells are frequently selected for transplantation and the entire CD34-/low HPSC fraction is wasted. Here, we anticipated the CD34- HPSC subset to constitute an invaluable source for acquiring DCs for immunotherapy. CD34+ and CD34- HPSCs were sorted from the bone marrow samples of CML patients and healthy donors and differentiated ex vivo in a similar way. DCs from CD34-Lin- and CD34+Lin- HPSCs expressed comparable surface markers (CD80, CD83, CD86, HLA-DR, CD40, and CD54). Functional analysis revealed that DCs acquired from both subsets retained a potent allogeneic T cell stimulatory capacity and an efficient phagocytic ability and showed a similar BCR/ABL translocation status. In conclusion, DCs were successfully differentiated from the CD34-Lin- cell subset and showed potent functional capacities, indicating their potential for application in immunotherapy and basic research.
Collapse
Affiliation(s)
- Ameera Gaafar
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center Riyadh 11211, Saudi Arabia
| | - Hamad M Al-Omar
- Section of Adult Hematology/HSCT, Oncology Center, King Faisal Specialist Hospital and Research Center Riyadh 11211, Saudi Arabia
| | - Pulicat S Manogaran
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center Riyadh 11211, Saudi Arabia
| | - Fahad Almohareb
- Section of Adult Hematology/HSCT, Oncology Center, King Faisal Specialist Hospital and Research Center Riyadh 11211, Saudi Arabia
| | - Khalid Alhussein
- Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center Riyadh 11211, Saudi Arabia
| |
Collapse
|
2
|
Matsushita M. Novel Treatment Strategies Utilizing Immune Reactions against Chronic Myelogenous Leukemia Stem Cells. Cancers (Basel) 2021; 13:cancers13215435. [PMID: 34771599 PMCID: PMC8582551 DOI: 10.3390/cancers13215435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/21/2023] Open
Abstract
Simple Summary Although tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myelogenous leukemia (CML), leukemic stem cells (LSCs) are known to be resistant to TKIs. As a result, the application of immunotherapies against LSCs may cure CML. Abstract Introduction of tyrosine kinase inhibitors (TKIs) has improved the prognosis of patients with chronic myelogenous leukemia (CML), and treatment-free remission (TFR) is now a treatment goal. However, about half of the patients experience molecular relapse after cessation of TKIs, suggesting that leukemic stem cells (LSCs) are resistant to TKIs. Eradication of the remaining LSCs using immunotherapies including interferon-alpha, vaccinations, CAR-T cells, and other drugs would be a key strategy to achieve TFR.
Collapse
Affiliation(s)
- Maiko Matsushita
- Division of Clinical Physiology and Therapeutics, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|
3
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Chan O, Talati C, Sweet K, Pinilla-Ibarz J. Can increased immunogenicity in chronic myeloid leukemia improve outcomes? Expert Rev Hematol 2019; 12:225-233. [PMID: 30855193 DOI: 10.1080/17474086.2019.1588105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Chronic myeloid leukemia (CML) has long been thought to be the model disease for immunotherapy with its characteristic BCR-ABL fusion protein. Although targeted therapy using tyrosine kinase inhibitors (TKIs) is highly effective at inducing remission, most patients require life-long TKI to decrease the risk of relapse. In recent years, much effort has been devoted to finding ways to eliminate CML stem cells (LSCs); the source of disease persistence. Areas covered: In this review, the authors present recent immunologic findings pertinent to CML, vaccinations targeting leukemia antigens, interferon combination therapies, and other emerging strategies aimed at increasing immunogenicity and improving outcomes in patients with CML. Recent publications and abstracts found in Pubmed and hematology/oncology meetings related to these topics were identified and incorporated into this review. Expert commentary: Further understanding of the immune system and antigenic composition of LSCs has allowed for novel therapeutic development. Immunotherapies are effective at the malignant stem cell level and combining these approaches with TKI is a promising option. Despite ongoing challenges, it is increasingly recognized that a cure may be achievable through immunotherapies.
Collapse
Affiliation(s)
- Onyee Chan
- a Moffitt Cancer Center , University of South Florida , Tampa , FL , USA
| | - Chetasi Talati
- b Division of Malignant Hematology , Moffitt Cancer Center , Tampa , FL , USA
| | - Kendra Sweet
- b Division of Malignant Hematology , Moffitt Cancer Center , Tampa , FL , USA
| | | |
Collapse
|
5
|
Robinson TM, Prince GT, Thoburn C, Warlick E, Ferguson A, Kasamon YL, Borrello IM, Hess A, Smith BD. Pilot trial of K562/GM-CSF whole-cell vaccination in MDS patients. Leuk Lymphoma 2018; 59:2801-2811. [PMID: 29616857 DOI: 10.1080/10428194.2018.1443449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematopoietic stem cell malignancies. Currently, approved drugs are given with non-curative intent as the only known cure is allogeneic bone marrow transplantation, which relies on the donor's immune system driving an allogeneic effect. Previous efforts to harness the endogenous immune system have been less successful. We present the results of a pilot study of K562/GM-CSF (GVAX) whole-cell vaccination in MDS patients. The primary objective of safety was met as there were no serious adverse events. One patient had a decrease in transfusion requirements and another demonstrated hematologic improvement suggesting a signal for clinical activity. In vitro correlative studies indicated biological effects on immune cells following vaccination. Although only a pilot study, results are encouraging that an immunotherapeutic approach with a whole-cell vaccine may be feasible in MDS patients.
Collapse
Affiliation(s)
- Tara M Robinson
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Gabrielle T Prince
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Chris Thoburn
- b Department of Pathology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Erica Warlick
- c Department of Medicine , University of Minnesota Medical Center , St. Paul/Minneapolis , MN , USA
| | - Anna Ferguson
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Yvette L Kasamon
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Ivan M Borrello
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Allan Hess
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - B Douglas Smith
- a Department of Medical Oncology , Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
6
|
Williams AD, Payne KK, Posey AD, Hill C, Conejo-Garcia J, June CH, Tchou J. Immunotherapy for Breast Cancer: Current and Future Strategies. CURRENT SURGERY REPORTS 2017; 5:31. [PMID: 29657904 PMCID: PMC5894864 DOI: 10.1007/s40137-017-0194-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW The breast tumor microenvironment is immunosuppressive and is increasingly recognized to play a significant role in tumorigenesis. A deeper understanding of normal and aberrant interactions between malignant and immune cells has allowed researchers to harness the immune system with novel immunotherapy strategies, many of which have shown promise in breast cancer. This review discusses the application of immunotherapy to the treatment of breast cancer. RECENT FINDINGS Both basic science and clinical trial data are rapidly developing in the use of immunotherapy for breast cancer. The current clinical trial landscape includes therapeutic vaccines, immune checkpoint blockade, antibodies, cytokines, and adoptive cell therapy. SUMMARY Despite early failures, the application of immunotherapeutic strategies to the treatment of breast cancer holds promise.
Collapse
Affiliation(s)
- Austin D Williams
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, 10th floor South, Philadelphia, PA 19104, USA
| | | | - Avery D Posey
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Christine Hill
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jose Conejo-Garcia
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Carl H June
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Tchou
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, 10th floor South, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Vaccination with autologous myeloblasts admixed with GM-K562 cells in patients with advanced MDS or AML after allogeneic HSCT. Blood Adv 2017; 1:2269-2279. [PMID: 29296875 DOI: 10.1182/bloodadvances.2017009084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/08/2017] [Indexed: 01/05/2023] Open
Abstract
We report a clinical trial testing vaccination of autologous myeloblasts admixed with granulocyte-macrophage colony-stimulating factor secreting K562 cells after allogeneic hematopoietic stem cell transplantation (HSCT). Patients with myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML) with ≥5% marrow blasts underwent myeloblast collection before HSCT. At approximately day +30, 6 vaccines composed of irradiated autologous myeloblasts mixed with GM-K562 were administered. Tacrolimus-based graft-versus-host disease (GVHD) prophylaxis was not tapered until vaccine completion (∼day 100). Thirty-three patients with AML (25) and MDS (8) enrolled, 16 (48%) had ≥5% marrow blasts at transplantation. The most common vaccine toxicity was injection site reactions. One patient developed severe eosinophilia and died of eosinophilic myocarditis. With a median follow-up of 67 months, cumulative incidence of grade 2-4 acute and chronic GVHD were 24% and 33%, respectively. Relapse and nonrelapse mortality were 48% and 9%, respectively. Progression-free survival (PFS) and overall survival (OS) at 5 years were 39% and 39%. Vaccinated patients who were transplanted with active disease (≥5% marrow blasts) had similar OS and PFS at 5 years compared with vaccinated patients transplanted with <5% marrow blasts (OS, 44% vs 35%, respectively, P = .81; PFS, 44% vs 35%, respectively, P = .34). Postvaccination antibody responses to angiopoietin-2 was associated with superior OS (hazard ratio [HR], 0.43; P = .031) and PFS (HR, 0.5; P = .036). Patients transplanted with active disease had more frequent angiopoeitin-2 antibody responses (62.5% vs 20%, P = .029) than those transplanted in remission. GM-K562/leukemia cell vaccination induces biologic activity, even in patients transplanted with active MDS/AML. This study is registered at www.clinicaltrials.gov as #NCT 00809250.
Collapse
|
8
|
Exley MA, Friedlander P, Alatrakchi N, Vriend L, Yue S, Sasada T, Zeng W, Mizukami Y, Clark J, Nemer D, LeClair K, Canning C, Daley H, Dranoff G, Giobbie-Hurder A, Hodi FS, Ritz J, Balk SP. Adoptive Transfer of Invariant NKT Cells as Immunotherapy for Advanced Melanoma: A Phase I Clinical Trial. Clin Cancer Res 2017; 23:3510-3519. [PMID: 28193627 DOI: 10.1158/1078-0432.ccr-16-0600] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/12/2016] [Accepted: 01/24/2017] [Indexed: 02/06/2023]
Abstract
Purpose: Invariant NKT cells (iNKT) are innate-like CD1d-restricted T cells with immunoregulatory activity in diseases including cancer. iNKT from advanced cancer patients can have reversible defects including IFNγ production, and iNKT IFNγ production may stratify for survival. Previous clinical trials using iNKT cell activating ligand α-galactosylceramide have shown clinical responses. Therefore, a phase I clinical trial was performed of autologous in vitro expanded iNKT cells in stage IIIB-IV melanoma.Experimental Design: Residual iNKT cells [<0.05% of patient peripheral blood mononuclear cell (PBMC)] were purified from autologous leukapheresis product using an antibody against the iNKT cell receptor linked to magnetic microbeads. iNKT cells were then expanded with CD3 mAb and IL2 in vitro to obtain up to approximately 109 cells.Results: Expanded iNKT cells produced IFNγ, but limited or undetectable IL4 or IL10. Three iNKT infusions each were completed on 9 patients, and produced only grade 1-2 toxicities. The 4th patient onward received systemic GM-CSF with their second and third infusions. Increased numbers of iNKT cells were seen in PBMCs after some infusions, particularly when GM-CSF was also given. IFNγ responses to α-galactosylceramide were increased in PBMCs from some patients after infusions, and delayed-type hypersensitivity responses to Candida increased in 5 of 8 evaluated patients. Three patients have died, three were progression-free at 53, 60, and 65 months, three received further treatment and were alive at 61, 81, and 85 months. There was no clear correlation between outcome and immune parameters.Conclusions: Autologous in vitro expanded iNKT cells are a feasible and safe therapy, producing Th1-like responses with antitumor potential. Clin Cancer Res; 23(14); 3510-9. ©2017 AACR.
Collapse
Affiliation(s)
- Mark A Exley
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts. .,Gastroenterology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts.,University of Manchester, Manchester, United Kingdom
| | - Phillip Friedlander
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nadia Alatrakchi
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Lianne Vriend
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Simon Yue
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Tetsuro Sasada
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Wanyong Zeng
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Yo Mizukami
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Justice Clark
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - David Nemer
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Christine Canning
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Heather Daley
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Glenn Dranoff
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anita Giobbie-Hurder
- Biostatistics & Computational Biology, Dana Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - F Stephen Hodi
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jerome Ritz
- Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Steven P Balk
- Hematology/Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
9
|
Current achievements and future perspectives of metronomic chemotherapy. Invest New Drugs 2016; 35:359-374. [DOI: 10.1007/s10637-016-0408-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
|
10
|
Yu L, Hu T, Zou T, Shi Q, Chen G. Chronic Myelocytic Leukemia (CML) Patient-Derived Dendritic Cells Transfected with Autologous Total RNA Induces CML-Specific Cytotoxicity. Indian J Hematol Blood Transfus 2016; 32:397-404. [PMID: 27812247 DOI: 10.1007/s12288-016-0643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
The oncogenic bcr/abl1 fusion gene is a chronic myelogenous leukemia (CML)-specific antigen which is absent in normal tissues. This makes bcr/abl1 a perfect target for developing CML vaccines that elicit specific immune responses against minimal residual disease while sparing normal tissue. The aim of this study was to use different methods to induce dendritic cells (DCs) derived from patients with CML (CML-DCs) and analyze them for CML-specific tumor cytotoxicity for immune therapy. Bone marrow-derived mononuclear cells from ten CML patients were studied to induce CML-DC differentiation in the presence of recombinant human interleukin-4, rh-granulocyte-macrophage-colony stimulating factor, and tumor necrosis factor-alpha with either a total RNA-lipofectamine complex, total RNA or CML tumor lysate (freeze-thawed). CML-DC maturation, confirmed by expression of CD1α, CD40, CD80, CD83, CD86 and by real-time polymerase chain reaction, validated the CML-origin of these DC cells. CML-DCs stimulated cytotoxic T-cell (CTL) apoptosis, high levels of IL-12 secretion, and had significant inhibitory effect on K562 tumorigenicity in nude mice. CML-DCs pulsed with total RNA by lipofectamine transfection produced the strongest effect in tumor-specific CTL functions. These results indicate that CML-DCs transfected with total RNA by lipofectamine induce the strongest CTL cytotoxicity and have the greatest potential for CML immune therapy. This study holds promise for a DC-based strategy for inducing anti-leukemia responses and establishes a foundation for developing RNA vaccination against CML.
Collapse
Affiliation(s)
- Li Yu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Ting Hu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Tian Zou
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Qingzhi Shi
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Guoan Chen
- Institute of Hematology, The First Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| |
Collapse
|
11
|
Vonka V, Petráčková M. Immunology of chronic myeloid leukemia: current concepts and future goals. Expert Rev Clin Immunol 2015; 11:511-22. [PMID: 25728856 DOI: 10.1586/1744666x.2015.1019474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although chronic myeloid leukemia is a rare malignancy, it has developed into a model system for the study of a variety of aspects of cancer biology and immunology. The introduction of tyrosine kinase inhibitors has resulted in a significant prolongation of the survival rates of chronic myeloid leukemia patients but has not resulted in a cure. There is a growing conviction that this aim can be achieved through immunotherapy. For this concept to be successful, a considerable increase in the present understanding of chronic myeloid leukemia immunology is required. The authors attempt to review and evaluate the current findings that demonstrate a number of immunological aberrations in patients prior to the start of any therapy and their normalization after achieving remission. They also discuss the recent clinical trials with experimental therapeutic vaccines and then present their own strategy on how to address the problem.
Collapse
Affiliation(s)
- Vladimír Vonka
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820 Prague 2, Czech Republic
| | | |
Collapse
|
12
|
Wang Q, Wang YL, Wang K, Yang JL, Cao CY. Polyamine analog TBP inhibits proliferation of human K562 chronic myelogenous leukemia cells by induced apoptosis. Oncol Lett 2014; 9:278-282. [PMID: 25435975 PMCID: PMC4246664 DOI: 10.3892/ol.2014.2615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/22/2014] [Indexed: 12/23/2022] Open
Abstract
The aim of the present study was to investigate the effects of the novel polyamine analog tetrabutyl propanediamine (TBP) on the growth of K562 chronic myelogenous leukemia (CML) cells and the underlying mechanism of these effects. MTT was used for the analysis of cell proliferation and flow cytometry was performed to analyze cell cycle distribution. DNA fragmentation analysis and Annexin V/propidium iodide double staining were used to identify apoptotic cells. The activity of the key enzymes in polyamine catabolism was detected using chemiluminescence. TBP can induce apoptosis and significantly inhibit K562 cell proliferation in a time- and dose-dependent manner. TBP treatment significantly induced the enzyme activity of spermine oxidase and acetylpolyamine oxidase in K562 cells, and also enhanced the inhibitory effect of the antitumor drug doxorubicin on K562 cell proliferation. As a novel polyamine analog, TBP significantly inhibited proliferation and induced apoptosis in K562 cells by upregulating the activity of the key enzymes in the polyamine catabolic pathways. TBP also increased the sensitivity of the K562 cells to the antitumor drug doxorubicin. These data indicate an important potential value of TBP for clinical therapy of human CML.
Collapse
Affiliation(s)
- Qing Wang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Yan-Lin Wang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Kai Wang
- College of Chemical and Pharmacy, Wuhan Engineering University, Wuhan, Hubei 430073, P.R. China
| | - Jian-Lin Yang
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| | - Chun-Yu Cao
- Institute of Molecular Biology, Medical College, China Three Gorges University, Yichang, Hubei 443002, P.R. China
| |
Collapse
|
13
|
Antitumor cell-complex vaccines employing genetically modified tumor cells and fibroblasts. Toxins (Basel) 2014; 6:636-49. [PMID: 24556729 PMCID: PMC3942756 DOI: 10.3390/toxins6020636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 02/08/2023] Open
Abstract
The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok) and a low producer (p2F). Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP) IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01). When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05). Significant survival (40%) was only observed in the groups vaccinated with free transfected B16 cells.
Collapse
|
14
|
Tanimoto K, Muranski P, Miner S, Fujiwara H, Kajigaya S, Keyvanfar K, Hensel N, Barrett AJ, Melenhorst JJ. Genetically engineered fixed K562 cells: potent "off-the-shelf" antigen-presenting cells for generating virus-specific T cells. Cytotherapy 2013; 16:135-46. [PMID: 24176543 DOI: 10.1016/j.jcyt.2013.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND AIMS The human leukemia cell line K562 represents an attractive platform for creating artificial antigen-presenting cells (aAPC). It is readily expandable, does not express human leukocyte antigen (HLA) class I and II and can be stably transduced with various genes. METHODS In order to generate cytomegalovirus (CMV) antigen-specific T cells for adoptive immunotherapy, we transduced K562 with HLA-A∗0201 in combination with co-stimulatory molecules. RESULTS In preliminary experiments, irradiated K562 expressing HLA-A∗0201 and 4-1BBL pulsed with CMV pp65 and IE-1 peptide libraries failed to elicit antigen-specific CD8⁺ T cells in HLA-A∗0201⁺ peripheral blood mononuclear cells (PBMC) or isolated T cells. Both wild-type K562 and aAPC strongly inhibited T cell proliferation to the bacterial superantigen staphylococcal enterotoxin B (SEB) and OKT3 and in mixed lymphocyte reaction (MLR). Transwell experiments suggested that suppression was mediated by a soluble factor; however, MLR inhibition was not reversed using transforming growth factor-β blocking antibody or prostaglandin E2 inhibitors. Full abrogation of the suppressive activity of K562 on MLR, SEB and OKT3 stimulation was only achieved by brief fixation with 0.1% formaldehyde. Fixed, pp65 and IE-1 peptide-loaded aAPC induced robust expansion of CMV-specific T cells. CONCLUSIONS Fixed gene-modified K562 can serve as effective aAPC to expand CMV-specific cytotoxic T lymphocytes for therapeutic use in patients after stem cell transplantation. Our findings have implications for broader understanding of the immune evasion mechanisms used by leukemia and other tumors.
Collapse
Affiliation(s)
- Kazushi Tanimoto
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Pawel Muranski
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Samantha Miner
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hiroshi Fujiwara
- Department of Bioregulatory Medicine, Ehime University Graduate School of Medicine, Ehime, Japan
| | - Sachiko Kajigaya
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keyvan Keyvanfar
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Nancy Hensel
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - A John Barrett
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - J Joseph Melenhorst
- Stem Cell Allogeneic Transplantation Section, Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA; Abramson Cancer Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Burkhardt UE, Hainz U, Stevenson K, Goldstein NR, Pasek M, Naito M, Wu D, Ho VT, Alonso A, Hammond NN, Wong J, Sievers QL, Brusic A, McDonough SM, Zeng W, Perrin A, Brown JR, Canning CM, Koreth J, Cutler C, Armand P, Neuberg D, Lee JS, Antin JH, Mulligan RC, Sasada T, Ritz J, Soiffer RJ, Dranoff G, Alyea EP, Wu CJ. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J Clin Invest 2013; 123:3756-65. [PMID: 23912587 DOI: 10.1172/jci69098] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 05/31/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Patients with advanced hematologic malignancies remain at risk for relapse following reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (allo-HSCT). We conducted a prospective clinical trial to test whether vaccination with whole leukemia cells early after transplantation facilitates the expansion of leukemia-reactive T cells and thereby enhances antitumor immunity. METHODS We enrolled 22 patients with advanced chronic lymphocytic leukemia (CLL), 18 of whom received up to 6 vaccines initiated between days 30 and 45 after transplantation. Each vaccine consisted of irradiated autologous tumor cells admixed with GM-CSF-secreting bystander cells. Serial patient PBMC samples following transplantation were collected, and the impact of vaccination on T cell activity was evaluated. RESULTS At a median follow-up of 2.9 (range, 1-4) years, the estimated 2-year progression-free and overall survival rates of vaccinated subjects were 82% (95% CI, 54%-94%) and 88% (95% CI, 59%-97%), respectively. Although vaccination only had a modest impact on recovering T cell numbers, CD8+ T cells from vaccinated patients consistently reacted against autologous tumor, but not alloantigen-bearing recipient cells with increased secretion of the effector cytokine IFN-γ, unlike T cells from nonvaccinated CLL patients undergoing allo-HSCT. Further analysis confirmed that 17% (range, 13%-33%) of CD8+ T cell clones isolated from 4 vaccinated patients by limiting dilution of bulk tumor-reactive T cells solely reacted against CLL-associated antigens. CONCLUSION Our studies suggest that autologous tumor cell vaccination is an effective strategy to advance long-term leukemia control following allo-HSCT. TRIAL REGISTRATION Clinicaltrials.gov NCT00442130. FUNDING NCI (5R21CA115043-2), NHLBI (5R01HL103532-03), and Leukemia and Lymphoma Society Translational Research Program.
Collapse
Affiliation(s)
- Ute E Burkhardt
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|