1
|
Zhang Z, Yuan Z, Wang Y, Zhang YH, Li Q, Zeng X, Guan Z, Bahabayi A, Wang P, Liu C. Upregulation of granzyme B and C-X3-C motif receptor 1 in circulating plasmablasts was negatively regulated by Notch signal in patients with systemic lupus erythematosus. J Leukoc Biol 2024; 116:1061-1071. [PMID: 38833584 DOI: 10.1093/jleuko/qiae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/31/2024] [Accepted: 06/01/2024] [Indexed: 06/06/2024] Open
Abstract
As one molecule related to cytotoxicity, surface expression of C-X3-C motif receptor 1 (CX3CR1) was highly correlated with intracellular granzyme B (GZMB) in natural killer and cytolytic T cells. However, the expression of CX3CR1 and GZMB in B cells has not been clarified, and their clinical significance in systemic lupus erythematosus (SLE) remains unclear. This study aimed to clarify the changes and clinical significance of peripheral blood B cells expressing GZMB and/or CX3CR1 in SLE. Peripheral blood was collected from 39 patients with SLE and 48 healthy controls. We found that GZMB and CX3CR1 expression varied in different B-cell subsets, with plasmablasts possessing the highest positive percentages, consistent with bioinformatics prediction. GZMB+ and CX3CR1+ percentages in circulating B cells and plasmablasts were increased in patients with SLE. CX3CR1 was upregulated on B cells after in vitro stimulation. Notch intracellular domain expression was significantly decreased in plasmablasts of patients with SLE, and CX3CR1 in plasmablasts was downregulated with the addition of JAG1. In conclusion, GZMB and CX3CR1 were increased in B cells and in plasmablasts of patients with SLE and CX3CR1 was negatively regulated by Notch signal in plasmablasts, which may be involved in SLE pathogenesis.
Collapse
Affiliation(s)
- Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Yiying Wang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Ya-Hui Zhang
- School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| | - Pingzhang Wang
- Department of Immunology, NHC Key Laboratory of Medical Immunology (Peking University), Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, School of Basic Medical Sciences, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
- Peking University Center for Human Disease Genomics, Peking University Health Science Center, 38# Xueyuan Road, Beijing 100191, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, 11# Xizhimen South Street, Beijing 100044, China
| |
Collapse
|
2
|
Varghese JF, Kaskow BJ, von Glehn F, Case J, Li Z, Julé AM, Berdan E, Ho Sui SJ, Hu Y, Krishnan R, Chitnis T, Kuchroo VK, Weiner HL, Baecher-Allan CM. Human regulatory memory B cells defined by expression of TIM-1 and TIGIT are dysfunctional in multiple sclerosis. Front Immunol 2024; 15:1360219. [PMID: 38745667 PMCID: PMC11091236 DOI: 10.3389/fimmu.2024.1360219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/13/2024] [Indexed: 05/16/2024] Open
Abstract
Background Regulatory B cells (Bregs) play a pivotal role in suppressing immune responses, yet there is still a lack of cell surface markers that can rigorously identify them. In mouse models for multiple sclerosis (MS), TIM-1 or TIGIT expression on B cells is required for maintaining self-tolerance and regulating autoimmunity to the central nervous system. Here we investigated the activities of human memory B cells that differentially express TIM-1 and TIGIT to determine their potential regulatory function in healthy donors and patients with relapsing-remitting (RR) MS. Methods FACS-sorted TIM-1+/-TIGIT+/- memory B (memB) cells co-cultured with allogenic CD4+ T cells were analyzed for proliferation and induction of inflammatory markers using flow cytometry and cytokine quantification, to determine Th1/Th17 cell differentiation. Transcriptional differences were assessed by SMARTSeq2 RNA sequencing analysis. Results TIM-1-TIGIT- double negative (DN) memB cells strongly induce T cell proliferation and pro-inflammatory cytokine expression. The TIM-1+ memB cells enabled low levels of CD4+ T cell activation and gave rise to T cells that co-express IL-10 with IFNγ and IL-17A or FoxP3. T cells cultured with the TIM-1+TIGIT+ double positive (DP) memB cells exhibited reduced proliferation and IFNγ, IL-17A, TNFα, and GM-CSF expression, and exhibited strong regulation in Breg suppression assays. The functional activity suggests the DP memB cells are a bonafide Breg population. However, MS DP memB cells were less inhibitory than HC DP memB cells. A retrospective longitudinal study of anti-CD20 treated patients found that post-treatment DP memB cell frequency and absolute number were associated with response to therapy. Transcriptomic analyses indicated that the dysfunctional MS-derived DP memB/Breg population exhibited increased expression of genes associated with T cell activation and survival (CD80, ZNF10, PIK3CA), and had distinct gene expression compared to the TIGIT+ or TIM-1+ memB cells. Conclusion These findings demonstrate that TIM-1/TIGIT expressing memory B cell subsets have distinct functionalities. Co-expression of TIM-1 and TIGIT defines a regulatory memory B cell subset that is functionally impaired in MS.
Collapse
Affiliation(s)
- Johnna F. Varghese
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Belinda J. Kaskow
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Felipe von Glehn
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Junning Case
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Zhenhua Li
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Amélie M. Julé
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Emma Berdan
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Shannan Janelle Ho Sui
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yong Hu
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Rajesh Krishnan
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Vijay K. Kuchroo
- Harvard Medical School, Boston, MA, United States
- The Gene Lay Institute of Immunology and Inflammation, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - Howard L. Weiner
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Clare Mary Baecher-Allan
- Harvard Medical School, Boston, MA, United States
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
3
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
4
|
Ijaz A, Broere F, Rutten VPMG, Jansen CA, Veldhuizen EJA. Perforin and granzyme A release as novel tool to measure NK cell activation in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105047. [PMID: 37625470 DOI: 10.1016/j.dci.2023.105047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 08/27/2023]
Abstract
Natural killer (NK) cells are cytotoxic lymphocytes that are present in the circulation but also in many organs including spleen and gut, where they play an important role in the defense against infections. Interaction of NK cells with target cells leads to degranulation, which results in the release of perforin and granzymes in the direct vicinity of the target cell. Chicken NK cells have many characteristics similar to their mammalian counterparts and based on similarities with studies on human NK cells, surface expression of CD107 was always presumed to correlate with granule release. However, proof of this degranulation or in fact the actual presence of perforin (PFN) and granzyme A (GrA) in chicken NK cells and their release upon activation is lacking. Therefore, the purpose of the present study was to determine the presence of perforin and granzyme A in primary chicken NK cells and to measure their release upon degranulation, as an additional tool to study the function of chicken NK cells. Using human specific antibodies against PFN and GrA in fluorescent and confocal microscopy resulted in staining in chicken NK cells. The presence of PFN and GrA was also confirmed by Western blot analyses and its gene expression by PCR. Stimulation of NK cells with the pectin SPE6 followed by flow cytometry resulted in reduced levels of intracellular PFN and GrA, suggesting release of PFN and GrA. Expression of PFN and GrA reversely correlated with increased surface expression of the lysosomal marker CD107. Finally it was shown that the supernatant of activated NK cells, containing the NK cell granule content including PFN and GrA, was able to kill Escherichia coli. This study correlates PFN and GrA release to activation of chicken NK cells and establishes an additional tool to study activity of cytotoxic lymphocytes in chickens.
Collapse
Affiliation(s)
- Adil Ijaz
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Femke Broere
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Victor P M G Rutten
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Edwin J A Veldhuizen
- Division Infectious Diseases and Immunology, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
5
|
Veh J, Mangold C, Felsen A, Ludwig C, Gerstner L, Reinhardt P, Schrezenmeier H, Fabricius D, Jahrsdörfer B. Phorbol-12-myristate-13-acetate is a potent enhancer of B cells with a granzyme B + regulatory phenotype. Front Immunol 2023; 14:1194880. [PMID: 37588597 PMCID: PMC10426744 DOI: 10.3389/fimmu.2023.1194880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/12/2023] [Indexed: 08/18/2023] Open
Abstract
Introduction The infusion of ex-vivo-generated regulatory B cells may represent a promising novel therapeutic approach for a variety of autoimmune and hyperinflammatory conditions including graft-versus-host disease. Methods Previously, we developed a protocol for the generation of a novel population of regulatory B cells, which are characterized by secretion of enzymatically active granzyme B (GraB cells). This protocol uses recombinant interleukin 21 (IL-21) and goat-derived F(ab)'2 fragments against the human B cell receptor (anti-BCR). Generally, the use of xenogeneic material for the manufacturing of advanced therapy medicinal products should be avoided to prevent adverse immune reactions as well as potential transmission of so far unknown diseases. Results In the present work we demonstrated that phorbol-12-myristate-13-acetate (PMA/TPA), a phorbol ester with a particular analogy to the second messenger diacylglycerol (DAG), is a potent enhancer of IL-21-induced differentiation of pre-activated B cells into GraB cells. The percentage of GraB cells after stimulation of pre-activated B cells with IL-21 and PMA/TPA was not significantly lower compared to stimulation with IL-21 and anti-BCR. Discussion Given that PMA/TPA has already undergone encouraging clinical testing in patients with certain haematological diseases, our results suggest that PMA/TPA may be a safe and feasible alternative for ex-vivo manufacturing of GraB cells.
Collapse
Affiliation(s)
- Johanna Veh
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Charlotte Mangold
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Anja Felsen
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Carolin Ludwig
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Lisa Gerstner
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Peter Reinhardt
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| | - Dorit Fabricius
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Bernd Jahrsdörfer
- Department of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg–Hessen and University Hospital Ulm, Ulm, Germany
| |
Collapse
|
6
|
Xue J, Xu L, Zhong H, Bai M, Li X, Yao R, Wang Z, Zhao Z, Li H, Zhu H, Hu F, Su Y. Impaired regulatory function of granzyme B-producing B cells against T cell inflammatory responses in lupus mice. Lupus Sci Med 2023; 10:e000974. [PMID: 37500293 PMCID: PMC10387741 DOI: 10.1136/lupus-2023-000974] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/29/2023]
Abstract
OBJECTIVE Recently, a new subtype of granzyme B (GrB)-producing Breg cells has been identified, which was proven to be involved in autoimmune disease. Our recent report demonstrated that GrB-producing Breg cells were correlated with clinical and immunological features of SLE. However, the effect of GrB-producing Breg cells in lupus mice is unclear. METHODS GrB expression in naïve and lupus mouse B cells was analysed using flow cytometry, PCR, ELISA and ELISpot assays. To study the role of GrB-producing B cells in a lupus model, GrB knockout (KO) and wild-type (WT) mice were intraperitoneally injected with monoclonal cells from the mutant mouse strain B6.C-H-2bm12 (bm12) for 2 weeks. In addition, the function of GrB-producing Breg cells in naïve and lupus mice was further explored using in vitro B cells-CD4+CD25- T cell co-culture assays with GrB blockade/KO of B cells. RESULTS B cells from the spleens of WT C57BL/6 (B6) mice could express and secret GrB (p<0.001). GrB-producing Breg cells from WT mice showed their regulatory functions on CD4+CD25- T cell. While the frequency of GrB-producing Breg cells was significantly decreased (p=0.001) in lupus mice (p<0.001). Moreover, GrB-producing Breg cells in lupus mice failed to suppress T cell-mediated proinflammatory responses, partially due to the impaired capacity of downregulating the T cell receptor-zeta chain and inducing CD4+CD25- T cell apoptosis. CONCLUSION This study further revealed the function and mechanism of GrB-producing Breg cells in regulating T cell homeostasis in lupus mice and highlighted GrB-producing Breg cells as a therapeutic target in SLE.
Collapse
Affiliation(s)
- Jimeng Xue
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Liling Xu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hua Zhong
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Mingxin Bai
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Xin Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Ranran Yao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Ziye Wang
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Zhen Zhao
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Hongchao Li
- Department of Rheumatology and Immunology, Beijing Jishuitan Hospital, Beijing, China
| | - Huaqun Zhu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yin Su
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Yadav B, Prasad N, Agrawal V, Agarwal V, Jain M. Lower Circulating Cytotoxic T-Cell Frequency and Higher Intragraft Granzyme-B Expression Are Associated with Inflammatory Interstitial Fibrosis and Tubular Atrophy in Renal Allograft Recipients. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1175. [PMID: 37374379 DOI: 10.3390/medicina59061175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: Inflammatory interstitial fibrosis and tubular atrophy (i-IFTA) is an inflammation in the area of tubular atrophy and fibrosis. i-IFTA is poorly associated with graft outcome and associated with infiltration of inflammatory mononuclear cells. A cytotoxic T cell is a granzyme B+CD8+CD3+ T cell, mainly secret granzyme B. Granzyme B is a serine protease that may mediate allograft injury and inflammatory interstitial fibrosis and tubular atrophy (i-IFTA). However, there is no report identifying the association of granzyme B with i-IFTA after a long post-transplant interval. Material and Methods: In this study, we have measured the cytotoxic T-cell frequency with flow cytometry, serum and PBMCs culture supernatants granzyme-B levels with ELISA and intragraft granzyme-B mRNA transcript expression with the RT-PCR in RTRs in 30 patients with biopsy-proven i-IFTA and 10 patients with stable graft function. Result: The frequency of cytotoxic T cells (CD3+CD8+ granzyme B+) in SGF vs. i-IFTA was (27.96 ± 4.86 vs. 23.19 ± 3.85%, p = 0.011), the serum granzyme-B level was (100.82 ± 22.41 vs. 130.32 ± 46.60, p = 0.038 pg/mL) and the intragraft granzyme-B mRNA transcript expression was (1.01 ± 0.048 vs. 2.10 ± 1.02, p < 0.001 fold). The frequency of CD3+ T cells in SGF vs. i-IFTA was (66.08 ± 6.8 vs. 65.18 ± 9.35%; p = 0.68) and that of CD3+CD8+ T cells was (37.29 ± 4.11 vs. 34.68 ± 5.43%; p = 0.28), which were similar between the 2 groups. CTLc frequency was negatively correlated with urine proteinuria (r = -0.51, p < 0.001), serum creatinine (r = -0.28, p = 0.007) and eGFR (r = -0.28, p = 0.037). Similarly, the PBMC culture supernatants granzyme-B level was negatively correlated with urine proteinuria (r = -0.37, p < 0.001) and serum creatinine (r = -0.31, p = 0.002), while the serum granzyme-B level (r = 0.343, p = 0.001) and intragraft granzyme-B mRNA transcript expression (r = 0.38, p < 0.001) were positively correlated with proteinuria. Conclusions: A decrease in the CTLc frequency in circulation and an increased serum granzyme-B level and intragraft granzyme-B mRNA expression shows that cytotoxic T cells may mediate the allograft injury in RTRs with i-IFTA by releasing granzyme B in serum and intragraft tissue.
Collapse
Affiliation(s)
- Brijesh Yadav
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Narayan Prasad
- Department of Nephrology and Renal Transplantation, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vinita Agrawal
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manoj Jain
- Department of Pathology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
8
|
Nandiwada SL. Overview of human B-cell development and antibody deficiencies. J Immunol Methods 2023:113485. [PMID: 37150477 DOI: 10.1016/j.jim.2023.113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
9
|
Xu Y, Mao Y, Lv Y, Tang W, Xu J. B cells in tumor metastasis: friend or foe? Int J Biol Sci 2023; 19:2382-2393. [PMID: 37215990 PMCID: PMC10197893 DOI: 10.7150/ijbs.79482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Metastasis is an important cause of cancer-related death. Immunotherapy may be an effective way to prevent and treat tumor metastasis in the future. Currently, many studies have focused on T cells, whereas fewer have focused on B cells and their subsets. B cells play an important role in tumor metastasis. They not only secrete antibodies and various cytokines but also function in antigen presentation to directly or indirectly participate in tumor immunity. Furthermore, B cells are involved in both inhibiting and promoting tumor metastasis, which demonstrates the complexity of B cells in tumor immunity. Moreover, different subgroups of B cells have distinct functions. The functions of B cells are also affected by the tumor microenvironment, and the metabolic homeostasis of B cells is also closely related to their function. In this review, we summarize the role of B cells in tumor metastasis, analyze the mechanisms of B cells, and discuss the current status and prospects of B cells in immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Wentao Tang
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| | - Jianmin Xu
- ✉ Corresponding authors: Jianmin Xu, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail: ; Wentao Tang, Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China. E-mail:
| |
Collapse
|
10
|
Warren WC, Rice ES, Meyer A, Hearn CJ, Steep A, Hunt HD, Monson MS, Lamont SJ, Cheng HH. The immune cell landscape and response of Marek's disease resistant and susceptible chickens infected with Marek's disease virus. Sci Rep 2023; 13:5355. [PMID: 37005445 PMCID: PMC10067856 DOI: 10.1038/s41598-023-32308-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Genetically resistant or susceptible chickens to Marek's disease (MD) have been widely used models to identify the molecular determinants of these phenotypes. However, these prior studies lacked the basic identification and understanding of immune cell types that could be translated toward improved MD control. To gain insights into specific immune cell types and their responses to Marek's disease virus (MDV) infection, we used single-cell RNA sequencing (scRNAseq) on splenic cells from MD resistant and susceptible birds. In total, 14,378 cells formed clusters that identified various immune cell types. Lymphocytes, specifically T cell subtypes, were the most abundant with significant proportional changes in some subtypes upon infection. The largest number of differentially expressed genes (DEG) response was seen in granulocytes, while macrophage DEGs differed in directionality by subtype and line. Among the most DEG in almost all immune cell types were granzyme and granulysin, both associated with cell-perforating processes. Protein interactive network analyses revealed multiple overlapping canonical pathways within both lymphoid and myeloid cell lineages. This initial estimation of the chicken immune cell type landscape and its accompanying response will greatly aid efforts in identifying specific cell types and improving our knowledge of host response to viral infection.
Collapse
Affiliation(s)
- Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Ashley Meyer
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Cari J Hearn
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Alec Steep
- Department of Human Genetics Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Henry D Hunt
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA
| | - Melissa S Monson
- Department of Animal Science, Iowa State University, Ames, IA, USA
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, NADC, Ames, IA, USA
| | - Susan J Lamont
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Hans H Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, USNPRC, East Lansing, MI, USA.
| |
Collapse
|
11
|
LL-37 antimicrobial peptide and heterologous prime-boost vaccination regimen significantly induce HIV-1 Nef-Vpr antigen- and virion-specific immune responses in mice. Biotechnol Lett 2023; 45:33-45. [PMID: 36550339 DOI: 10.1007/s10529-022-03339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/20/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVES HIV infection still remains a leading cause of morbidity and mortality worldwide. The inability of highly-active antiretroviral therapy in HIV-1 eradication led to development of therapeutic vaccines. Exploiting effective immunogenic constructs and potent delivery systems are important to generate effective therapeutic vaccines, and overcome their poor membrane permeability. Among HIV-1 proteins, the Nef and Vpr proteins can be considered as antigen candidates in vaccine design. METHODS In this study, the immunogenicity of Nef-Vpr antigen candidate in different regimens along with antimicrobial peptide LL-37 (as a DNA carrier) and Montanide 720 (as an adjuvant) was studied in mice. Moreover, the secretion of cytokines was assessed in virion-exposed mice lymphocytes in vitro. RESULTS Our data indicated that groups immunized with the homologous protein + Montanide regimen (group 1), and also the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) could significantly generate strong immune responses as compared to groups immunized with the DNA constructs (groups 3 & 4). Moreover, immunization of mice with the homologous DNA + LL-37 regimen in low dose of DNA (5 µg) could induce higher immune responses than the homologous naked DNA regimen in high dose of DNA (50 µg) indicating the role of LL-37 as a cell penetrating peptide. Additionally, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen (group 2) induced significantly IFN-gamma secretion from virion-exposed lymphocytes in vitro. CONCLUSION Generally, the use of LL-37 for DNA delivery, Montanide 720 as an adjuvant, and heterologous DNA prime/protein boost strategy could significantly increase IgG2a, IFN-gamma, and Granzyme B, and maintain cytokine secretion after exposure to virions. Indeed, the heterologous DNA + LL-37 prime/protein + Montanide boost regimen can be considered as a potent strategy for development of therapeutic HIV vaccines.
Collapse
|
12
|
Intratumoral Niches of B Cells and Follicular Helper T Cells, and the Absence of Regulatory T Cells, Associate with Longer Survival in Early-Stage Oral Tongue Cancer Patients. Cancers (Basel) 2022; 14:cancers14174298. [PMID: 36077836 PMCID: PMC9454508 DOI: 10.3390/cancers14174298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 12/24/2022] Open
Abstract
In early oral squamous cell carcinoma (OSCC), the occurrence of clusters between CD20 B cells and CD4 T cells in the invasive margin (IM) can be captured by using the CD20 cluster score, and is positively associated with patient survival. However, the exact contribution of different CD4 T cell subsets, as well as B cell subsets toward patient prognosis is largely unknown. To this end, we studied regulatory T cells ((Treg cells) FOXP3 and CD4), T helper-type 1 cells ((Th1 cells) Tbet and CD4), follicular helper T cells ((Tfh cells) Bcl6 and CD4), B cells (CD20), germinal center B cells ((GC B cells) BCL6 and CD20), and follicular dendritic cells ((fDCs) CD21) for their density, location, and interspacing using multiplex in situ immunofluorescence of 75 treatment-naïve, primary OSCC patients. We observed that Treg, Th1-, Tfh-, and GC B cells, but not fDCs, were abundantly present in the stroma as compared with the tumor, and in the IM as compared with in the center of the tumor. Patients with high CD20 cluster scores had a high density of all three CD4 T cell subsets and GC B cells in the stromal IM as compared with patients with low CD20 cluster scores. Notably, enriched abundance of Tfh cells (HR 0.20, p = 0.04), and diminished abundance of Treg cells (HR 0.10, p = 0.03), together with an overall short distance between Tfh and B cells (HR:0.08, p < 0.01), but not between Treg and B cells (HR 0.43, p = 0.28), were significantly associated with overall survival of patients with OSCC. Our study identified the prognostic value of clusters between CD20 B cells and Tfh cells in the stromal IM of OSCC patients, and enabled an improved understanding of the clinical value of a high CD20 cluster score, which requires validation in larger clinical cohorts.
Collapse
|
13
|
Zheng HY, Wang XH, He XY, Chen M, Zhang MX, Lian XD, Song JH, Hu Y, Pang W, Wang Y, Hu ZF, Lv LB, Zheng YT. Aging induces severe SIV infection accompanied by an increase in follicular CD8+ T cells with overactive STAT3 signaling. Cell Mol Immunol 2022; 19:1042-1053. [PMID: 35851876 PMCID: PMC9424273 DOI: 10.1038/s41423-022-00899-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
The number of elderly people living with HIV is increasing globally, and the condition of this population is relatively complicated due to the dual effects of aging and HIV infection. However, the impact of HIV infection combined with aging on the immune homeostasis of secondary lymphoid organs remains unclear. Here, we used the simian immunodeficiency virus mac239 (SIVmac239) strain to infect six young and six old Chinese rhesus macaques (ChRMs) and compared the infection characteristics of the two groups in the chronic stage through multiplex immunofluorescence staining of lymph nodes. The results showed that the SIV production and CD4/CD8 ratio inversion in old ChRMs were more severe than those in young ChRMs in both the peripheral blood and the lymph nodes, especially when a large number of CD8+ T cells infiltrated the follicles and germinal centers. STAT3 in these follicular CXCR5+CD8+ T cells was highly activated, with high expression of granzyme B, which might be caused by the severe inflammatory milieu in the follicles of old ChRMs. This study indicates that aging may be a cofactor involved in SIV-induced immune disorders in secondary lymphoid tissues, affecting the effective antiviral activity of highly enriched follicular CXCR5+CD8+ cells.
Collapse
Affiliation(s)
- Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Xue-Hui Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Min Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Ming-Xu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Jia-Hao Song
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Yan Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China
| | - Wei Pang
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Yun Wang
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Zheng-Fei Hu
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Long-Bao Lv
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, 650204, China.
- National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China.
| |
Collapse
|
14
|
Vaccination against galectin-1 promotes cytotoxic T-cell infiltration in melanoma and reduces tumor burden. Cancer Immunol Immunother 2022; 71:2029-2040. [PMID: 35018481 PMCID: PMC9293851 DOI: 10.1007/s00262-021-03139-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022]
Abstract
Galectin-1 (Gal1) is a glycan-binding protein that promotes tumor progression by several distinct mechanisms. Through direct binding to vascular endothelial growth factor (VEGF)-receptor 2, Gal1 is able to induce VEGF-like signaling, which contributes to tumor angiogenesis. Furthermore, several studies have demonstrated an immunosuppressive function of Gal1 through effects on both effector and regulatory T cells. Elevated Gal1 expression and secretion have been shown in many tumor types, and high Gal1 serum levels have been connected to poor prognosis in cancer patients. These findings suggest that therapeutic strategies directed against Gal1 would enable simultaneous targeting of angiogenesis, immune evasion and metastasis. In the current study, we have analyzed the potential of Gal1 as a cancer vaccine target. We show that it is possible to generate high anti-Gal1 antibody levels in mice immunized with a recombinant vaccine protein consisting of bacterial sequences fused to Gal1. Growth of Gal1 expressing melanomas was significantly impaired in the immunized mice compared to the control group. This was associated with improved perfusion of the tumor vasculature, as well as increased infiltration of macrophages and cytotoxic T cells (CTLs). The level of granzyme B, mainly originating from CTLs in our model, was significantly elevated in Gal1 vaccinated mice and correlated with a decrease in tumor burden. We conclude that vaccination against Gal1 is a promising pro-immunogenic approach for cancer therapy that could potentially enhance the effect of other immunotherapeutic strategies due to its ability to promote CTL influx in tumors.
Collapse
|
15
|
Ohm B, Jungraithmayr W. B Cell Immunity in Lung Transplant Rejection - Effector Mechanisms and Therapeutic Implications. Front Immunol 2022; 13:845867. [PMID: 35320934 PMCID: PMC8934882 DOI: 10.3389/fimmu.2022.845867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Allograft rejection remains the major hurdle in lung transplantation despite modern immunosuppressive treatment. As part of the alloreactive process, B cells are increasingly recognized as modulators of alloimmunity and initiators of a donor-specific humoral response. In chronically rejected lung allografts, B cells contribute to the formation of tertiary lymphoid structures and promote local alloimmune responses. However, B cells are functionally heterogeneous and some B cell subsets may promote alloimmune tolerance. In this review, we describe the current understanding of B-cell-dependent mechanisms in pulmonary allograft rejection and highlight promising future strategies that employ B cell-targeted therapies.
Collapse
Affiliation(s)
- Birte Ohm
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Jungraithmayr
- Department of Thoracic Surgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
16
|
Boldrini VO, Marques AM, Quintiliano RPS, Moraes AS, Stella CRAV, Longhini ALF, Santos I, Andrade M, Ferrari B, Damasceno A, Carneiro RPD, Brandão CO, Farias AS, Santos LMB. Cytotoxic B Cells in Relapsing-Remitting Multiple Sclerosis Patients. Front Immunol 2022; 13:750660. [PMID: 35197967 PMCID: PMC8859463 DOI: 10.3389/fimmu.2022.750660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background Emerging evidence of antibody-independent functions, as well as the clinical efficacy of anti-CD20 depleting therapies, helped to reassess the contribution of B cells during multiple sclerosis (MS) pathogenesis. Objective To investigate whether CD19+ B cells may share expression of the serine-protease granzyme-B (GzmB), resembling classical cytotoxic CD8+ T lymphocytes, in the peripheral blood from relapsing-remitting MS (RRMS) patients. Methods In this study, 104 RRMS patients during different treatments and 58 healthy donors were included. CD8, CD19, Runx3, and GzmB expression was assessed by flow cytometry analyses. Results RRMS patients during fingolimod (FTY) and natalizumab (NTZ) treatment showed increased percentage of circulating CD8+GzmB+ T lymphocytes when compared to healthy volunteers. An increase in circulating CD19+GzmB+ B cells was observed in RRMS patients during FTY and NTZ therapies when compared to glatiramer (GA), untreated RRMS patients, and healthy donors but not when compared to interferon-β (IFN). Moreover, regarding Runx3, the transcriptional factor classically associated with cytotoxicity in CD8+ T lymphocytes, the expression of GzmB was significantly higher in CD19+Runx3+-expressing B cells when compared to CD19+Runx3- counterparts in RRMS patients. Conclusions CD19+ B cells may exhibit cytotoxic behavior resembling CD8+ T lymphocytes in MS patients during different treatments. In the future, monitoring “cytotoxic” subsets might become an accessible marker for investigating MS pathophysiology and even for the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Vinícius O. Boldrini
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| | - Ana M. Marques
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Raphael P. S. Quintiliano
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Adriel S. Moraes
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carla R. A. V. Stella
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Ana Leda F. Longhini
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Irene Santos
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marília Andrade
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Breno Ferrari
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
| | | | - Rafael P. D. Carneiro
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- MS Clinic of Santa Casa de São Paulo (CATEM), Irmandade da Santa Casa de Misericordia de São Paulo, São Paulo, Brazil
| | - Carlos Otávio Brandão
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Department of Neurology, University of Campinas, Campinas, Brazil
| | - Alessandro S. Farias
- Autoimmune Research Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- Experimental Medicine Research Cluster (EMRC), São Paulo, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| | - Leonilda M. B. Santos
- Neuroimmunology Unit, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
- *Correspondence: Vinícius O. Boldrini, ; Alessandro S. Farias, ; Leonilda M. B. Santos,
| |
Collapse
|
17
|
Orecchioni M, Fusco L, Mall R, Bordoni V, Fuoco C, Rinchai D, Guo S, Sainz R, Zoccheddu M, Gurcan C, Yilmazer A, Zavan B, Ménard-Moyon C, Bianco A, Hendrickx W, Bedognetti D, Delogu LG. Graphene oxide activates B cells with upregulation of granzyme B expression: evidence at the single-cell level for its immune-modulatory properties and anticancer activity. NANOSCALE 2022; 14:333-349. [PMID: 34796889 DOI: 10.1039/d1nr04355b] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We recently found by single-cell mass cytometry that ex vivo human B cells internalize graphene oxide (GO). The functional impact of such uptake on B cells remains unexplored. Here, we disclosed the effects of GO and amino-functionalized GO (GONH2) interacting with human B cells in vitro and ex vivo at the protein and gene expression levels. Moreover, our study considered three different subpopulations of B cells and their functionality in terms of: (i) cytokine production, (ii) activation markers, (iii) killing activity towards cancer cells. Single-cell mass cytometry screening revealed the higher impact of GO on cell viability towards naïve, memory, and plasma B cell subsets. Different cytokines such as granzyme B (GrB) and activation markers, like CD69, CD80, CD138, and CD38, were differently regulated by GONH2 compared to GO, supporting possible diverse B cell activation paths. Moreover, co-culture experiments also suggest the functional ability of both GOs to activate B cells and therefore enhance the toxicity towards HeLa cancer cell line. Complete transcriptomic analysis on a B cell line highlighted the distinctive GO and GONH2 elicited responses, inducing pathways such as B cell receptor and CD40 signaling pathways, key players for GrB secretion. B cells were regularly left behind the scenes in graphene biological studies; our results may open new horizons in the development of GO-based immune-modulatory strategies having B cell as main actors.
Collapse
Affiliation(s)
- Marco Orecchioni
- Department of Chemistry and Pharmacy University of Sassari, Sassari, Italy.
| | - Laura Fusco
- Department of Immunology, Cancer Program, Sidra Medicine, Education City, Doha, Qatar.
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Raghvendra Mall
- Qatar Computing Research Institute (QCRI) Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Valentina Bordoni
- Department of Chemistry and Pharmacy University of Sassari, Sassari, Italy.
| | - Claudia Fuoco
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Darawan Rinchai
- Department of Immunology, Cancer Program, Sidra Medicine, Education City, Doha, Qatar.
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Raquel Sainz
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Martina Zoccheddu
- Department of Chemistry and Pharmacy University of Sassari, Sassari, Italy.
| | - Cansu Gurcan
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Acelya Yilmazer
- Department of Biomedical Engineering, Faculty of Engineering, Ankara University, Ankara, Turkey
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Wouter Hendrickx
- Department of Immunology, Cancer Program, Sidra Medicine, Education City, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Davide Bedognetti
- Department of Immunology, Cancer Program, Sidra Medicine, Education City, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy University of Sassari, Sassari, Italy.
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
18
|
Garcia SG, Sandoval-Hellín N, Franquesa M. Regulatory B Cell Therapy in Kidney Transplantation. Front Pharmacol 2021; 12:791450. [PMID: 34950041 PMCID: PMC8689004 DOI: 10.3389/fphar.2021.791450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
In the context of kidney injury, the role of Bregs is gaining interest. In a number of autoimmune diseases, the number and/or the function of Bregs has been shown to be impaired or downregulated, therefore restoring their balance might be a potential therapeutic tool. Moreover, in the context of kidney transplantation their upregulation has been linked to tolerance. However, a specific marker or set of markers that define Bregs as a unique cell subset has not been found and otherwise multiple phenotypes of Bregs have been studied. A quest on the proper markers and induction mechanisms is now the goal of many researchers. Here we summarize the most recent evidence on the role of Bregs in kidney disease by describing the relevance of in vitro and in vivo Bregs induction as well as the potential use of Bregs as cell therapy agents in kidney transplantation.
Collapse
Affiliation(s)
- Sergio G Garcia
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain.,Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Bellaterra, Spain
| | - Noelia Sandoval-Hellín
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Marcella Franquesa
- REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP) and Nephrology Department, University Hospital Germans Trias i Pujol (HUGTiP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| |
Collapse
|
19
|
Shi Y. PLAN B for immunotherapy: Promoting and leveraging anti-tumor B cell immunity. J Control Release 2021; 339:156-163. [PMID: 34563591 DOI: 10.1016/j.jconrel.2021.09.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
Current immuno-oncology primarily focuses on adaptive cellular immunity mediated by T lymphocytes. The other important lymphocytes, B cells, are largely ignored in cancer immunotherapy. B cells are generally considered to be responsible for humoral immune response to viral and bacterial infections. The role of B cells in cancer immunity has long been under debate. Recently, increasing evidence from both preclinical and clinical research has shown that B cells can also induce potent anti-cancer immunity, via humoral and cellular immune responses. Yet it is unclear how to efficiently integrate B cell immunity in cancer immunotherapy. In the current perspective, anti-tumor immunity of B cells is discussed regarding antibody production, antigen presentation, cytokine release and contribution to intratumoral tertiary lymphoid structures. Afterwards, immunosuppressive regulatory phenotypes of B cells are summarized. Furthermore, strategies to activate and modulate B cells using nanomedicines and biomaterials are discussed. This article provides a unique perspective on "PLAN B" (promoting and leveraging anti-tumor B cell immunity) using nanomedicines and biomaterials for cancer immunotherapy. This is envisaged to form a new research direction with the potential to reach the next breakthrough in immunotherapy.
Collapse
Affiliation(s)
- Yang Shi
- Institute for Experimental Molecular Imaging, Uniklinik RWTH Aachen and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen 52074, Germany.
| |
Collapse
|
20
|
Abstract
The humoral immune response and antibody-mediated functions of B cells during viral infections are well described. However, we have limited understanding of antibody-independent B cell functions, such as cytokine production and antigen presentation, in acute and chronic viral infections and their role in protection and/or immunopathogenesis. Here, we summarize the current literature on these antibody-independent B cell functions and identify remaining knowledge gaps. B cell subsets produce anti- and pro-inflammatory cytokines, which can have both beneficial and detrimental effects during viral clearance. As professional antigen presenting cells, B cells also play an important role in immune regulation/shaping of the developing adaptive immune responses. Since B cells primarily express TLR7 and TLR9, we specifically discuss the role of Toll-like receptor (TLR)-mediated B cell responses to viral infections and their role in augmenting adaptive immunity through enhanced cytokine production and antigen presentation. However, viruses have evolved strategies to subvert TLR signaling and additional stimulation via B cell receptor (BCR) may be required to overcome the defective TLR response in B cells. To conclude, antibody-independent B cell functions seem to have an important role in regulating both acute and chronic viral infections and may form the basis for novel therapeutic approaches in treatment of viral infections in the future.
Collapse
Affiliation(s)
- Vinit Upasani
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Izabela Rodenhuis-Zybert
- Department of Medical Microbiology and Infection Prevention, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Tineke Cantaert
- Immunology Unit, Institut Pasteur du Cambodge, Institut Pasteur International Network, Phnom Penh, Cambodia
- * E-mail:
| |
Collapse
|
21
|
Chen P, Wang Y, Li J, Bo X, Wang J, Nan L, Wang C, Ba Q, Liu H, Wang H. Diversity and intratumoral heterogeneity in human gallbladder cancer progression revealed by single-cell RNA sequencing. Clin Transl Med 2021; 11:e462. [PMID: 34185421 PMCID: PMC8236117 DOI: 10.1002/ctm2.462] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/03/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gallbladder cancer (GC) is a malignant disease characterized with highly cellular heterogeneity and poor prognosis. Determining the intratumoral heterogeneity and microenvironment (TME) can provide novel therapeutic strategies for GC. METHODS We performed the single-cell RNA sequencing on the primary and lymph node metastatic gallbladder tumors and the adjacent normal tissues of five patients. The transcriptomic atlas and ligand-receptor-based intercellular communication networks of the single cells were characterized. RESULTS The transcriptomic landscape of 24,887 single cells was obtained and characterized as 10 cellular clusters, including epithelial, neuroendocrine tumor cells, T&NK cells, B cells, RGS5+ fibroblasts, POSTN+ fibroblasts, PDGFRA+ fibroblasts, endothelial, myeloid cells, and mast cells. Different types of GC harbored distinct epithelial tumor subpopulations, and squamous cell carcinoma could be differentiated from adenocarcinoma cells. Abundant immune cells infiltrated into adenocarcinoma and squamous cell carcinoma, rather than neuroendocrine neoplasms, which showed significant enrichment of stromal cells. CD4+/FOXP3+ T-reg and CD4+/CXCL13+ T helper cells with higher exhausting biomarkers, as well as a dynamic lineage transition of tumor-associated macrophages from CCL20hi /CD163lo , CCL20lo /CD163hi to APOE+, were identified in GC tissues, suggesting the immunosuppressive and tumor-promoting status of immune cells in TME. Two distinct endothelial cells (KDR+ and ACKR1+), which were involved in angiogenesis and lymphangiogenesis, showed remarkable ligand-receptor interactions with primary GC cells and macrophages in gallbladder tumors. CONCLUSIONS This study reveals a widespread reprogramming across multiple cell populations in GC progression, dissects the cellular heterogeneity and interactions in gallbladder TME, and provides potential therapeutic targets for GC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Disease Progression
- Female
- Follow-Up Studies
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/metabolism
- Gallbladder Neoplasms/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Middle Aged
- Myeloid Cells/metabolism
- Myeloid Cells/pathology
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/pathology
- Neuroendocrine Tumors/genetics
- Neuroendocrine Tumors/metabolism
- Neuroendocrine Tumors/pathology
- Prognosis
- Single-Cell Analysis/methods
- Stromal Cells/metabolism
- Stromal Cells/pathology
- Survival Rate
- Transcriptome
- Tumor Cells, Cultured
- Tumor Microenvironment
Collapse
Affiliation(s)
- Peizhan Chen
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yueqi Wang
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaobo Bo
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Jie Wang
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Lingxi Nan
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Changcheng Wang
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Qian Ba
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Houbao Liu
- Department of General SurgeryZhongshan HospitalFudan UniversityShanghaiChina
- Biliary Tract Diseases InstituteFudan UniversityShanghaiChina
- Cancer CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
22
|
Wang W, Zou R, Qiu Y, Liu J, Xin Y, He T, Qiu Z. Interaction Networks Converging on Immunosuppressive Roles of Granzyme B: Special Niches Within the Tumor Microenvironment. Front Immunol 2021; 12:670324. [PMID: 33868318 PMCID: PMC8047302 DOI: 10.3389/fimmu.2021.670324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
Granzyme B is a renowned effector molecule primarily utilized by CTLs and NK cells against ill-defined and/or transformed cells during immunosurveillance. The overall expression of granzyme B within tumor microenvironment has been well-established as a prognostic marker indicative of priming immunity for a long time. Until recent years, increasing immunosuppressive effects of granzyme B are unveiled in the setting of different immunological context. The accumulative evidence confounded the roles of granzyme B in immune responses, thereby arousing great interests in characterizing detailed feature of granzyme B-positive niche. In this paper, the granzyme B-related regulatory effects of major suppressor cells as well as the tumor microenvironment that defines such functionalities were longitudinally summarized and discussed. Multiplex networks were built upon the interactions among different transcriptional factors, cytokines, and chemokines that regarded to the initiation and regulation of granzyme B-mediated immunosuppression. The conclusions and prospect may facilitate better interpretations of the clinical significance of granzyme B, guiding the rational development of therapeutic regimen and diagnostic probes for anti-tumor purposes.
Collapse
Affiliation(s)
- Weinan Wang
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Rui Zou
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Jishuang Liu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Yu Xin
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Tianzhu He
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China.,School of Basic Medical Sciences, Changchun University of Chinese Medicine, Changchun, China
| | - Zhidong Qiu
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
23
|
Chesneau M, Le Mai H, Brouard S. New Method for the Expansion of Highly Purified Human Regulatory Granzyme B-Expressing B Cells. Methods Mol Biol 2021; 2270:203-216. [PMID: 33479900 DOI: 10.1007/978-1-0716-1237-8_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Granzyme B (GZMB)-expressing B cells inhibit CD4+ T-lymphocyte proliferation in a contact- and GZMB-dependent manner, through degradation of TCR zeta or induction of T-cell apoptosis. This regulatory B-cell population is present in human healthy individuals and represents about 1% of circulating B cells. Their small proportion requires the development of expansion methods to enable their study and envision clinical applications. We describe here how to expand GZMB-expressing B cells to obtain more than 90% of highly purified GZMB+ B cells, and the protocol of B/T cells coculture for the evaluation of the suppressive function of the GZMB+ B-cell population.
Collapse
Affiliation(s)
- Mélanie Chesneau
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Hoa Le Mai
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France.,Labex IGO, Nantes, France
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France. .,Labex IGO, Nantes, France. .,Centre d'Investigation Clinique en Biothérapie, Centre de ressources biologiques (CRB), Nantes, France.
| |
Collapse
|
24
|
Barber-Axthelm IM, Barber-Axthelm V, Sze KY, Zhen A, Suryawanshi GW, Chen IS, Zack JA, Kitchen SG, Kiem HP, Peterson CW. Stem cell-derived CAR T cells traffic to HIV reservoirs in macaques. JCI Insight 2021; 6:141502. [PMID: 33427210 PMCID: PMC7821595 DOI: 10.1172/jci.insight.141502] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) with CCR5– donor cells is the only treatment known to cure HIV-1 in patients with underlying malignancy. This is likely due to a donor cell–mediated graft-versus-host effect targeting HIV reservoirs. Allo-HSCT would not be an acceptable therapy for most people living with HIV due to the transplant-related side effects. Chimeric antigen receptor (CAR) immunotherapies specifically traffic to malignant lymphoid tissues (lymphomas) and, in some settings, are able to replace allo-HSCT. Here, we quantified the engraftment of HSC-derived, virus-directed CAR T cells within HIV reservoirs in a macaque model of HIV infection, using potentially novel IHC assays. HSC-derived CAR cells trafficked to and displayed multilineage engraftment within tissue-associated viral reservoirs, persisting for nearly 2 years in lymphoid germinal centers, the brain, and the gastrointestinal tract. Our findings demonstrate that HSC-derived CAR+ cells reside long-term and proliferate in numerous tissues relevant for HIV infection and cancer.
Collapse
Affiliation(s)
- Isaac M Barber-Axthelm
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Valerie Barber-Axthelm
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Kai Yin Sze
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA
| | - Gajendra W Suryawanshi
- UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Irvin Sy Chen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Jerome A Zack
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA.,Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | - Scott G Kitchen
- Department of Medicine, Division of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, California, USA.,UCLA AIDS Institute, Los Angeles, California, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Christopher W Peterson
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine and
| |
Collapse
|
25
|
Yoon T, Yoo J, Ahn SS, Song JJ, Park YB, Lee SW. Serum granzyme B is associated with otorhinolaryngological, pulmonary, and renal involvement of antineutrophil cytoplasmic antibody-associated vasculitis. J Investig Med 2020; 69:91-95. [PMID: 33184057 DOI: 10.1136/jim-2020-001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 11/04/2022]
Abstract
We investigated whether serum granzyme B (GrB) can reflect the inflammatory burden such as cross-sectional disease activity and organ-specific involvement in immunosuppressive drug-naïve patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV). Seventy-eight immunosuppressive drug-naïve patients with AAV were included in this study. At the time of the first classification, whole blood was obtained from each patient and sera was immediately isolated and stored at - 80℃. On the day of the blood sampling, we performed routine laboratory tests including antineutrophil cytoplasmic antibody tests and collected both clinical and laboratory data. AAV-specific indices included Birmingham Vasculitis Activity Score (BVAS) and Five-Factor Score (FFS). The median age of patients with AAV was 62 years and 26 patients were men. Serum GrB was not associated with the cross-sectional BVAS; however, patients with serum GrB positivity exhibited higher frequencies of otorhinolaryngological manifestation than those without (p=0.037). When serum GrB levels were compared after dividing the patients into two groups based on the presence of organ-specific involvement, patients with pulmonary involvement exhibited a significantly higher serum GrB than those without (p=0.042). On the other hand, patients with renal involvement showed a significantly lower serum GrB than those without (p=0.023). In addition, serum GrB was inversely correlated with the cross-sectional FFS (r=-0.249, p=0.028). Even though serum GrB could not reflect the inflammatory burden of AAV, serum GrB was associated with otorhinolaryngological, pulmonary, and renal involvement in immunosuppressive drug-naïve patients with AAV.
Collapse
Affiliation(s)
- Taejun Yoon
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Juyoung Yoo
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sung Soo Ahn
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Jason Jungsik Song
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of).,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yong-Beom Park
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of).,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Sang-Won Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of) .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| |
Collapse
|
26
|
Memory CD73+IgM+ B cells protect against Plasmodium yoelii infection and express Granzyme B. PLoS One 2020; 15:e0238493. [PMID: 32886698 PMCID: PMC7473529 DOI: 10.1371/journal.pone.0238493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/21/2020] [Indexed: 11/19/2022] Open
Abstract
To better understand anti-malaria protective immune responses, we examined the cellular mechanisms that govern protective immunity in a murine Plasmodium yoelii 17X NL (PyNL) re-infection model. Initially, we confirmed that immune B cells generated during a primary PyNL infection were largely responsible for protection from a second PyNL infection. Using the previously identified memory B cell markers CD80, PD-L2, and CD73, we found an increase in the frequency of CD80-PD-L2-CD73+ B cells up to 55 days after a primary PyNL infection and at 4-6 days following a second PyNL infection. Moreover, injection of enriched immune CD19+CD73+ B cells into nonimmune mice were significantly more protective against a PyNL infection than CD73- B cells. Interestingly, a substantial fraction of these CD73+ B cells also expressed IgM and granzyme B, a biomolecule that has been increasingly associated with protective responses against malaria.
Collapse
|
27
|
Tumour-reactive B cells and antibody responses after allogeneic haematopoietic cell transplantation. IMMUNO-ONCOLOGY TECHNOLOGY 2020; 7:15-22. [PMID: 35754458 PMCID: PMC9216635 DOI: 10.1016/j.iotech.2020.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
For many high-risk haematologic malignancies, such as acute myeloid leukaemia, the success of therapy relies mainly on invoking a curative antitumour immune response. This can be achieved by inducing a graft-versus-leukaemia response following allogeneic haematopoietic cell transplantation. While the contribution of T cells and natural killer cells to graft-versus-leukaemia responses is established, the contribution of B cells and antibodies is relatively unexplored. This article reviews what is known about the contribution of B cells and tumour-specific antibody responses to a successful graft-versus-leukaemia response leading to eradication of the tumour.
Collapse
|
28
|
Ran Z, Yue-Bei L, Qiu-Ming Z, Huan Y. Regulatory B Cells and Its Role in Central Nervous System Inflammatory Demyelinating Diseases. Front Immunol 2020; 11:1884. [PMID: 32973780 PMCID: PMC7468432 DOI: 10.3389/fimmu.2020.01884] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Regulatory B (Breg) cells represent a population of suppressor B cells that participate in immunomodulatory processes and inhibition of excessive inflammation. The regulatory function of Breg cells have been demonstrated in mice and human with inflammatory diseases, cancer, after transplantation, and particularly in autoinflammatory disorders. In order to suppress inflammation, Breg cells produce anti-inflammatory mediators, induce death ligand-mediated apoptosis, and regulate many kinds of immune cells such as suppressing the proliferation and differentiation of effector T cell and increasing the number of regulatory T cells. Central nervous system Inflammatory demyelinating diseases (CNS IDDs) are a heterogeneous group of disorders, which occur against the background of an acute or chronic inflammatory process. With the advent of monoclonal antibodies directed against B cells, breakthroughs have been made in the treatment of CNS IDDs. Therefore, the number and function of B cells in IDDs have attracted attention. Meanwhile, increasing number of studies have confirmed that Breg cells play a role in alleviating autoimmune diseases, and treatment with Breg cells has also been proposed as a new therapeutic direction. In this review, we focus on the understanding of the development and function of Breg cells and on the diversification of Breg cells in CNS IDDs.
Collapse
Affiliation(s)
- Zhou Ran
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Luo Yue-Bei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeng Qiu-Ming
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Kim N, Kim HK, Lee K, Hong Y, Cho JH, Choi JW, Lee JI, Suh YL, Ku BM, Eum HH, Choi S, Choi YL, Joung JG, Park WY, Jung HA, Sun JM, Lee SH, Ahn JS, Park K, Ahn MJ, Lee HO. Single-cell RNA sequencing demonstrates the molecular and cellular reprogramming of metastatic lung adenocarcinoma. Nat Commun 2020; 11:2285. [PMID: 32385277 PMCID: PMC7210975 DOI: 10.1038/s41467-020-16164-1] [Citation(s) in RCA: 561] [Impact Index Per Article: 140.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 04/17/2020] [Indexed: 12/21/2022] Open
Abstract
Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell transcriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions.
Collapse
Affiliation(s)
- Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Hong Kwan Kim
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 06351, Seoul, Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Jong Ho Cho
- Department of Thoracic and Cardiovascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung Won Choi
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Yeon-Lim Suh
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Bo Mi Ku
- Samsung Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Hye Hyeon Eum
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea
| | - Soyean Choi
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Yoon-La Choi
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
- Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Je-Gun Joung
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea
| | - Hyun Ae Jung
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jong-Mu Sun
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Se-Hoon Lee
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Jin Seok Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Keunchil Park
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Myung-Ju Ahn
- Division of Haematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Seoul, 06591, Korea.
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences &Technology, Sungkyunkwan University, Seoul, 06355, Korea.
| |
Collapse
|
30
|
Drokov M, Davydova Y, Popova N, Kapranov N, Starikova O, Mikhaltsova E, Nareyko M, Dmitrova A, Konova Z, Galtseva I, Kuzmina L, Parovichnikova E, Savchenko V. High expression of granzyme B in conventional CD4+ T cells is associated with increased relapses after allogeneic stem cells transplantation in patients with hematological malignancies. Transpl Immunol 2020; 65:101295. [PMID: 32302642 DOI: 10.1016/j.trim.2020.101295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022]
Abstract
Granzyme B is known to be a serine protease contained in granules of cytotoxic T cells. We have previously reported an influence of granzyme B expression in T regulatory cells (Tregs) on the risk of acute graft versus host disease (GVHD) onset. However, it is still unknown if conventional T cells (Tcon) use the granzyme B pathway as a mechanism of alloimmunity. We hypothesized that granzyme B in Tcon may affect recurrence within the first 6 months after allogeneic transplantation (allo-HSCT). A total of 65 patients with different hematological malignancies were included in this study. Blood samples were collected on day +30 after allo-HSCT. The percentage of granzyme B positive conventional T cells in patients who developed relapse in the first 6 months after allo-HSCT was 11.3 (4.5-35.3) compared to the others in continuous complete remission-1.3 (3.65-9.7), р = 0.011. The risk of relapse after allo-HSCT was in 3.9 times higher in patients with an increased percentage of granzyme B positive conventional T cells. The findings demonstrated that the percentage of granzyme B positive conventional T cells on day +30 after allo-HSCT could be a predictable marker of relapse within the first 6 months after allo-HSCT.
Collapse
Affiliation(s)
- Mikhail Drokov
- Immunotherapy and Post-BMT Complications Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation.
| | - Yulia Davydova
- Flow Cytometry Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Natalia Popova
- Immunotherapy and Post-BMT Complications Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Nikolay Kapranov
- Flow Cytometry Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Olga Starikova
- Immunotherapy and Post-BMT Complications Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Ekaterina Mikhaltsova
- Immunotherapy and Post-BMT Complications Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Maria Nareyko
- BMT Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Anna Dmitrova
- Immunotherapy and Post-BMT Complications Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Zoya Konova
- BMT Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Irina Galtseva
- Flow Cytometry Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Larisa Kuzmina
- BMT Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Elena Parovichnikova
- BMT Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| | - Valery Savchenko
- BMT Department, National Research Center for Hematology, Noviy Zikovskiy proezd 4, 125167 Moscow, Russian Federation
| |
Collapse
|
31
|
León DL, Matthey P, Fellay I, Blanchard M, Martinvalet D, Mantel PY, Filgueira L, Walch M. Granzyme B Attenuates Bacterial Virulence by Targeting Secreted Factors. iScience 2020; 23:100932. [PMID: 32151975 PMCID: PMC7063247 DOI: 10.1016/j.isci.2020.100932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
Pathogenic bacteria secrete virulence factors that interact with the human host to establish infections. The human immune system evolved multiple mechanisms to fight bacterial invaders, including immune proteases that were demonstrated to contribute crucially to antibacterial defense. Here we show that granzyme B degrades multiple secreted virulence mediators from Listeria monocytogenes, Salmonella typhimurium, and Mycobacteria tuberculosis. Pathogenic bacteria, when infected in the presence of granzyme B or granzyme-secreting killer cells, fail to grow in human macrophages and epithelial cells owing to their crippled virulence. A granzyme B-uncleavable mutant form of the major Listeria virulence factor, listeriolysin O, rescued the virulence defect in response to granzyme treatment. Hence, we link the degradation of a single factor with the observed decrease in virulent bacteria growth. Overall, we reveal here an innate immune barrier function of granzyme B by disrupting bacterial virulence to facilitate bacteria clearance by bystander immune and non-immune cells.
Collapse
Affiliation(s)
- Diego López León
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Patricia Matthey
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Isabelle Fellay
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Marianne Blanchard
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35121 Padova, Italy
| | - Pierre-Yves Mantel
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Luis Filgueira
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, PER03.14, Route Albert Gockel 1, 1700 Fribourg, Switzerland.
| |
Collapse
|
32
|
Hetta HF, Elkady A, Yahia R, Meshall AK, Saad MM, Mekky MA, Al-Kadmy IMS. T follicular helper and T follicular regulatory cells in colorectal cancer: A complex interplay. J Immunol Methods 2020; 480:112753. [PMID: 32061875 DOI: 10.1016/j.jim.2020.112753] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/14/2019] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Colorectal cancer is considered to be one of the major causes of morbidity and mortality all over the world. T Follicular helper (TFH) and T follicular regulatory (TFR) cells are specialized providers of T-cells to help B-cells and shaping germinal centers (GC) response. Recent researches reported a high percentage of TFH and TFR in different infectious diseases and certain malignancies. However, their functional role in human colorectal cancer (CRC) is relatively unknown. Furthermore, recent studies show that the interaction of both TFH cells and TFR cells are essential to promote several diseases. Under the control of specific cytokines and B-cell lymphoma 6 transcription factor (Bcl-6), the major transcription factor of TFH cells, TFH, can expand to the other distinct CD4 + T helper cells (TH1, TH2, and TH17) which exert a different role in the development of CRC. This review aims to discuss these suggested roles of the two-opposite subset of follicular T cells in colorectal cancer immune pathogenesis.
Collapse
Affiliation(s)
- Helal F Hetta
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Ramadan Yahia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Ahmed Kh Meshall
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Mahmoud M Saad
- Assiut University Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A Mekky
- Department of Tropical Medicine and Gastroenterology, Assiut University Hospital, Assiut, Egypt
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10244, Baghdad, Iraq; Faculty of Science and Engineering, School of Engineering, University of Plymouth, Plymouth PL4 8AA, UK.
| |
Collapse
|
33
|
Massive activity of cytotoxic cells during refractory Neuromyelitis Optica spectrum disorder. J Neuroimmunol 2020; 340:577148. [PMID: 31986375 DOI: 10.1016/j.jneuroim.2020.577148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/02/2020] [Accepted: 01/09/2020] [Indexed: 01/15/2023]
Abstract
Our group is interested in the cytotoxic mechanism during autoimmune neuroinflammation. Unexpectedly, we come across a case that presents a massive enhancement of cytotoxic behavior in lymphocytes, either in peripheral blood and cerebrospinal fluid. Interestingly, this specific patient was refractory to Methylprednisolone treatment. Hypothetically, the cytotoxic activity could represent a novel and complementary effector mechanism to NMOSD pathogenesis. Nevertheless, further investigation is needed to evaluate the extension and the clinical relevance of our finds.
Collapse
|
34
|
Zhao KL, Yang XJ, Jin HZ, Zhao L, Hu JL, Qin WJ. Double-edge Role of B Cells in Tumor Immunity: Potential Molecular Mechanism. Curr Med Sci 2019; 39:685-689. [PMID: 31612383 DOI: 10.1007/s11596-019-2092-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/03/2019] [Indexed: 01/01/2023]
Abstract
B cells are a heterogeneous population, which have distinct functions of antigen presentation, activating T cells, and secreting antibodies, cytokines as well as protease. It is supposed that the balance among these B cells subpopulation (resting B cells, activated B cells, Bregs, and other differentiated B cells) will determine the ultimate role of B cells in tumor immunity. There has been increasing evidence supporting opposite roles of B cells in tumor immunity, though there are no general acceptable phenotypes for them. Recent years, a new designated subset of B cells identified as Bregs has emerged from immunosuppressive and/or regulatory functions in tumor immune responses. Therefore, transferring activated B cells would be possible to become a promising strategy against tumor via conquering the immunosuppressive status of B cells in future. Understanding the potential mechanism of double-edge role of B cells will help researchers utilize activated B cells to improve their anti-tumor response. Moreover, the molecular pathways related to B cell differentiation are involved in its tumor-promoting effect, such as NF-κB, STAT3, BTK. So, we review the molecular and signaling pathway mechanisms of B cells involved in both tumor-promoting and tumor-suppressive immunity, in order to help researchers optimize B cells to fight cancer better.
Collapse
Affiliation(s)
- Kai-Liang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-Jia Yang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hong-Zhong Jin
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Liang Zhao
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian-Li Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wen-Juan Qin
- Department of Radiation Oncology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, 361001, China.
| |
Collapse
|
35
|
Lattimore S, Skill NJ, Maluccio MA, Elliott H, Dobben E, Shafuddin A, Goggins WC. Antithymocyte Globulin Antibody Titer Congruent With Kidney Transplantation: Analysis of Incidence, Outcomes, Cost, and Alternative Targets. Transplant Direct 2019; 5:e493. [PMID: 31723588 PMCID: PMC6791597 DOI: 10.1097/txd.0000000000000933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 11/25/2022] Open
Abstract
Rabbit antithymocyte globulin (rATG) use for immunosuppression induction is widespread but is contraindicated by the presence of anti-rATG antibodies. This study reports the incidence of positive anti-rATG antibody titers in patients before and after renal transplant and evaluates associated outcomes and costs. In addition, it will correlate CD40L and interleukin (IL)-21 with anti-rATG antibody titers. METHODS Clinical and billing records from the Indiana University Transplant Laboratory were reviewed for positive versus negative anti-rATG antibody titers, graft survival, and 7-day readmission costs between 2004 and 2018. Serum from patients with positive and negative rATG antibody titers were quantitated for CD40L and IL-21 by enzyme-linked immunosorbent assay. RESULTS On average, between 2004 and May 2018, 163 kidney transplants per year were performed. Anti-rATG antibody titers were ordered for 17 patients/year, of which 18.2% were positive at 1:100 titer either pre- or post-transplant. Time to graft loss correlated with a positive rATG titer at time of readmission. Moreover, second kidney transplant increased the anti-rATG positive rate. A weak correlation was observed between anti-rATG titer and recipient age. Seven-day readmission treatment costs were significantly lower in patients with positive anti-rATG titer. IL-21 and CD40L were significantly greater in patients with positive anti-rATG titers after transplant when compared with negative anti rATG patients. CONCLUSIONS Positive anti-rATG antibody titer is associated with a significant negative impact on outcomes. Monitoring of anti-rATG antibody titer is recommended to optimize treatment options in patients, especially in the setting of second transplants. Elucidation of the mechanisms associated with positive anti-rATG antibody is required. IL-21 and CD40L are potential targets for future study.
Collapse
Affiliation(s)
- Sherene Lattimore
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Nicholas J. Skill
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Mary A. Maluccio
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Holly Elliott
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Elizabeth Dobben
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Asif Shafuddin
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - William C. Goggins
- Division of Transplant, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
36
|
Arabpour M, Rasolmali R, Talei AR, Mehdipour F, Ghaderi A. Granzyme B production by activated B cells derived from breast cancer-draining lymph nodes. Mol Immunol 2019; 114:172-178. [PMID: 31357083 DOI: 10.1016/j.molimm.2019.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/21/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
B lymphocytes with regulatory or effector functions synthesize granzyme B (GZMB). We investigated the frequency and phenotype of GZMB-producing B cells in breast tumor-draining lymph nodes (TDLNs). Mononuclear cells were isolated from 48 axillary lymph nodes and were stimulated with anti-BCR (B cell receptor), recombinant interleukin (IL)-21 and CD40 L alone or in combination. Flow cytometry was used to evaluate the expression of GZMB in B cells, and in 4 samples the phenotype of GZMB+ B cells was determined. B cells produced GZMB only when stimulated with a combination of IL-21 and anti-BCR for at least 16 h. Adding CD40 L to IL-21 and anti-BCR stimuli resulted in lower GZMB production in B cells. A small fraction of B cells was able to produce perforin in all stimulation conditions, and the majority of GZMB+ B cells were perforin-negative. Both naïve (CD24lowCD27-) and active/memory (CD24hiCD27+) B cells expressed GZMB. In patients with invasive ductal carcinoma, the frequency of GZMB+ B cells was significantly lower in metastatic compared to non-metastatic lymph nodes. The frequency of GZMB+ B cells did not significantly correlate with prognostic factors such as stage, tumor size or Her2 expression. In summary, a subpopulation of both naïve and memory B cells expressed GZMB in breast TDLNs. Our findings underscore the need to investigate the function of GZMB+ B cells in breast tumor immunity.
Collapse
Affiliation(s)
- Mohsen Arabpour
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Rasolmali
- Department of Pathology, Shiraz Central Hospital, Shiraz, Iran
| | - Abdoul-Rasoul Talei
- Breast Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fereshteh Mehdipour
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Dimitrijević M, Arsenović-Ranin N, Kosec D, Bufan B, Nacka-Aleksić M, Pilipović I, Leposavić G. Sexual dimorphism in Th17/Treg axis in lymph nodes draining inflamed joints in rats with collagen-induced arthritis. Brain Behav Immun 2019; 76:198-214. [PMID: 30476564 DOI: 10.1016/j.bbi.2018.11.311] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/22/2018] [Accepted: 11/22/2018] [Indexed: 01/11/2023] Open
Abstract
Collagen type II-induced arthritis (CIA) in Dark Agouti rats, a model of rheumatoid arthritis (RA), reproduces sexual dimorphism in the incidence and severity of the human disease. Th17 cells are central in the induction/propagation of autoimmune inflammation in CIA and RA. To assess mechanisms underlying this dimorphism in CIA rats, in lymph nodes draining inflamed joints and adjacent tissues (dLNs) from CIA rats of both sexes Th17/CD25+Foxp3+CD4+ T-regulatory cell (Treg) ratio, Th17 cell redifferentiation in functionally distinct subsets and Treg transdifferentiation into IL-17-producing cells (exTregs) were examined. In female rats (developing more severe CIA than their male counterparts) the higher frequency of all Th17 cells (reflecting partly their greater proliferation), followed by the higher frequency of highly pathogenic IFN-γ/GM-CSF-co-producing cells, but lower frequency of less pathogenic/immunoregulatory IL-10-producing cells among them was found. Additionally, compared with male rats, in female rats the lower frequency of Tregs was observed. Moreover, Tregs from female rats exhibited diminished proliferative and suppressive capacity (judging by PD-1 expression) and enhanced conversion into IL-17-producing cells. Given that TGF-β concentration was comparable in collagen-type II-stimulated dLN cell cultures from female and male rats, the shift in Th17/Treg ratio followed by augmented Th17 cell redifferentiation into IFN-γ/GM-CSF-co-producing cells and Treg transdifferentiation into IL-17-producing cells in female rats was associated with increased concentration of IL-6 in female rat dLN cell cultures, and the higher frequency of IL-1β- and IL-23-producing cells among their dLN cells. The lower frequency of IL-10-producing B cells, presumably B regulatory cells (Bregs) could also contribute to the shift in Th17/Treg ratio in female rat compared with male rat dLNs. Consistently, the lower expression of IL-35 (the cytokine promoting Treg expansion directly and indirectly, by favoring Breg expansion and conversion into IL-10/IL-35-producing cells) in female rat dLN cells was detected. Thus, the study identified putative cellular and molecular substrates of the sexual dimorphism in the immunopathogenesis and clinical outcome of CIA and suggested mechanisms to be targeted in females to improve control of Th17 response, and consequently clinical outcome of CIA, and possibly RA.
Collapse
Affiliation(s)
- Mirjana Dimitrijević
- Department of Immunology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia.
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Duško Kosec
- Immunology Research Center, Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Mirjana Nacka-Aleksić
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia
| | - Ivan Pilipović
- Immunology Research Center, Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Vojvode Stepe 458, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade, Serbia.
| |
Collapse
|
38
|
Multiplex ImmunoSpot ® Assays for the Study of Functional B Cell Subpopulations. Methods Mol Biol 2018. [PMID: 29956175 DOI: 10.1007/978-1-4939-8567-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
B cells mediate humoral immunity by producing antibody molecules, but they also participate in innate and acquired immune functions via the secretion of effector molecules such as cytokines, chemokines, and granzyme. B cell subpopulations releasing such effector molecules have been implicated in immunobiology and a number of diseases.Unlike antigen-specific T cells that can be identified by multimer staining, and then counter-stained to define T cell subpopulations, antigen-specific B cells cannot be detected by flow cytometry. Staining antigen-specific B cells with labeled antigen, in large, has been unsuccessful. Instead, antigen-specific B cells can be and are commonly studied by ELISPOT. In the ELISPOT approach, the B cell is identified via the antibody that it secretes being captured on a membrane by the antigen itself. Should it be feasible to measure simultaneously antibody production and the secretion of other secretory B cell products, it would then be possible to identify B cell subpopulations that co-express effector molecules. Here we introduce multiplex ELISPOT assays in which measurements of antibody secretion are combined with the detection of Granzyme B, IL-6, IL-10, IFN-γ, and TNF-α. Such multiplex assays will help define effector B cell subpopulations, as well as the understanding of their role in health and disease.
Collapse
|
39
|
Noncoding RNAs in Retrovirus Replication. RETROVIRUS-CELL INTERACTIONS 2018. [PMCID: PMC7173536 DOI: 10.1016/b978-0-12-811185-7.00012-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although a limited percentage of the genome produces proteins, approximately 90% is transcribed, indicating important roles for noncoding RNA (ncRNA). It is now known that these ncRNAs have a multitude of cellular functions ranging from the regulation of gene expression to roles as structural elements in ribonucleoprotein complexes. ncRNA is also represented at nearly every step of viral life cycles. This chapter will focus on ncRNAs of both host and viral origin and their roles in retroviral life cycles. Cellular ncRNA represents a significant portion of material packaged into retroviral virions and includes transfer RNAs, 7SL RNA, U RNA, and vault RNA. Initially thought to be random packaging events, these host RNAs are now proposed to contribute to viral assembly and infectivity. Within the cell, long ncRNA and endogenous retroviruses have been found to regulate aspects of the retroviral life cycle in diverse ways. Additionally, the HIV-1 transactivating response element RNA is thought to impact viral infection beyond the well-characterized role as a transcription activator. RNA interference, thought to be an early version of the innate immune response to viral infection, can still be observed in plants and invertebrates today. The ability of retroviral infection to manipulate the host RNAi pathway is described here. Finally, RNA-based therapies, including gene editing approaches, are being explored as antiretroviral treatments and are discussed.
Collapse
|
40
|
Rabani M, Wilde B, Hübbers K, Xu S, Kribben A, Witzke O, Dolff S. IL-21 dependent Granzyme B production of B-cells is decreased in patients with lupus nephritis. Clin Immunol 2017; 188:45-51. [PMID: 29274388 DOI: 10.1016/j.clim.2017.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/06/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVES B-cells play a crucial role in the pathogenesis of lupus nephritis. Recently, a separate subset has been discovered characterized by expression of Granzyme B. The aim of this study is to investigate this subset in patients with systemic lupus erythematosus (SLE). METHODS Isolated PBMCs of SLE-patients (n=30) and healthy controls (n=21) were in vitro stimulated with CPG, IgG+IgM and IL-21. Patients were sub-grouped in patients with and without biopsy proven lupus nephritis. B-cells were analyzed for intracellular Granzyme B expression by flow cytometry. RESULTS The strongest stimulus for Granzyme B secretion of B-cells was IgG+IgM in presence of IL-21. SLE-patients had a significant decreased percentage of Granzyme B+ B-cells in particular SLE-patients with active disease and with lupus nephritis. CONCLUSIONS The frequency of GrB+ producing B-cells is reduced in SLE patients. This may contribute to an imbalanced B-cell regulation towards effector B-cells which might promote the development of lupus nephritis.
Collapse
Affiliation(s)
- Mariam Rabani
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Katharina Hübbers
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Shilei Xu
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany.
| |
Collapse
|
41
|
Bulati M, Caruso C, Colonna-Romano G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing". Ageing Res Rev 2017; 36:125-136. [PMID: 28396185 DOI: 10.1016/j.arr.2017.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies.
Collapse
|
42
|
Differential expression of serpins may selectively licence distinct granzyme B functions including antigen cross-presentation. Mol Immunol 2017; 87:325-326. [DOI: 10.1016/j.molimm.2017.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/06/2017] [Indexed: 11/23/2022]
|
43
|
Tabanelli V, Santiago-Pacheco V, Corbellino M, Calleri A, Agostinelli C, Parravicini C, Pileri SA. Cytotoxic Epstein-Barr virus-positive large B cell lymphoma: a regulatory B cell-derived neoplasia? Histopathology 2016; 70:650-656. [PMID: 27782313 DOI: 10.1111/his.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022]
Abstract
AIMS A new subtype of granzyme B (GrB)-producing regulatory B cells (Bregs ) has been described recently; these peculiar cytotoxic B cells are increased significantly in interleukin (IL)-21-rich settings, and in particular during HIV and Epstein-Barr virus (EBV) infection. Our aim is to report a unique case of an EBV-positive diffuse large B cell lymphoma (DLBCL) with cytotoxic features arisen in an HIV+ patient, and to understand if this lesion may represent a proliferation of neoplastic cytotoxic Bregs . METHODS AND RESULTS We describe a 66-year-old male patient who presented with cervical lymph node enlargement and B symptoms; subsequently, HIV infection was diagnosed. Histopathological, immunohistochemical and molecular studies were performed, and revealed an EBV-positive DLBCL with cytotoxic features. Considering the immunological setting and unconventional phenotype observed, we tried to evaluate further the expression of GrB and IL-21 in another 150 aggressive B cell lymphomas (17 of 150 EBV+ , two of 150 EBV+ /HIV+ ). Minimal dot-like expression of GrB was found in seven lymphomas (in fewer than 1% of tumour cells), three of which were EBV-positive. CONCLUSIONS Breg origin has never been reported in B cell lymphomas. We describe an exceptional case of EBV-positive DLBCL with aberrant expression of cytotoxic markers in a patient with a previously unknown HIV infection. We propose cytotoxic Bregs as a possible normal counterpart for this unusual tumour.
Collapse
Affiliation(s)
| | | | - Mario Corbellino
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Angelica Calleri
- Unit of Haematopathology, European Institute of Oncology, Milan, Italy
| | - Claudio Agostinelli
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carlo Parravicini
- Section of Infectious Diseases and Immunopathology, Luigi Sacco Hospital, Milan, Italy
| | - Stefano A Pileri
- Unit of Haematopathology, European Institute of Oncology, Milan, Italy.,Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
44
|
Claes N, Fraussen J, Vanheusden M, Hellings N, Stinissen P, Van Wijmeersch B, Hupperts R, Somers V. Age-Associated B Cells with Proinflammatory Characteristics Are Expanded in a Proportion of Multiple Sclerosis Patients. THE JOURNAL OF IMMUNOLOGY 2016; 197:4576-4583. [PMID: 27837111 DOI: 10.4049/jimmunol.1502448] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
Abstract
Immune aging occurs in the elderly and in autoimmune diseases. Recently, IgD-CD27- (double negative, DN) and CD21-CD11c+ (CD21low) B cells were described as age-associated B cells with proinflammatory characteristics. This study investigated the prevalence and functional characteristics of DN and CD21low B cells in multiple sclerosis (MS) patients. Using flow cytometry, we demonstrated a higher proportion of MS patients younger than 60 y with peripheral expansions of DN (8/41) and CD21low (9/41) B cells compared with age-matched healthy donors (1/33 and 2/33, respectively), which indicates an increase in age-associated B cells in MS patients. The majority of DN B cells had an IgG+ memory phenotype, whereas CD21low B cells consisted of a mixed population of CD27- naive, CD27+ memory, IgG+, and IgM+ cells. DN B cells showed similar (MS patients) or increased (healthy donors) MHC-II expression as class-switched memory B cells and intermediate costimulatory molecule expression between naive and class-switched memory B cells, indicating their potential to induce (proinflammatory) T cell responses. Further, DN B cells produced proinflammatory and cytotoxic cytokines following ex vivo stimulation. Increased frequencies of DN and CD21low B cells were found in the cerebrospinal fluid of MS patients compared with paired peripheral blood. In conclusion, a proportion of MS patients showed increased peripheral expansions of age-associated B cells. DN and CD21low B cell frequencies were further increased in MS cerebrospinal fluid. These cells could contribute to inflammation by induction of T cell responses and the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Nele Claes
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Marjan Vanheusden
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Niels Hellings
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Piet Stinissen
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium
| | - Bart Van Wijmeersch
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium.,Rehabilitation and MS-Center, B-3900 Overpelt, Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, 6229 ER Maastricht, the Netherlands; and.,Department of Neurology, Academic MS Center Limburg, Zuyderland Medical Center, 6162 BG Sittard, the Netherlands
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University and School of Life Sciences, Transnational University Limburg, 3590 Diepenbeek, Belgium;
| |
Collapse
|
45
|
Zhu S, Jones MK, Hickman D, Han S, Reeves W, Karst SM. Norovirus antagonism of B-cell antigen presentation results in impaired control of acute infection. Mucosal Immunol 2016; 9:1559-1570. [PMID: 27007673 PMCID: PMC5035161 DOI: 10.1038/mi.2016.15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 01/13/2016] [Indexed: 02/04/2023]
Abstract
Human noroviruses are a leading cause of gastroenteritis, and so, vaccine development is desperately needed. Elucidating viral mechanisms of immune antagonism can provide key insight into designing effective immunization platforms. We recently revealed that B cells are targets of norovirus infection. Because noroviruses can regulate antigen presentation by infected macrophages and B cells can function as antigen-presenting cells, we tested whether noroviruses regulate B-cell-mediated antigen presentation and the biological consequence of such regulation. Indeed, murine noroviruses could prevent B-cell expression of antigen presentation molecules and this directly correlated with impaired control of acute infection. In addition to B cells, acute control required MHC class I molecules, CD8+ T cells, and granzymes, supporting a model whereby B cells act as antigen presenting cells to activate cytotoxic CD8+ T cells. This immune pathway was active prior to the induction of antiviral antibody responses. As in macrophages, the minor structural protein VP2 regulated B-cell antigen presentation in a virus-specific manner. Commensal bacteria were not required for the activation of this pathway and ultimately only B cells were required for the clearance of viral infection. These findings provide new insight into the role of B cells in stimulating antiviral CD8+ T-cell responses.
Collapse
Affiliation(s)
- Shu Zhu
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Melissa K. Jones
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Danielle Hickman
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL
| | - Shuhong Han
- College of Medicine, Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL
| | - Westley Reeves
- College of Medicine, Department of Medicine, Division of Rheumatology & Clinical Immunology, University of Florida, Gainesville, FL
| | - Stephanie M. Karst
- College of Medicine, Department of Molecular Genetics & Microbiology, Emerging Pathogens Institute, University of Florida, Gainesville, FL,Corresponding author: 1600 SW Archer Road, Gainesville, FL 32610, Phone: 352-273-5627; Fax: 352-273-8905,
| |
Collapse
|
46
|
Kotb A, Klippert A, Daskalaki M, Sauermann U, Stahl-Hennig C, Neumann B. Elevated granzyme B + B-cell level in SIV-infection correlate with viral load and low CD4 T-cell count. Immunol Cell Biol 2016; 95:316-320. [PMID: 27779180 PMCID: PMC5364320 DOI: 10.1038/icb.2016.96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/02/2016] [Accepted: 09/14/2016] [Indexed: 01/09/2023]
Abstract
Granzyme B-expressing (GrB+) B cells are thought to contribute to immune dysfunctions in HIV patients, but so far their exact role is unknown. This report demonstrates for the first time the existence of GrB+ B cells in SIV-infected rhesus macaques, which represent the most commonly used nonhuman primate model for HIV research. Similar to HIV patients, we found significantly higher frequencies of these cells in the blood of chronically SIV-infected rhesus monkeys compared with uninfected healthy ones. These frequencies correlated with plasma viral load and inversely with absolute CD4 T-cell counts. When investigating GrB+ B cells in different compartments, levels were highest in blood, spleen and bone marrow, but considerably lower in lymph nodes and tonsils. Analysis of expression of various surface markers on this particular B-cell subset in SIV-infected macaques revealed differences between the phenotype in macaques and in humans. GrB+ B cells in SIV-infected rhesus macaques exhibit an elevated expression of CD5, CD10, CD25 and CD27, while expression of CD19, CD185 and HLA-DR is reduced. In contrast to human GrB+ B cells, we did not observe a significantly increased expression of CD43 and CD86. B-cell receptor stimulation in combination with IL-21 of purified B cells from healthy animals led to the induction of GrB expression. Furthermore, initial functional analyses indicated a regulatory role on T-cell proliferation. Overall, our data pave the way for longitudinal analyses including studies on the functionality of GrB+ B cells in the nonhuman primate model for AIDS.
Collapse
Affiliation(s)
- Ahmad Kotb
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany.,Department of Virology Research, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt.,Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Antonina Klippert
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Maria Daskalaki
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Christiane Stahl-Hennig
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| | - Berit Neumann
- Unit of Infection Models, German Primate Center, Leibniz Institute for Primate Research, Goettingen, Germany
| |
Collapse
|
47
|
Wu Y, van Besouw NM, Shi Y, Hoogduijn MJ, Wang L, Baan CC. The Biological Effects of IL-21 Signaling on B-Cell-Mediated Responses in Organ Transplantation. Front Immunol 2016; 7:319. [PMID: 27602031 PMCID: PMC4994014 DOI: 10.3389/fimmu.2016.00319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 02/05/2023] Open
Abstract
Antibody-mediated rejection has emerged as one of the major issues limiting the success of organ transplantation. It exerts a highly negative impact on graft function and outcome, and effective treatment is lacking. The triggers for antibody development, and the mechanisms leading to graft dysfunction and failure, are incompletely understood. The production of antibodies is dependent on instructions from various immunocytes including CD4 T-helper cells that secrete interleukin (IL)-21 and interact with antigen-specific B-cells via costimulatory molecules. In this article, we discuss the role of IL-21 in the activation and differentiation of B-cells and consider the mechanisms of IL-21 and B-cell interaction. An improved understanding of the biological mechanisms involved in antibody-mediated complications after organ transplantation could lead to the development of novel therapeutic strategies, which control humoral alloreactivity, potentially preventing and treating graft-threatening antibody-mediated rejection.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China; Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Nicole M van Besouw
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Yunying Shi
- Department of Nephrology, West China Hospital, Sichuan University , Chengdu , China
| | - Martin J Hoogduijn
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University , Chengdu , China
| | - Carla C Baan
- Sector Nephrology & Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam , Rotterdam , Netherlands
| |
Collapse
|
48
|
|
49
|
Bovine Leukemia Virus Small Noncoding RNAs Are Functional Elements That Regulate Replication and Contribute to Oncogenesis In Vivo. PLoS Pathog 2016; 12:e1005588. [PMID: 27123579 PMCID: PMC4849745 DOI: 10.1371/journal.ppat.1005588] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/31/2016] [Indexed: 01/16/2023] Open
Abstract
Retroviruses are not expected to encode miRNAs because of the potential problem of self-cleavage of their genomic RNAs. This assumption has recently been challenged by experiments showing that bovine leukemia virus (BLV) encodes miRNAs from intragenomic Pol III promoters. The BLV miRNAs are abundantly expressed in B-cell tumors in the absence of significant levels of genomic and subgenomic viral RNAs. Using deep RNA sequencing and functional reporter assays, we show that miRNAs mediate the expression of genes involved in cell signaling, cancer and immunity. We further demonstrate that BLV miRNAs are essential to induce B-cell tumors in an experimental model and to promote efficient viral replication in the natural host.
Collapse
|
50
|
Wang JZ, Zhang YH, Guo XH, Zhang HY, Zhang Y. The double-edge role of B cells in mediating antitumor T-cell immunity: Pharmacological strategies for cancer immunotherapy. Int Immunopharmacol 2016; 36:73-85. [PMID: 27111515 DOI: 10.1016/j.intimp.2016.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/10/2016] [Accepted: 04/13/2016] [Indexed: 12/22/2022]
Abstract
Emerging evidence reveals the controversial role of B cells in antitumor immunity, but the underlying mechanisms have to be explored. Three latest articles published in the issue 521 of Nature in 2015 reconfirmed the puzzling topic and put forward some explanations of how B cells regulate antitumor T-cell responses both positively and negatively. This paper attempts to demonstrate that different B-cell subpopulations have distinct immunological properties and that they are involved in either antitumor responses or immunosuppression. Recent studies supporting the positive and negative roles of B cells in tumor development were summarized comprehensively. Several specific B-cell subpopulations, such as IgG(+), IgA(+), IL-10(+), and regulatory B cells, were described in detail. The mechanisms underlying the controversial B-cell effects were mainly attributed to different B-cell subpopulations, different B-cell-derived cytokines, direct B cell-T cell interaction, different cancer categories, and different malignant stages, and the immunological interaction between B cells and T cells is mediated by dendritic cells. Promising B-cell-based antitumor strategies were proposed and novel B-cell regulators were summarized to present interesting therapeutic targets. Future investigations are needed to make sure that B-cell-based pharmacological strategies benefit cancer immunotherapy substantially.
Collapse
Affiliation(s)
- Jing-Zhang Wang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China.
| | - Yu-Hua Zhang
- Department of Library, Hebei University of Engineering, Handan 056038, PR China
| | - Xin-Hua Guo
- Department of Medicine, College of Medicine, Hebei University of Engineering, Handan 056002, PR China
| | - Hong-Yan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| | - Yuan Zhang
- Department of Medical Technology, College of Medicine, Affiliated Hospital, Hebei University of Engineering, Handan 056002, PR China
| |
Collapse
|