1
|
Luo D, Luo A, Hu S, Ye G, Li D, Zhao H, Peng B. Genomics and proteomics to determine novel molecular subtypes and predict the response to immunotherapy and the effect of bevacizumab in glioblastoma. Sci Rep 2024; 14:17630. [PMID: 39085480 PMCID: PMC11292017 DOI: 10.1038/s41598-024-68648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Glioblastoma (GBM) is a highly aggressive, infiltrative malignancy that cannot be completely cured by current treatment modalities, and therefore requires more precise molecular subtype signatures to predict treatment response for personalized precision therapy. Expression subtypes of GBM samples from the Cancer Genome Atlas (TCGA) were identified using BayesNM and compared with existing molecular subtypes of GBM. Biological features of the subtypes were determined by single-sample gene set enrichment analysis. Genomic and proteomic data from GBM samples were combined and Genomic Identification of Significant Targets in Cancer analysis was used to screen genes with recurrent somatic copy-number alterations phenomenon. The immune environment among subtypes was compared by assessing the expression of immune molecules and the infiltration of immune cells. Molecular subtypes adapted to immunotherapy were identified based on Tumor Immune Dysfunction and Exclusion (TIDE) score. Finally, least absolute shrinkage and selection operator (LASSO) logistic regression was performed on the expression profiles of S2, S3 and S4 in TCGA-GBM and RPPA to determine the respective corresponding best predictive model. Four novel molecular subtypes were classified. Specifically, S1 exhibited a low proliferative profile; S2 exhibited the profile of high proliferation, IDH1 mutation, TP53 mutation and deletion; S3 was characterized by high immune scores, innate immunity and adaptive immune infiltration scores, with the lowest TIDE score and was most likely to benefit from immunotherapy; S4 was characterized by high proliferation, EGFR amplification, and high protein abundance, and was the most suitable subtype for bevacizumab. LASSO analysis constructed the best prediction model composed of 13 genes in S2 with an accuracy of 96.7%, and the prediction model consisting of 17 genes in S3 with an accuracy of 86.7%, and screened 14 genes as components of the best prediction model in S4 with an accuracy of 93%. To conclude, our study classified reproducible and robust molecular subtypes of GBM, and these findings might contribute to the identification of patients responding to immunotherapy, thereby improving GBM prognosis.
Collapse
Affiliation(s)
- Dongdong Luo
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Aiping Luo
- Radiology Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| | - Su Hu
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| | - Ganwei Ye
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Dan Li
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Hailin Zhao
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China
| | - Biao Peng
- Neurosurgery Department, Guangzhou Institute of Cancer Research, The Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510032, China.
| |
Collapse
|
2
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
3
|
Mohammadi B, Saghafi M, Abdulsattar Faraj T, Kamal Kheder R, Sajid Abdulabbas H, Esmaeili SA. The role of tolerogenic dendritic cells in systematic lupus erythematosus progression and remission. Int Immunopharmacol 2023; 115:109601. [PMID: 36571919 DOI: 10.1016/j.intimp.2022.109601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/26/2022]
Abstract
Systematic lupus erythematosus (SLE) is an autoimmune disease reflecting an imbalance between effector and regulatory immune responses. Dendritic cells (DC) are a link between innate and adaptive immunity. Inflammatory DCs (inflDC) can initiate and trigger lymphocyte responses in SLE with over-expression of surface molecules and pro-inflammatory cytokine, including Interferon (IFN) α, Interleukin (IL) 1α, IL-1β, and IL-6, resulting in the overreaction of T helper cells (Th), and B cells immune responses. On the opposite side, tolerogenic DCs (tolDC) express inhibitory interacting surface molecules and repressive mediators, such as IL-10, Transforming growth factor beta (TGF-β), and Indoleamine 2, 3-dioxygenase (IDO), which can maintain self-tolerance in SLE by induction of regulatory T cells (Treg), T cells deletion and anergy. Hence, tolDCs can be a therapeutic candidate for patients with SLE to suppress their systematic inflammation. Recent pre-clinical and clinical studies showed the efficacy of tolDCs therapy in autoimmune diseases. In this review, we provide a wide perspective on the effect of inflDCs in promoting inflammation and the role of tolDC in the suppression of immune cells' overreaction in SLE. Furthermore, we reviewed the finding of clinical trials and experimental studies related to autoimmune diseases, particularly SLE.
Collapse
Affiliation(s)
- Bita Mohammadi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohammadreza Saghafi
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Innovative Medical Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Tola Abdulsattar Faraj
- Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania 46012, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Latt KZ, Heymann J, Jessee JH, Rosenberg AZ, Berthier CC, Arazi A, Eddy S, Yoshida T, Zhao Y, Chen V, Nelson GW, Cam M, Kumar P, Mehta M, Kelly MC, Kretzler M, Ray PE, Moxey-Mims M, Gorman GH, Lechner BL, Regunathan-Shenk R, Raj DS, Susztak K, Winkler CA, Kopp JB. Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney Int Rep 2022; 7:289-304. [PMID: 35155868 PMCID: PMC8821042 DOI: 10.1016/j.ekir.2021.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph H. Jessee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Arnon Arazi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongmei Zhao
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Vicky Chen
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - George W. Nelson
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Margaret Cam
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Parimal Kumar
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Monika Mehta
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Michael C. Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - The Nephrotic Syndrome Study Network (NEPTUNE)
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - The Accelerating Medicines Partnership in Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Patricio E. Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Marva Moxey-Mims
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Gregory H. Gorman
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Brent L. Lechner
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Renu Regunathan-Shenk
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Dominic S. Raj
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl A. Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|
6
|
Parikh SV, Malvar A, Shapiro J, Turman JM, Song H, Alberton V, Lococo B, Mejia-Vilet JM, Madhavan S, Zhang J, Yu L, Satoskar AA, Birmingham D, Jarjour WN, Rovin BH, Ganesan LP. A Novel Inflammatory Dendritic Cell That Is Abundant and Contiguous to T Cells in the Kidneys of Patients With Lupus Nephritis. Front Immunol 2021; 12:621039. [PMID: 33659005 PMCID: PMC7919935 DOI: 10.3389/fimmu.2021.621039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/25/2021] [Indexed: 01/06/2023] Open
Abstract
The mechanisms that promote local inflammatory injury during lupus nephritis (LN) flare are largely unknown. Understanding the key immune cells that drive intrarenal inflammation will advance our knowledge of disease pathogenesis and inform the development of new therapeutics for LN management. In this study, we analyzed kidney biopsies from patients with proliferative LN and identified a novel inflammatory dendritic cell (infDC) population that is highly expressed in the LN kidney, but minimally present in healthy human kidneys. During an agnostic evaluation of immune transcript expression in the kidneys of patients with proliferative LN, the most abundantly overexpressed transcript from isolated glomeruli was FCER1G, which encodes the Fc receptor gamma chain (FcRγ). To identify the cell types expressing FcRγ that infiltrate the kidney in LN, studies were done on kidney biopsies from patients with active LN using confocal immunofluorescence (IF) microscopy. This showed that FcRγ is abundantly present in the periglomerular (PG) region of the kidney and to a lesser extent in the tubulointerstitium (TI). Further investigation of the surface markers of these cells showed that they were FcRγ+, MHC II+, CD11c+, CD163+, CD5-, DC-SIGN+, CD64+, CD14+, CD16+, SIRPα+, CD206-, CD68-, CD123-, CD3-, and CD11b-, suggesting the cells were infDCs. Quantification of the infDCs showed an average 10-fold higher level of infDCs in the LN kidney compared to the healthy kidneys. Importantly, IF identified CD3+ T cells to be adjacent to these infDCs in the PG space of the LN kidney, whereas both cell types are minimally present in the healthy kidney. Thus, we have identified a previously undescribed DC in lupus kidneys that may interact with intrarenal T cells and play a role in the pathogenesis of kidney injury during LN flare.
Collapse
Affiliation(s)
- Samir V. Parikh
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Ana Malvar
- Nephrology Unit, Hospital Fernandez, Buenos Aires, Argentina
| | - John Shapiro
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - James M. Turman
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Huijuan Song
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Valeria Alberton
- Department of Pathology, Hospital Fernandez, Buenos Aires, Argentina
| | - Bruno Lococo
- Nephrology Unit, Hospital Fernandez, Buenos Aires, Argentina
| | - Juan M. Mejia-Vilet
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Sethu Madhavan
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jianying Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Lianbo Yu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Anjali A. Satoskar
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Dan Birmingham
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Wael N. Jarjour
- Division of Rheumatology and Immunology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brad H. Rovin
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Latha P. Ganesan
- Division of Nephrology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
- Division of Rheumatology and Immunology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
7
|
Zhang X, He T, Li Y, Chen L, Liu H, Wu Y, Guo H. Dendritic Cell Vaccines in Ovarian Cancer. Front Immunol 2021; 11:613773. [PMID: 33584699 PMCID: PMC7874064 DOI: 10.3389/fimmu.2020.613773] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/04/2020] [Indexed: 12/22/2022] Open
Abstract
Ovarian cancer (OC) is one of the most lethal malignant gynecologic tumors, characterized by an uncertain presentation and poor outcomes. With or without neoadjuvant chemotherapy, surgery followed by platinum-based chemotherapy and maintenance therapy are the basis for the treatment of ovarian cancer patients, but the outcome is still highly restricted by their advanced stage when diagnosed and high recurrence rate after chemotherapy. To enhance the anti-tumor effect and postpone recurrence, anti-VEGF agents and PARP inhibitors are suggested as maintenance therapy, but the population that can benefit from these treatments is small. Based on the interactions of immune cells in the tumor microenvironment, immunotherapies are being explored for ovarian cancer treatment. Disappointingly, the immune checkpoint inhibitors show relatively low responses in ovarian cancer. As shown in several studies that have uncovered a relationship between DC infiltration and outcome in ovarian cancer patients, dendritic cell (DC)-based treatments might have a potential effect on ovarian cancer. In this review, we summarize the functions of dendritic cells (DCs) in the tumor microenvironment, as well as the responses and drawbacks of existing clinical studies to draw a comprehensive picture of DC vaccine treatment in ovarian cancer and to discuss the promising future of immune biomarkers.
Collapse
Affiliation(s)
- Xi Zhang
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Tianhui He
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Yuan Li
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, Hainan Hospital of Chinese PLA General Hospital, Sanya, China
| | - Yu Wu
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| | - Hongyan Guo
- Department of OB/GYN, Peking University Third Hospital, Beijing, China
| |
Collapse
|
8
|
De Leo A, Ugolini A, Veglia F. Myeloid Cells in Glioblastoma Microenvironment. Cells 2020; 10:E18. [PMID: 33374253 PMCID: PMC7824606 DOI: 10.3390/cells10010018] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive, malignant primary brain tumor in adults. GBM is notoriously resistant to immunotherapy mainly due to its unique immune microenvironment. High dimensional data analysis reveals the extensive heterogeneity of immune components making up the GBM microenvironment. Myeloid cells are the most predominant contributors to the GBM microenvironment; these cells are critical regulators of immune and therapeutic responses to GBM. Here, we will review the most recent advances on the characteristics and functions of different populations of myeloid cells in GBM, including bone marrow-derived macrophages, microglia, myeloid-derived suppressor cells, dendritic cells, and neutrophils. Epigenetic, metabolic, and phenotypic peculiarities of microglia and bone marrow-derived macrophages will also be assessed. The final goal of this review will be to provide new insights into novel therapeutic approaches for specific targeting of myeloid cells to improve the efficacy of current treatments in GBM patients.
Collapse
Affiliation(s)
- Alessandra De Leo
- Department of Immuno-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9416, USA; (A.D.L.); (A.U.)
| | - Alessio Ugolini
- Department of Immuno-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9416, USA; (A.D.L.); (A.U.)
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Filippo Veglia
- Department of Immuno-Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612-9416, USA; (A.D.L.); (A.U.)
| |
Collapse
|
9
|
Marzaioli V, Canavan M, Floudas A, Wade SC, Low C, Veale DJ, Fearon U. Monocyte-Derived Dendritic Cell Differentiation in Inflammatory Arthritis Is Regulated by the JAK/STAT Axis via NADPH Oxidase Regulation. Front Immunol 2020; 11:1406. [PMID: 32733468 PMCID: PMC7358435 DOI: 10.3389/fimmu.2020.01406] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/01/2020] [Indexed: 01/15/2023] Open
Abstract
Monocyte-derived Dendritic cells (Mo-DC) are a distinct DC subset, involved in inflammation and infection, they originate from monocytes upon stimulation in the circulation and their activation and function may vary in autoimmune diseases. In this study we investigate the differences in Mo-DC differentiation and function in patients with Rheumatoid (RA) compared to Psoriatic arthritis (PsA). A significant increase in the Mo-DC differentiation marker CD209, paralleled by a corresponding decrease in the monocytic marker CD14, was demonstrated in RA compared to PsA, as early as 1 day post Mo-DC differentiation. RA monocytes ex-vivo were phenotypically different to PsA, displaying a more mature phenotype associated with altered cellular-morphology, early dendrite formation, and a significant increase in the CD40 marker. In addition, SPICE algorithm flow cytometric analysis showed distinct differences in chemokine receptors distribution in HC compared to PsA and RA CD14+ cells in the blood, with increased expression of the chemokine receptors CCR7 and CXCR4 observed in PsA and RA. In addition CD14+ cells at the site of inflammation showed a different chemokine receptor pattern between PsA and RA patients, with higher expression of CXCR3 and CXCR5 in RA when compared to PsA. The early priming observed in RA resulted in monocyte-endocytosis and antigen-uptake mechanisms to be impaired, effects that were not observed in PsA where phagocytosis capacity remained highly functional. Tofacitinib inhibited early Mo-DC differentiation, decreasing both CD209 and CD40 activation markers in RA. Inhibition of Mo-DC differentiation in response to Tofacitinib was mediated via an imbalance in the activation of NADPH-oxidases NOX5 and NOX2. This effect was reversed by NOX5 inhibition, but not NOX2, resulting in suppression of NOX5-dependent ROS production. In conclusion, RA monocytes are already primed ex vivo to become DC, evident by increased expression of activation markers, morphological appearance and impaired endocytosis capacity. Furthermore, we demonstrated for the first time that NOX5 mediates Mo-DC differentiation and function in response to Tofacitinib, which may alter DC functions.
Collapse
Affiliation(s)
- Viviana Marzaioli
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Mary Canavan
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Achilleas Floudas
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Siobhan C. Wade
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Candice Low
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Douglas J. Veale
- Rheumatology EULAR Centre of Excellence, Centre for Arthritis & Rheumatic Diseases, St Vincent's University Hospital, University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
10
|
Soltani S, Mahmoudi M, Farhadi E. Dendritic Cells Currently under the Spotlight; Classification and Subset Based upon New Markers. Immunol Invest 2020; 50:646-661. [PMID: 32597286 DOI: 10.1080/08820139.2020.1783289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) are considered as a subset of mononuclear phagocytes that composed of multiple subsets with distinct phenotypic features. DCs play crucial roles in the initiation and modulation of immune responses to both allo- and auto-antigens during pathogenic settings, encompassing infectious diseases, cancer, autoimmunity, transplantation, as well as vaccination. DCs play a role in preventing autoimmunity via inducing tolerance to self-antigens. This review focus on the most common subsets of DCs in human. Owing to the low frequencies of DC cells in blood and tissues and also the lack of specific DC markers, studies of DCs have been greatly hindered. Human DCs arise by a dedicated pathway of lympho-myeloid hematopoiesis and give rise into specialized subtypes under the influence of transcription factors that are specific for each linage. In humans, the classification of DCs has been generally separated into the blood and cutaneous subsets, mainly because these parts are more comfortable to examine in humans.
Collapse
Affiliation(s)
- Samaneh Soltani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Schönrich G, Raftery MJ. Dendritic Cells (DCs) as "Fire Accelerants" of Hantaviral Pathogenesis. Viruses 2019; 11:v11090849. [PMID: 31540199 PMCID: PMC6783833 DOI: 10.3390/v11090849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Hantaviruses are widespread zoonotic pathogens found around the globe. Depending on their geographical location, hantaviruses can cause two human syndromes, haemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). HPS and HFRS have many commonalities amongst which excessive activation of immune cells is a prominent feature. Hantaviruses replicate in endothelial cells (ECs), the major battlefield of hantavirus-induced pathogenesis, without causing cytopathic effects. This indicates that a misdirected response of human immune cells to hantaviruses is causing damage. As dendritic cells (DCs) orchestrate antiviral immune responses, they are in the focus of research analysing hantavirus-induced immunopathogenesis. In this review, we discuss the interplay between hantaviruses and DCs and the immunological consequences thereof.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Martin J Raftery
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
12
|
Mohsenzadegan M, Peng RW, Roudi R. Dendritic cell/cytokine-induced killer cell-based immunotherapy in lung cancer: What we know and future landscape. J Cell Physiol 2019; 235:74-86. [PMID: 31222740 DOI: 10.1002/jcp.28977] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022]
Abstract
Multiple modalities for lung cancer therapy have emerged in the past decade, whereas their clinical applications and survival-beneficiary is little known. Vaccination with dendritic cells (DCs) or DCs/cytokine-induced killer (CIK) cells has shown limited success in the treatment of patients with advanced non-small-cell lung cancer. To evaluate and overcome these limitations in further studies, in the present review, we sum up recent progress about DCs or DCs/CIKs-based approaches for preclinical and clinical trials in patients with lung cancer and discuss some of the limited therapeutic success. Moreover, this review highlights the need to focus future studies on the development of new approaches for successful immunotherapy in patients with lung cancer.
Collapse
Affiliation(s)
- Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department for BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Soldevila F, Edwards JC, Graham SP, Stevens LM, Crudgington B, Crooke HR, Werling D, Steinbach F. Characterization of the Myeloid Cell Populations' Resident in the Porcine Palatine Tonsil. Front Immunol 2018; 9:1800. [PMID: 30158925 PMCID: PMC6104124 DOI: 10.3389/fimmu.2018.01800] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/20/2018] [Indexed: 12/22/2022] Open
Abstract
The palatine tonsil is the portal of entry for food and air and is continuously subjected to environmental challenges, including pathogens, which use the tonsil and pharynx as a primary site of replication. In pigs, this includes the viruses causing porcine respiratory and reproductive syndrome, and classical and African swine fever; diseases that have impacted the pig production industry globally. Despite the importance of tonsils in host defense, little is known regarding the phenotype of the myeloid cells resident in the porcine tonsil. Here, we have characterized five myeloid cell populations that align to orthologous populations defined in other mammalian species: a CD4+ plasmacytoid dendritic cell (DC) defined by expression of the conserved markers E2.2 and IRF-7, a conventional dendritic cell (cDC1) population expressing CADM1highCD172alow and high levels of XCR1 able to activate allogeneic CD4 and CD8 T cells; a cDC2 population of CADM1dim cells expressing FLT3, IRF4, and CSF1R with an ability to activate allogeneic CD4 T cells; CD163+ macrophages (Mϴs) defined by high levels of endocytosis and responsiveness to LPS and finally a CD14+ population likely derived from the myelomonocytic lineage, which showed the highest levels of endocytosis, a capacity for activation of CD4+ memory T cells, combined with lower relative expression of FLT3. Increased knowledge regarding the phenotypic and functional properties of myeloid cells resident in porcine tonsil will enable these cells to be targeted for future vaccination strategies to current and emerging porcine viruses.
Collapse
Affiliation(s)
- Ferran Soldevila
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Jane C Edwards
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Simon P Graham
- The Pirbright Institute, Pirbright, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| | - Lisa M Stevens
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Bentley Crudgington
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Helen R Crooke
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Falko Steinbach
- Virology Department, Animal and Plant Health Agency, Addlestone, United Kingdom.,School of Veterinary Medicine, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
14
|
Bandola-Simon J, Roche PA. Dysfunction of antigen processing and presentation by dendritic cells in cancer. Mol Immunol 2018; 113:31-37. [PMID: 29628265 DOI: 10.1016/j.molimm.2018.03.025] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/31/2018] [Accepted: 03/29/2018] [Indexed: 12/23/2022]
Abstract
The ability to mount an effective anti-tumor immune response requires coordinate control of CD4 T cell and CD8 T cell function by antigen presenting cells (APCs). Unfortunately, tumors create an immunosuppressive microenvironment that helps protect tumor cells from immune recognition. In many cases this defect can be traced back to a failure of APCs (most importantly dendritic cells (DCs)) to recognize, process, and present tumor antigens to T cells. In this review, we will summarize work addressing the role of different DC subsets in anti-tumor immunity and the various mechanisms used by tumor cells to suppress the ability of APCs to stimulate potent anti-tumor T cell responses.
Collapse
Affiliation(s)
- Joanna Bandola-Simon
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, United States.
| |
Collapse
|
15
|
Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol 2018; 8:1878. [PMID: 29403469 PMCID: PMC5780348 DOI: 10.3389/fimmu.2017.01878] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Collapse
Affiliation(s)
- Mariana Silva
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal.,Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Robert Sackstein
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function. Cancer Lett 2017; 412:236-242. [PMID: 29107106 DOI: 10.1016/j.canlet.2017.10.032] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/30/2017] [Accepted: 10/22/2017] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are canonical antigen presenting cells of the immune system and serve as a bridge between innate and adaptive immune responses. When DCs are activated by a stimulus through toll-like receptors (TLRs), DCs undergo a process of maturation defined by cytokine & chemokine secretion, co-stimulatory molecule expression, antigen processing and presentation, and the ability to activate T cells. DC maturation is coupled with an increase in biosynthetic demand, which is fulfilled by a TLR-driven upregulation in glycolytic metabolism. Up-regulation of glycolysis in activated DCs provides these cells with molecular building blocks and cellular energy required for DC activation, and inhibition of glycolysis during initial activation impairs both the survival and effector function of activated DCs. Evidence shows that DC glycolytic upregulation is controlled by two distinct pathways, an early burst of glycolysis that is nitric oxide (NO) -independent, and a sustained commitment to glycolysis in NO-producing DC subsets. This review will address the complex role of NO in regulating DC metabolism and effector function.
Collapse
Affiliation(s)
- Phyu M Thwe
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Eyal Amiel
- Cell, Molecular, and Biomedical Sciences Program, University of Vermont, Burlington, VT 05405, USA; Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
17
|
Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017; 45:43-51. [PMID: 28192720 DOI: 10.1016/j.coi.2017.01.002] [Citation(s) in RCA: 313] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/23/2016] [Accepted: 01/19/2017] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) with their potent antigen presenting ability are long considered as critical factor in antitumor immunity. Despite high potential in promoting antitumor responses, tumor-associated DCs are largely defective in their functional activity and can contribute to immune suppression in cancer. In recent years existence of immune suppressive regulatory DCs in tumor microenvironment was described. Monocytic myeloid derived suppressor cells (M-MDSCs) can contribute to the pool of tumor associated DCs by differentiating to inflammatory DCs (inf-DCs), which appear to have specific phenotype and is critical component of antitumor response. Here we examine the role of inf-DCs along with other DC subsets in the regulation of immune responses in cancer. These novel data expand our view on the role of DCs in cancer and may provide new targets for immunotherapy.
Collapse
|
18
|
Chen Y, Meng Y, Cao Y, Wen H, Luo H, Gao X, Shan F. Novel analysis of maturation of murine bone-marrow-derived dendritic cells induced by Ginkgo Seed Polysaccharides. Hum Vaccin Immunother 2016; 11:1387-93. [PMID: 25806792 DOI: 10.1080/21645515.2015.1023971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our understanding of the mechanisms of effect of Ginkgo Seed Polysaccharides (GSPs) on the immune system remains unclear. The aim of this work was to investigate the effect of GSPs on the maturation and function of bone-marrow-derived dendritic cells (BMDCs). The results demonstrate that GSP could exert positive immune modulation on the maturation and functions of BMDCs. This effect was evidenced by decreased changes of phagosome number inside BMDCs, decreased activity of acidic phosphatase (ACP), decreased phagocytosis of BMDCs, and increased changes of key membrane molecules on BMDCs. Upregulated production of cytokines IL-12 and TNF-α also was confirmed. Therefore, it can be concluded that GSPs can efficiently induce the maturation of BMDCs. Our exploration provides direct data and a rationale for potential application of GSPs as an immune enhancer in improving immunity and as a potent adjuvant in the design of DC-based vaccines.
Collapse
Affiliation(s)
- Yinghan Chen
- a Department of Obstetrics and Gynecology; Shengjing Hospital; China Medical University ; Shenyang , China
| | | | | | | | | | | | | |
Collapse
|
19
|
Hu X, Cao Y, Meng Y, Hou M. A novel modulation of structural and functional changes of mouse bone marrow derived dendritic cells (BMDCs) by interleukin-2(IL-2). Hum Vaccin Immunother 2015; 11:516-21. [PMID: 25622186 DOI: 10.1080/21645515.2015.1009336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
IL-2 is a pleiotropic cytokine produced by T cell after antigen activation of T cell and it is so called T cell growth factor. A large number of documents suggest that Il-2 plays pivotal roles in the immune response and now Il-2 is an approved drug being used for various kinds of diseases such as cancer and dermatitis. (1) The aim of present exploration was to look at effect of IL-2 on structural, phenotypic and functional maturation of murine BMDCs. The structural and phenotypic maturation of BMDCs under influence of IL-2 were evaluated by light microscope and flow cytometry (FCM). The functional maturation of BMDCs was confirmed by cytochemistry assay, FITC-dextran, acid phosphatase (ACP) activity, bio-assay and enzyme linked immunosorbent assay (ELISA).We elucidated that IL-2 up-regulated the expression of key surface markers such as: CD80, CD83, CD86, CD40 and MHC II molecules on BMDCs, down-regulated phagocytosis activity, induced more production of IL-12 and TNF-α secreted by BMDCs. Therefore it can be concluded that IL-2 effectively enhance the maturation of BMDCs. Our results provide direct evidence to support IL-2 would be used as a potent adjuvant in preparation of DC-based vaccines, as well as an immune remedy for cancer situation.
Collapse
Affiliation(s)
- Xiaofang Hu
- a Department of Clinical Detection ; General Hospital of Shenyang Military Command ; Shenyang , China
| | | | | | | |
Collapse
|
20
|
Chistiakov DA, Sobenin IA, Orekhov AN, Bobryshev YV. Myeloid dendritic cells: Development, functions, and role in atherosclerotic inflammation. Immunobiology 2015; 220:833-44. [DOI: 10.1016/j.imbio.2014.12.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/07/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
|
21
|
Mac Keon S, Ruiz MS, Gazzaniga S, Wainstok R. Dendritic cell-based vaccination in cancer: therapeutic implications emerging from murine models. Front Immunol 2015; 6:243. [PMID: 26042126 PMCID: PMC4438595 DOI: 10.3389/fimmu.2015.00243] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 05/06/2015] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) play a pivotal role in the orchestration of immune responses, and are thus key targets in cancer vaccine design. Since the 2010 FDA approval of the first cancer DC-based vaccine (Sipuleucel-T), there has been a surge of interest in exploiting these cells as a therapeutic option for the treatment of tumors of diverse origin. In spite of the encouraging results obtained in the clinic, many elements of DC-based vaccination strategies need to be optimized. In this context, the use of experimental cancer models can help direct efforts toward an effective vaccine design. This paper reviews recent findings in murine models regarding the antitumoral mechanisms of DC-based vaccination, covering issues related to antigen sources, the use of adjuvants and maturing agents, and the role of DC subsets and their interaction in the initiation of antitumoral immune responses. The summary of such diverse aspects will highlight advantages and drawbacks in the use of murine models, and contribute to the design of successful DC-based translational approaches for cancer treatment.
Collapse
Affiliation(s)
- Soledad Mac Keon
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina
| | - María Sol Ruiz
- Centro de Investigaciones Oncológicas, Fundación para la Investigación, Docencia y Prevención del Cáncer (FUCA) , Buenos Aires , Argentina
| | - Silvina Gazzaniga
- Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Rosa Wainstok
- Laboratorio de Cancerología, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires IIBBA-CONICET , Buenos Aires , Argentina ; Laboratorio de Biología Tumoral, Departamento de Química Biológica IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires , Buenos Aires , Argentina
| |
Collapse
|
22
|
Schinnerling K, Soto L, García-González P, Catalán D, Aguillón JC. Skewing dendritic cell differentiation towards a tolerogenic state for recovery of tolerance in rheumatoid arthritis. Autoimmun Rev 2015; 14:517-27. [PMID: 25633325 DOI: 10.1016/j.autrev.2015.01.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 12/14/2022]
Abstract
To date, the available options to treat autoimmune diseases such as rheumatoid arthritis (RA) include traditional corticoids and biological drugs, which are not exempt of adverse effects. The development of cellular therapies based on dendritic cells with tolerogenic functions (TolDCs) has opened a new possibility to efficiently eradicate symptoms and control the immune response in the field of autoimmunity. TolDCs are an attractive tool for antigen-specific immunotherapy to restore self-tolerance in RA and other autoimmune disorders. A promising strategy is to inject autologous self-antigen-loaded TolDCs, which are able to delete or reprogram autoreactive T cells. Different protocols for the generation of stable human TolDCs have been established and the therapeutic effect of TolDCs has been investigated in multiple rodent models of arthritis. Pilot studies in humans confirmed that TolDC application is safe, encouraging clinical trials using self-antigen-loaded TolDCs in RA patients. Although an abundance of molecular regulators of DC functions has been discovered in the last decade, no master regulator of tolerogenicity has been identified yet. Further research is required to define biomarkers or key regulators of tolerogenicity that might facilitate the induction and monitoring of TolDCs.
Collapse
Affiliation(s)
- Katina Schinnerling
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Lilian Soto
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Paulina García-González
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Catalán
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Juan C Aguillón
- Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| |
Collapse
|
23
|
Jia L, Gao X, Wang Y, Yao N, Zhang X. Structural, phenotypic and functional maturation of bone marrow dendritic cells (BMDCs) induced by Chitosan (CTS). Biologicals 2014; 42:334-8. [PMID: 25225119 DOI: 10.1016/j.biologicals.2014.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/23/2023] Open
Abstract
The objective of the present work was to explore the effect of CTS on structural, phenotypic and functional maturation of murine bone marrow derived dendritic cells (BMDCs). The maturity of BMDCs post treatment with CTS was evaluated using transmission electron microscopy (TEM) for structure changes, flow cytometry (FCM) for changes of key surface molecules, FITC-dextran bio-assay for phagocytosis, test of acid phosphatase activity (ACP) for biochemical changes and enzyme linked immunosorbent assay (ELISA) for cytokine level. We found that CTS downregulated the numbers of phagosomes inside the BMDCs, up-regulated the expression of MHC II, CD40, CD83, CD80 and CD86 molecules on BMDCs, decreased activity of ACP and phagocytosis by BMDCs, and induced production of higher levels of IL-12 and TNF-α. It was therefore confirmed that CTS could effectively promote the maturation of BMDCs. Our study provided more detailed evidence and rationale to support the application of CTS as an immune stimulator for enhancing host immunity and as an adjuvant in the design of DC-based vaccines.
Collapse
Affiliation(s)
- Lihui Jia
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110084, China
| | - Xinghua Gao
- Department of Dermatology, No.1 Hospital, China Medical University, Shenyang 110001, China
| | - Yiqing Wang
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110084, China
| | - Na Yao
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110084, China
| | - Xiaodong Zhang
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang 110084, China.
| |
Collapse
|
24
|
Meng J, Cao Y, Meng Y, Luo H, Gao X, Shan F. Maturation of mouse bone marrow dendritic cells (BMDCs) induced by Laminaria japonica polysaccharides (LJP). Int J Biol Macromol 2014; 69:388-92. [PMID: 24942994 DOI: 10.1016/j.ijbiomac.2014.05.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/21/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022]
Abstract
The seaweed Laminaria japonica has been investigated in a laboratory research for its medical significance and LJP has been purified now. The objective of present study was to look at effect of LJP on structural, phenotypic and functional maturation of murine BMDCs. The structural maturation of BMDCs induced by LJP was evaluated by transmission electron microscopy (TEM); The phenotypic maturation of BMDCs was studied by flow cytometry(FCM) and functional maturation of BMDCs was analyzed by FITC-dextran, acid phosphatase (ACP) activity and enzyme linked immunosorbent assay (ELISA). We hereby proved that LJP markedly induced maturation of BMDCs with the data of decreased the number of lysosomes, upregulated expression of CD80, CD83, CD86, CD40 and MHC II key membrane molecules on BMDCs, downregulated phagocytosis, enriched production of IL-12 and TNF-α secreted by BMDCs. Therefore it should be concluded that LJP was with strong ability to induce maturation of BMDCs. Our data provided direct evidence to suggest that LJP could be considered as an immune stimulant in improving immune handicapped situation and as a useful adjuvant in vaccine designing.
Collapse
Affiliation(s)
- Jingjuan Meng
- Experimental and Technical Center, China Medical University, No. 92, North Second Road, Shenyang 110001, China
| | - Yan Cao
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Shenyang 110001, China
| | - Yiming Meng
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Shenyang 110001, China
| | - Hong Luo
- College of Medical Laboratory, Dalian Medical University, Dalian 11604, China
| | - Xinghua Gao
- Department of Dermatology, No. 1 Hospital, China Medical University, Shenyang 110001, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, No. 92, North Second Road, Shenyang 110001, China.
| |
Collapse
|
25
|
Schlereth T, Drummond PD, Birklein F. Inflammation in CRPS: role of the sympathetic supply. Auton Neurosci 2013; 182:102-7. [PMID: 24411269 DOI: 10.1016/j.autneu.2013.12.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/11/2013] [Indexed: 12/21/2022]
Abstract
Acute Complex Regional Pain Syndrome (CRPS) is associated with signs of inflammation such as increased skin temperature, oedema, skin colour changes and pain. Pro-inflammatory cytokines (tumour necrosis factor-α (TNF-α), interleukin-2 (IL-2), IL-1beta, IL-6) are up-regulated, whereas anti-inflammatory cytokines (IL-4, IL-10) are diminished. Adaptive immunity seems to be involved in CRPS pathophysiology as many patients have autoantibodies directed against β2 adrenergic and muscarinic-2 receptors. In an animal tibial fracture model changes in the innate immune response such as up-regulation of keratinocytes are also found. Additionally, CRPS is accompanied by increased neurogenic inflammation which depends mainly on neuropeptides such as CGRP and Substance P. Besides inflammatory signs, sympathetic nervous system involvement in CRPS results in cool skin, increased sweating and sympathetically-maintained pain. The norepinephrine level is lower in the CRPS-affected than contralateral limb, but sympathetic sprouting and up-regulation of alpha-adrenoceptors may result in an adrenergic supersensitivity. The sympathetic nervous system and inflammation interact: norepinephrine influences the immune system and the production of cytokines. There is substantial evidence that this interaction contributes to the pathophysiology and clinical presentation of CRPS, but this interaction is not straightforward. How inflammation in CRPS might be exaggerated by sympathetic transmitters requires further elucidation.
Collapse
Affiliation(s)
- Tanja Schlereth
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany.
| | - Peter D Drummond
- School of Psychology and Exercise Science, Murdoch University, 6150 Western Australia, Australia
| | - Frank Birklein
- Department of Neurology, Langenbeckstr, 1, D-55131 Mainz, Germany
| |
Collapse
|
26
|
Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fučíková J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2013; 2:e25771. [PMID: 24286020 PMCID: PMC3841205 DOI: 10.4161/onci.25771] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/26/2022] Open
Abstract
Dendritic cells (DCs) occupy a privileged position at the interface between innate and adaptive immunity, orchestrating a large panel of responses to both physiological and pathological cues. In particular, whereas the presentation of antigens by immature DCs generally results in the development of immunological tolerance, mature DCs are capable of priming robust, and hence therapeutically relevant, adaptive immune responses. In line with this notion, functional defects in the DC compartment have been shown to etiologically contribute to pathological conditions including (but perhaps not limited to) infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. Thus, the possibility of harnessing the elevated immunological potential of DCs for anticancer therapy has attracted considerable interest from both researchers and clinicians over the last decade. Alongside, several methods have been developed not only to isolate DCs from cancer patients, expand them, load them with tumor-associated antigens and hence generate highly immunogenic clinical grade infusion products, but also to directly target DCs in vivo. This intense experimental effort has culminated in 2010 with the approval by the US FDA of a DC-based preparation (sipuleucel-T, Provenge®) for the treatment of asymptomatic or minimally symptomatic metastatic castration-refractory prostate cancer. As an update to the latest Trial Watch dealing with this exciting field of research (October 2012), here we summarize recent advances in DC-based anticancer regimens, covering both high-impact studies that have been published during the last 13 mo and clinical trials that have been launched in the same period to assess the antineoplastic potential of this variant of cellular immunotherapy.
Collapse
Affiliation(s)
- Erika Vacchelli
- Gustave Roussy; Villejuif, France ; Université Paris-Sud/Paris XI; Le Kremlin-Bicêtre, France ; INSERM, U848; Villejuif, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|