1
|
Benarroch E. What Are the Roles of Cellular Prion Protein in Normal and Pathologic Conditions? Neurology 2024; 102:e209272. [PMID: 38484222 DOI: 10.1212/wnl.0000000000209272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 03/19/2024] Open
|
2
|
Vanni I, Iacobone F, D’Agostino C, Giovannelli M, Pirisinu L, Altmeppen HC, Castilla J, Torres JM, Agrimi U, Nonno R. An optimized Western blot assay provides a comprehensive assessment of the physiological endoproteolytic processing of the prion protein. J Biol Chem 2022; 299:102823. [PMID: 36565989 PMCID: PMC9867980 DOI: 10.1016/j.jbc.2022.102823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
The prion protein (PrPC) is subjected to several conserved endoproteolytic events producing bioactive fragments that are of increasing interest for their physiological functions and their implication in the pathogenesis of prion diseases and other neurodegenerative diseases. However, systematic and comprehensive investigations on the full spectrum of PrPC proteoforms have been hampered by the lack of methods able to identify all PrPC-derived proteoforms. Building on previous knowledge of PrPC endoproteolytic processing, we thus developed an optimized Western blot assay able to obtain the maximum information about PrPC constitutive processing and the relative abundance of PrPC proteoforms in a complex biological sample. This approach led to the concurrent identification of the whole spectrum of known endoproteolytic-derived PrPC proteoforms in brain homogenates, including C-terminal, N-terminal and, most importantly, shed PrPC-derived fragments. Endoproteolytic processing of PrPC was remarkably similar in the brain of widely used wild type and transgenic rodent models, with α-cleavage-derived C1 representing the most abundant proteoform and ADAM10-mediated shedding being an unexpectedly prominent proteolytic event. Interestingly, the relative amount of shed PrPC was higher in WT mice than in most other models. Our results indicate that constitutive endoproteolytic processing of PrPC is not affected by PrPC overexpression or host factors other than PrPC but can be impacted by PrPC primary structure. Finally, this method represents a crucial step in gaining insight into pathophysiological roles, biomarker suitability, and therapeutic potential of shed PrPC and for a comprehensive appraisal of PrPC proteoforms in therapies, drug screening, or in the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Floriana Iacobone
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Matteo Giovannelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Joaquin Castilla
- Basque Research and Technology Alliance (BRTA) - CIC BioGUNE & IKERBasque, Bizkaia, Spain,Centro de Investigación Biomédica en Red de Enfermedades infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Maria Torres
- Centro de Investigación en Sanidad Animal (CISA-INIA-CSIC), Valdeolmos, Madrid, Spain
| | - Umberto Agrimi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
3
|
Shafiq M, Da Vela S, Amin L, Younas N, Harris DA, Zerr I, Altmeppen HC, Svergun D, Glatzel M. The prion protein and its ligands: Insights into structure-function relationships. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119240. [PMID: 35192891 DOI: 10.1016/j.bbamcr.2022.119240] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/23/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
The prion protein is a multifunctional protein that exists in at least two different folding states. It is subject to diverse proteolytic processing steps that lead to prion protein fragments some of which are membrane-bound whereas others are soluble. A multitude of ligands bind to the prion protein and besides proteinaceous binding partners, interaction with metal ions and nucleic acids occurs. Although of great importance, information on structural and functional consequences of prion protein binding to its partners is limited. Here, we will reflect on the structure-function relationship of the prion protein and its binding partners considering the different folding states and prion protein fragments.
Collapse
Affiliation(s)
- Mohsin Shafiq
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Stefano Da Vela
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Ladan Amin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Neelam Younas
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Inga Zerr
- Department of Neurology, University Medical Center Goettingen, Robert-Koch-str. 40, 37075 Goettingen, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany
| | - Dmitri Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg c/o German Electron Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251 Hamburg, Germany.
| |
Collapse
|
4
|
Kovač V, Čurin Šerbec V. Prion Protein: The Molecule of Many Forms and Faces. Int J Mol Sci 2022; 23:ijms23031232. [PMID: 35163156 PMCID: PMC8835406 DOI: 10.3390/ijms23031232] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Cellular prion protein (PrPC) is a glycosylphosphatidylinositol (GPI)-anchored protein most abundantly found in the outer membrane of neurons. Due to structural characteristics (a flexible tail and structured core), PrPC interacts with a wide range of partners. Although PrPC has been proposed to be involved in many physiological functions, only peripheral nerve myelination homeostasis has been confirmed as a bona fide function thus far. PrPC misfolding causes prion diseases and PrPC has been shown to mediate β-rich oligomer-induced neurotoxicity in Alzheimer’s and Parkinson’s disease as well as neuroprotection in ischemia. Upon proteolytic cleavage, PrPC is transformed into released and attached forms of PrP that can, depending on the contained structural characteristics of PrPC, display protective or toxic properties. In this review, we will outline prion protein and prion protein fragment properties as well as overview their involvement with interacting partners and signal pathways in myelination, neuroprotection and neurodegenerative diseases.
Collapse
|
5
|
Loh D, Reiter RJ. Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules 2022; 27:705. [PMID: 35163973 PMCID: PMC8839844 DOI: 10.3390/molecules27030705] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The unique ability to adapt and thrive in inhospitable, stressful tumor microenvironments (TME) also renders cancer cells resistant to traditional chemotherapeutic treatments and/or novel pharmaceuticals. Cancer cells exhibit extensive metabolic alterations involving hypoxia, accelerated glycolysis, oxidative stress, and increased extracellular ATP that may activate ancient, conserved prion adaptive response strategies that exacerbate multidrug resistance (MDR) by exploiting cellular stress to increase cancer metastatic potential and stemness, balance proliferation and differentiation, and amplify resistance to apoptosis. The regulation of prions in MDR is further complicated by important, putative physiological functions of ligand-binding and signal transduction. Melatonin is capable of both enhancing physiological functions and inhibiting oncogenic properties of prion proteins. Through regulation of phase separation of the prion N-terminal domain which targets and interacts with lipid rafts, melatonin may prevent conformational changes that can result in aggregation and/or conversion to pathological, infectious isoforms. As a cancer therapy adjuvant, melatonin could modulate TME oxidative stress levels and hypoxia, reverse pH gradient changes, reduce lipid peroxidation, and protect lipid raft compositions to suppress prion-mediated, non-Mendelian, heritable, but often reversible epigenetic adaptations that facilitate cancer heterogeneity, stemness, metastasis, and drug resistance. This review examines some of the mechanisms that may balance physiological and pathological effects of prions and prion-like proteins achieved through the synergistic use of melatonin to ameliorate MDR, which remains a challenge in cancer treatment.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part II: strategies for therapeutics development. Expert Rev Neurother 2021; 21:983-991. [PMID: 34470554 DOI: 10.1080/14737175.2021.1965882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The cellular prion protein (PrPC), some of its derivatives (especially PrP N-terminal N1 peptide and shed PrP), and PrPC-containing exosomes have strong neuroprotective activities, which have been reviewed in the companion article (Part I) and are briefly summarized here.Areas covered: We propose that elevating the extracellular levels of a protective PrP form using gene therapy and other approaches is a very promising novel avenue for prophylactic and therapeutic treatments against prion disease, Alzheimer's disease, and several other neurodegenerative diseases. We will dissect the pros and cons of various potential PrP-based treatment options and propose a few strategies that are more likely to succeed. The cited references were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles.Expert opinion: Concurrent knockdown of celllular PrP expression and elevation of the extracellular levels of a neuroprotective PrP N-terminal peptide via optimized gene therapy vectors is a highly promising broad-spectrum prophylactic and therapeutic strategy against several neurodegenerative diseases, including prion diseases, Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
7
|
Dexter E, Kong Q. Neuroprotective effect and potential of cellular prion protein and its cleavage products for treatment of neurodegenerative disorders part I. a literature review. Expert Rev Neurother 2021; 21:969-982. [PMID: 34470561 DOI: 10.1080/14737175.2021.1965881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The cellular prion protein (PrPC) is well known for its pathogenic roles in prion diseases, several other neurodegenerative diseases (such as Alzheimer's disease), and multiple types of cancer, but the beneficial aspects of PrPC and its cleavage products received much less attention. AREAS COVERED Here the authors will systematically review the literatures on the negative as well as protective aspects of PrPC and its derivatives (especially PrP N-terminal N1 peptide and shed PrP). The authors will dissect the current findings on N1 and shed PrP, including evidence for their neuroprotective effects, the categories of PrPC cleavage, and numerous cleavage enzymes involved. The authors will also discuss the protective effects and therapeutic potentials of PrPC-rich exosomes. The cited articles were obtained from extensive PubMed searches of recent literature, including peer-reviewed original articles and review articles. EXPERT OPINION PrP and its N-terminal fragments have strong neuroprotective activities that should be explored for therapeutics and prophylactics development against prion disease, Alzheimer's disease and a few other neurodegenerative diseases. The strategies to develop PrP-based therapeutics and prophylactics for these neurodegenerative diseases will be discussed in a companion article (Part II).
Collapse
Affiliation(s)
- Emily Dexter
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, USA.,Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
8
|
Harnessing the Physiological Functions of Cellular Prion Protein in the Kidneys: Applications for Treating Renal Diseases. Biomolecules 2021; 11:biom11060784. [PMID: 34067472 PMCID: PMC8224798 DOI: 10.3390/biom11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/16/2022] Open
Abstract
A cellular prion protein (PrPC) is a ubiquitous cell surface glycoprotein, and its physiological functions have been receiving increased attention. Endogenous PrPC is present in various kidney tissues and undergoes glomerular filtration. In prion diseases, abnormal prion proteins are found to accumulate in renal tissues and filtered into urine. Urinary prion protein could serve as a diagnostic biomarker. PrPC plays a role in cellular signaling pathways, reno-protective effects, and kidney iron uptake. PrPC signaling affects mitochondrial function via the ERK pathway and is affected by the regulatory influence of microRNAs, small molecules, and signaling proteins. Targeting PrPC in acute and chronic kidney disease could help improve iron homeostasis, ameliorate damage from ischemia/reperfusion injury, and enhance the efficacy of mesenchymal stem/stromal cell or extracellular vesicle-based therapeutic strategies. PrPC may also be under the influence of BMP/Smad signaling and affect the progression of TGF-β-related renal fibrosis. PrPC conveys TNF-α resistance in some renal cancers, and therefore, the coadministration of anti-PrPC antibodies improves chemotherapy. PrPC can be used to design antibody-drug conjugates, aptamer-drug conjugates, and customized tissue inhibitors of metalloproteinases to suppress cancer. With preclinical studies demonstrating promising results, further research on PrPC in the kidney may lead to innovative PrPC-based therapeutic strategies for renal disease.
Collapse
|
9
|
Brenna S, Altmeppen HC, Mohammadi B, Rissiek B, Schlink F, Ludewig P, Krisp C, Schlüter H, Failla AV, Schneider C, Glatzel M, Puig B, Magnus T. Characterization of brain-derived extracellular vesicles reveals changes in cellular origin after stroke and enrichment of the prion protein with a potential role in cellular uptake. J Extracell Vesicles 2020; 9:1809065. [PMID: 32944194 PMCID: PMC7480459 DOI: 10.1080/20013078.2020.1809065] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles (EVs) are important means of intercellular communication and a potent tool for regenerative therapy. In ischaemic stroke, transient blockage of a brain artery leads to a lack of glucose and oxygen in the affected brain tissue, provoking neuronal death by necrosis in the core of the ischaemic region. The fate of neurons in the surrounding penumbra region depends on the stimuli, including EVs, received during the following hours. A detailed characterization of such stimuli is crucial not only for understanding stroke pathophysiology but also for new therapeutic interventions. In the present study, we characterize the EVs in mouse brain under physiological conditions and 24 h after induction of transient ischaemia in mice. We show that, in steady-state conditions, microglia are the main source of small EVs (sEVs), whereas after ischaemia the main sEV population originates from astrocytes. Brain sEVs presented high amounts of the prion protein (PrP), which were further increased after stroke. Moreover, EVs were enriched in a proteolytically truncated PrP fragment (PrP-C1). Because of similarities between PrP-C1 and certain viral surface proteins, we studied the cellular uptake of brain-derived sEVs from mice lacking (PrP-KO) or expressing PrP (WT). We show that PrP-KO-sEVs are taken up significantly faster and more efficiently than WT-EVs by primary neurons. Furthermore, microglia and astrocytes engulf PrP-KO-sEVs more readily than WT-sEVs. Our results provide novel information on the relative contribution of brain cell types to the sEV pool in murine brain and indicate that increased release of sEVs by astrocytes together with elevated levels of PrP in sEVs may play a role in intercellular communication at early stages after stroke. In addition, amounts of PrP (and probably PrP-C1) in brain sEVs seem to contribute to regulating their cellular uptake.
Collapse
Affiliation(s)
- Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Rissiek
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florence Schlink
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Peter Ludewig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Krisp
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Mass Spectrometric Proteomics University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
10
|
Puig B, Yang D, Brenna S, Altmeppen HC, Magnus T. Show Me Your Friends and I Tell You Who You Are: The Many Facets of Prion Protein in Stroke. Cells 2020; 9:E1609. [PMID: 32630841 PMCID: PMC7407975 DOI: 10.3390/cells9071609] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke belongs to the leading causes of mortality and disability worldwide. Although treatments for the acute phase of stroke are available, not all patients are eligible. There is a need to search for therapeutic options to promote neurological recovery after stroke. The cellular prion protein (PrPC) has been consistently linked to a neuroprotective role after ischemic damage: it is upregulated in the penumbra area following stroke in humans, and animal models of stroke have shown that lack of PrPC aggravates the ischemic damage and lessens the functional outcome. Mechanistically, these effects can be linked to numerous functions attributed to PrPC: (1) as a signaling partner of the PI3K/Akt and MAPK pathways, (2) as a regulator of glutamate receptors, and (3) promoting stem cell homing mechanisms, leading to angio- and neurogenesis. PrPC can be cleaved at different sites and the proteolytic fragments can account for the manifold functions. Moreover, PrPC is present on extracellular vesicles (EVs), released membrane particles originating from all types of cells that have drawn attention as potential therapeutic tools in stroke and many other diseases. Thus, identification of the many mechanisms underlying PrPC-induced neuroprotection will not only provide further understanding of the physiological functions of PrPC but also new ideas for possible treatment options after ischemic stroke.
Collapse
Affiliation(s)
- Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | - Denise Yang
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | - Santra Brenna
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| | | | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI), University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (D.Y.); (S.B.); (T.M.)
| |
Collapse
|
11
|
Roseman GP, Wu B, Wadolkowski MA, Harris DA, Millhauser GL. Intrinsic toxicity of the cellular prion protein is regulated by its conserved central region. FASEB J 2020; 34:8734-8748. [PMID: 32385908 DOI: 10.1096/fj.201902749rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/11/2022]
Abstract
The conserved central region (CR) of PrPC has been hypothesized to serve as a passive linker connecting the protein's toxic N-terminal and globular C-terminal domains. Yet, deletion of the CR causes neonatal fatality in mice, implying the CR possesses a protective function. The CR encompasses the regulatory α-cleavage locus, and additionally facilitates a regulatory metal ion-promoted interaction between the PrPC N- and C-terminal domains. To elucidate the role of the CR and determine why CR deletion generates toxicity, we designed PrPC constructs wherein either the cis-interaction or α-cleavage are selectively prevented. These constructs were interrogated using nuclear magnetic resonance, electrophysiology, and cell viability assays. Our results demonstrate the CR is not a passive linker and the native sequence is crucial for its protective role over the toxic N-terminus, irrespective of α-cleavage or the cis-interaction. Additionally, we find that the CR facilitates homodimerization of PrPC , attenuating the toxicity of the N-terminus.
Collapse
Affiliation(s)
- Graham P Roseman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Bei Wu
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Mark A Wadolkowski
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David A Harris
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
12
|
Gavín R, Lidón L, Ferrer I, del Río JA. The Quest for Cellular Prion Protein Functions in the Aged and Neurodegenerating Brain. Cells 2020; 9:cells9030591. [PMID: 32131451 PMCID: PMC7140396 DOI: 10.3390/cells9030591] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular (also termed ‘natural’) prion protein has been extensively studied for many years for its pathogenic role in prionopathies after misfolding. However, neuroprotective properties of the protein have been demonstrated under various scenarios. In this line, the involvement of the cellular prion protein in neurodegenerative diseases other than prionopathies continues to be widely debated by the scientific community. In fact, studies on knock-out mice show a vast range of physiological functions for the protein that can be supported by its ability as a cell surface scaffold protein. In this review, we first summarize the most commonly described roles of cellular prion protein in neuroprotection, including antioxidant and antiapoptotic activities and modulation of glutamate receptors. Second, in light of recently described interaction between cellular prion protein and some amyloid misfolded proteins, we will also discuss the molecular mechanisms potentially involved in protection against neurodegeneration in pathologies such as Alzheimer’s, Parkinson’s, and Huntington’s diseases.
Collapse
Affiliation(s)
- Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-93-4031185
| | - Laia Lidón
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| | - Isidre Ferrer
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907 Barcelona, Spain
- Senior Consultant, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - José Antonio del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Science Park of Barcelona, 08028 Barcelona, Spain; (L.L.); (J.A.d.R.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Center for Networked Biomedical Research on Neurodegenerative Diseases (Ciberned), 28031 Barcelona, Spain;
- Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
13
|
Thüne K, Schmitz M, Villar-Piqué A, Altmeppen HC, Schlomm M, Zafar S, Glatzel M, Llorens F, Zerr I. The cellular prion protein and its derived fragments in human prion diseases and their role as potential biomarkers. Expert Rev Mol Diagn 2019; 19:1007-1018. [PMID: 31512940 DOI: 10.1080/14737159.2019.1667231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Human prion diseases are a heterogeneous group of incurable and debilitating conditions characterized by a progressive degeneration of the central nervous system. The conformational changes of the cellular prion protein and its formation into an abnormal isoform, spongiform degeneration, neuronal loss, and neuroinflammation are central to prion disease pathogenesis. It has been postulated that truncated variants of aggregation-prone proteins are implicated in neurodegenerative mechanisms. An increasing body of evidence indicates that proteolytic fragments and truncated variants of the prion protein are formed and accumulated in the brain of prion disease patients. These prion protein variants provide a high degree of relevance to disease pathology and diagnosis. Areas covered: In the present review, we summarize the current knowledge on the occurrence of truncated prion protein species and their potential roles in pathophysiological states during prion diseases progression. In addition, we discuss their usability as a diagnostic biomarker in prion diseases. Expert opinion: Either as a primary factor in the formation of prion diseases or as a consequence from neuropathological affection, abnormal prion protein variants and fragments may provide independent information about mechanisms of prion conversion, pathological states, or disease progression.
Collapse
Affiliation(s)
- Katrin Thüne
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Anna Villar-Piqué
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain
| | | | - Markus Schlomm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center HH-Eppendorf (UKE) , Hamburg , Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany.,Network Center for Biomedical Research in Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, CIBERNED, Hospitalet de Llobregat , Spain.,Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat , Barcelona , Spain
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE) - site Göttingen , Göttingen , Germany
| |
Collapse
|
14
|
Ashok A, Kang MH, Wise AS, Pattabiraman P, Johnson WM, Lonigro M, Ravikumar R, Rhee DJ, Singh N. Prion protein modulates endothelial to mesenchyme-like transition in trabecular meshwork cells: Implications for primary open angle glaucoma. Sci Rep 2019; 9:13090. [PMID: 31511544 PMCID: PMC6739364 DOI: 10.1038/s41598-019-49482-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/15/2019] [Indexed: 12/31/2022] Open
Abstract
Endothelial-to-mesenchyme-like transition (Endo-MT) of trabecular meshwork (TM) cells is known to be associated with primary open angle glaucoma (POAG). Here, we investigated whether the prion protein (PrPC), a neuronal protein known to modulate epithelial-to-mesenchymal transition in a variety of cell types, is expressed in the TM, and plays a similar role at this site. Using a combination of primary human TM cells and human, bovine, and PrP-knock-out (PrP−/−) mouse models, we demonstrate that PrPC is expressed in the TM of all three species, including endothelial cells lining the Schlemm’s canal. Silencing of PrPC in primary human TM cells induces aggregation of β1-integrin and upregulation of α-smooth muscle actin, fibronectin, collagen 1A, vimentin, and laminin, suggestive of transition to a mesenchyme-like phenotype. Remarkably, intraocular pressure is significantly elevated in PrP−/− mice relative to wild-type controls, suggesting reduced pliability of the extracellular matrix and increased resistance to aqueous outflow in the absence of PrPC. Since PrPC is cleaved by members of the disintegrin and matrix-metalloprotease family that are increased in the aqueous humor of POAG arising from a variety of conditions, it is likely that concomitant cleavage of PrPC exaggerates and confounds the pathology by inducing Endo-MT-like changes in the TM.
Collapse
Affiliation(s)
- Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Min H Kang
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Aaron S Wise
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - P Pattabiraman
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | | | - Michael Lonigro
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ranjana Ravikumar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Douglas J Rhee
- Department of Ophthalmology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
15
|
Structural Determinants of the Prion Protein N-Terminus and Its Adducts with Copper Ions. Int J Mol Sci 2018; 20:ijms20010018. [PMID: 30577569 PMCID: PMC6337743 DOI: 10.3390/ijms20010018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The N-terminus of the prion protein is a large intrinsically disordered region encompassing approximately 125 amino acids. In this paper, we review its structural and functional properties, with a particular emphasis on its binding to copper ions. The latter is exploited by the region’s conformational flexibility to yield a variety of biological functions. Disease-linked mutations and proteolytic processing of the protein can impact its copper-binding properties, with important structural and functional implications, both in health and disease progression.
Collapse
|
16
|
Ulbrich S, Janning P, Seidel R, Matschke J, Gonsberg A, Jung S, Glatzel M, Engelhard M, Winklhofer KF, Tatzelt J. Alterations in the brain interactome of the intrinsically disordered N-terminal domain of the cellular prion protein (PrPC) in Alzheimer's disease. PLoS One 2018; 13:e0197659. [PMID: 29791485 PMCID: PMC5965872 DOI: 10.1371/journal.pone.0197659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/08/2018] [Indexed: 12/23/2022] Open
Abstract
The cellular prion protein (PrPC) is implicated in neuroprotective signaling and neurotoxic pathways in both prion diseases and Alzheimer's disease (AD). Specifically, the intrinsically disordered N-terminal domain (N-PrP) has been shown to interact with neurotoxic ligands, such as Aβ and Scrapie prion protein (PrPSc), and to be crucial for the neuroprotective activity of PrPC. To gain further insight into cellular pathways tied to PrP, we analyzed the brain interactome of N-PrP. As a novel approach employing recombinantly expressed PrP and intein-mediated protein ligation, we used N-PrP covalently coupled to beads as a bait for affinity purification. N-PrP beads were incubated with human AD or control brain lysates. N-PrP binding partners were then identified by electrospray ionization tandem mass spectrometry (nano ESI-MS/MS). In addition to newly identified proteins we found many previously described PrP interactors, indicating a crucial role of the intrinsically disordered part of PrP in mediating protein interactions. Moreover, some interactors were found only in either non-AD or AD brain, suggesting aberrant PrPC interactions in the pathogenesis of AD.
Collapse
Affiliation(s)
- Sarah Ulbrich
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ralf Seidel
- Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jakob Matschke
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anika Gonsberg
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Sebastian Jung
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| |
Collapse
|
17
|
Affiliation(s)
- Giuseppe Legname
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
- * E-mail:
| |
Collapse
|
18
|
Asthana A, Baksi S, Ashok A, Karmakar S, Mammadova N, Kokemuller R, Greenlee MH, Kong Q, Singh N. Prion protein facilitates retinal iron uptake and is cleaved at the β-site: Implications for retinal iron homeostasis in prion disorders. Sci Rep 2017; 7:9600. [PMID: 28851903 PMCID: PMC5575325 DOI: 10.1038/s41598-017-08821-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/17/2017] [Indexed: 12/22/2022] Open
Abstract
Prion disease-associated retinal degeneration is attributed to PrP-scrapie (PrPSc), a misfolded isoform of prion protein (PrPC) that accumulates in the neuroretina. However, a lack of temporal and spatial correlation between PrPSc and cytotoxicity suggests the contribution of host factors. We report retinal iron dyshomeostasis as one such factor. PrPC is expressed on the basolateral membrane of retinal-pigment-epithelial (RPE) cells, where it mediates uptake of iron by the neuroretina. Accordingly, the neuroretina of PrP-knock-out mice is iron-deficient. In RPE19 cells, silencing of PrPC decreases ferritin while over-expression upregulates ferritin and divalent-metal-transporter-1 (DMT-1), indicating PrPC-mediated iron uptake through DMT-1. Polarization of RPE19 cells results in upregulation of ferritin by ~10-fold and β-cleavage of PrPC, the latter likely to block further uptake of iron due to cleavage of the ferrireductase domain. A similar β-cleavage of PrPC is observed in mouse retinal lysates. Scrapie infection causes PrPSc accumulation and microglial activation, and surprisingly, upregulation of transferrin despite increased levels of ferritin. Notably, detergent-insoluble ferritin accumulates in RPE cells and correlates temporally with microglial activation, not PrPSc accumulation, suggesting that impaired uptake of iron by PrPSc combined with inflammation results in retinal iron-dyshomeostasis, a potentially toxic host response contributing to prion disease-associated pathology.
Collapse
Affiliation(s)
- Abhishek Asthana
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Shounak Baksi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Ajay Ashok
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Shilpita Karmakar
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Najiba Mammadova
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, 50010, USA
| | - Robyn Kokemuller
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, 50010, USA
| | - Mary Heather Greenlee
- Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, Iowa, 50010, USA
| | - Qingzhong Kong
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA
| | - Neena Singh
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, 44106, USA.
| |
Collapse
|
19
|
Linsenmeier L, Altmeppen HC, Wetzel S, Mohammadi B, Saftig P, Glatzel M. Diverse functions of the prion protein - Does proteolytic processing hold the key? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2128-2137. [PMID: 28693923 DOI: 10.1016/j.bbamcr.2017.06.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 02/07/2023]
Abstract
Proteolytic processing of the cellular and disease-associated form of the prion protein leads to generation of bioactive soluble prion protein fragments and modifies the structure and function of its cell-bound form. The nature of proteases responsible for shedding, α-, β-, and γ-cleavage of the prion protein are only partially identified and their regulation is largely unknown. Here, we provide an overview of the increasingly multifaceted picture of prion protein proteolysis and shed light on physiological and pathological roles associated with these cleavages. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sebastian Wetzel
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Behnam Mohammadi
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian Albrechts University Kiel, Kiel, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
20
|
Vanni I, Migliore S, Cosseddu GM, Di Bari MA, Pirisinu L, D’Agostino C, Riccardi G, Agrimi U, Nonno R. Isolation of a Defective Prion Mutant from Natural Scrapie. PLoS Pathog 2016; 12:e1006016. [PMID: 27880822 PMCID: PMC5120856 DOI: 10.1371/journal.ppat.1006016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/21/2016] [Indexed: 11/18/2022] Open
Abstract
It is widely known that prion strains can mutate in response to modification of the replication environment and we have recently reported that prion mutations can occur in vitro during amplification of vole-adapted prions by Protein Misfolding Cyclic Amplification on bank vole substrate (bvPMCA). Here we exploited the high efficiency of prion replication by bvPMCA to study the in vitro propagation of natural scrapie isolates. Although in vitro vole-adapted PrPSc conformers were usually similar to the sheep counterpart, we repeatedly isolated a PrPSc mutant exclusively when starting from extremely diluted seeds of a single sheep isolate. The mutant and faithful PrPSc conformers showed to be efficiently autocatalytic in vitro and were characterized by different PrP protease resistant cores, spanning aa ∼155–231 and ∼80–231 respectively, and by different conformational stabilities. The two conformers could thus be seen as different bona fide PrPSc types, putatively accounting for prion populations with different biological properties. Indeed, once inoculated in bank vole the faithful conformer was competent for in vivo replication while the mutant was unable to infect voles, de facto behaving like a defective prion mutant. Overall, our findings confirm that prions can adapt and evolve in the new replication environments and that the starting population size can affect their evolutionary landscape, at least in vitro. Furthermore, we report the first example of “authentic” defective prion mutant, composed of brain-derived PrPC and originating from a natural scrapie isolate. Our results clearly indicate that the defective mutant lacks of some structural characteristics, that presumably involve the central region ∼90–155, critical for infectivity but not for in vitro replication. Finally, we propose a molecular mechanism able to account for the discordant in vitro and in vivo behavior, suggesting possible new paths for investigating the molecular bases of prion infectivity. Prions are unique infectious agents, consisting of PrPSc, a self-propagating aggregated conformer of the host-encoded prion protein PrPC. Despite the absence of any nucleic acid information, prions exist as distinct strains that share the same amino acid sequence but differ in their conformation. Moreover, prions can mutate and are thus heterogeneous populations able to evolve and adapt to new replication environments. During in vitro amplification of sheep scrapie, we found that a prion mutant could be obtained from one natural isolate. The prion mutant identified was characterized in vivo and in vitro, showing unusual biochemical and biological features: a smaller than usual C-terminal proteinase resistant core of PrPSc, which spans aa ∼155–231, and the inability to propagate in vivo despite an efficient autocatalytic replication in vitro. With such a signature, we denoted the mutant as a “defective” prion mutant. We thus postulate a new hypothesis for the discrepancy between the in vitro and in vivo behavior of the defective mutant and suggest that the central PrPSc domain ∼90–160 might have a key role in prion replication. This work provides important new insights into the mechanism underpinning prion replication and has numerous implications for understanding the molecular requirements indispensable for prion infectivity.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Sergio Migliore
- Istituto Zooprofilattico Sperimentale of Sicily "A. Mirri", Palermo, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia D’Agostino
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Geraldina Riccardi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail:
| |
Collapse
|
21
|
Amin L, Nguyen XTA, Rolle IG, D'Este E, Giachin G, Tran TH, Šerbec VČ, Cojoc D, Legname G. Characterization of prion protein function by focal neurite stimulation. J Cell Sci 2016; 129:3878-3891. [PMID: 27591261 DOI: 10.1242/jcs.183137] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 08/16/2016] [Indexed: 12/22/2022] Open
Abstract
The cellular prion protein (PrPC), encoded by the PRNP gene, is a ubiquitous glycoprotein, which is highly expressed in the brain. This protein, mainly known for its role in neurodegenerative diseases, is involved in several physiological processes including neurite outgrowth. By using a novel focal stimulation technique, we explored the potential function of PrPC, in its soluble form, as a signaling molecule. Thus, soluble recombinant prion proteins (recPrP) encapsulated in micro-vesicles were released by photolysis near the hippocampal growth cones. Local stimulation of wild-type growth cones with full-length recPrP induced neurite outgrowth and rapid growth cone turning towards the source. This effect was shown to be concentration dependent. Notably, PrPC-knockout growth cones were insensitive to recPrP stimulation, but this property was rescued in PrP-knockout growth cones expressing GFP-PrP. Taken together, our findings indicate that recPrP functions as a signaling molecule, and that its homophilic interaction with membrane-anchored PrPC might promote neurite outgrowth and facilitate growth cone guidance.
Collapse
Affiliation(s)
- Ladan Amin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Xuan T A Nguyen
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Irene Giulia Rolle
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Elisa D'Este
- Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Gabriele Giachin
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Thanh Hoa Tran
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| | - Vladka Čurin Šerbec
- Department for Production of Diagnostic Reagents and Research, Blood Transfusion Centre of Slovenia, 1000 Ljubljana, Slovenia
| | - Dan Cojoc
- Optical Manipulation (OM)-Lab, Institute of Materials (IOM), National Research Council (CNR), I-34149 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), I-34136 Trieste, Italy
| |
Collapse
|
22
|
Abstract
Prions are the etiological agent of fatal neurodegenerative diseases called prion diseases or transmissible spongiform encephalopathies. These maladies can be sporadic, genetic or infectious disorders. Prions are due to post-translational modifications of the cellular prion protein leading to the formation of a β-sheet enriched conformer with altered biochemical properties. The molecular events causing prion formation in sporadic prion diseases are still elusive. Recently, we published a research elucidating the contribution of major structural determinants and environmental factors in prion protein folding and stability. Our study highlighted the crucial role of octarepeats in stabilizing prion protein; the presence of a highly enthalpically stable intermediate state in prion-susceptible species; and the role of disulfide bridge in preserving native fold thus avoiding the misfolding to a β-sheet enriched isoform. Taking advantage from these findings, in this work we present new insights into structural determinants of prion protein folding and stability.
Collapse
Key Words
- ADAM family, A Disintegrin And Metalloproteinase family
- CJD, Creutzfeldt-Jakob disease
- FFI, fatal familial insomnia
- GPI, glycosylphosphatidylinositol
- GSS, Gerstmann-Sträussler-Scheinker syndrome
- N-terminal domain
- NMDA receptor, N-methyl-D-aspartate receptor
- OR, octarepeats
- PrPC, cellular prion protein
- PrPSc, prion
- TSE, transmissible spongiform encephalopathies
- disulfide bridge
- folding
- globular domain
- intermediate state
- octarepeat
- prion protein
- stability
Collapse
Affiliation(s)
- Federico Benetti
- a Laboratory of Prion Biology, Department of Neuroscience; Scuola Internazionale Superiore di Studi Avanzati (SISSA) , Trieste , Italy
| | | |
Collapse
|
23
|
Bakkebø MK, Mouillet-Richard S, Espenes A, Goldmann W, Tatzelt J, Tranulis MA. The Cellular Prion Protein: A Player in Immunological Quiescence. Front Immunol 2015; 6:450. [PMID: 26388873 PMCID: PMC4557099 DOI: 10.3389/fimmu.2015.00450] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/19/2015] [Indexed: 01/09/2023] Open
Abstract
Despite intensive studies since the 1990s, the physiological role of the cellular prion protein (PrP(C)) remains elusive. Here, we present a novel concept suggesting that PrP(C) contributes to immunological quiescence in addition to cell protection. PrP(C) is highly expressed in diverse organs that by multiple means are particularly protected from inflammation, such as the brain, eye, placenta, pregnant uterus, and testes, while at the same time it is expressed in most cells of the lymphoreticular system. In this paradigm, PrP(C) serves two principal roles: to modulate the inflammatory potential of immune cells and to protect vulnerable parenchymal cells against noxious insults generated through inflammation. Here, we review studies of PrP(C) physiology in view of this concept.
Collapse
Affiliation(s)
- Maren K. Bakkebø
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | | | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Wilfred Goldmann
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Jörg Tatzelt
- Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Michael A. Tranulis
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Oslo, Norway,*Correspondence: Michael A. Tranulis, Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine and Biosciences, Norwegian University of Life Sciences, Campus Adamstuen, Oslo 0033, Norway,
| |
Collapse
|
24
|
Iraci N, Stincardini C, Barreca ML, Biasini E. Decoding the function of the N-terminal tail of the cellular prion protein to inspire novel therapeutic avenues for neurodegenerative diseases. Virus Res 2015; 207:62-8. [DOI: 10.1016/j.virusres.2014.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/18/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023]
|
25
|
Vilches S, Vergara C, Nicolás O, Mata Á, Del Río JA, Gavín R. Domain-Specific Activation of Death-Associated Intracellular Signalling Cascades by the Cellular Prion Protein in Neuroblastoma Cells. Mol Neurobiol 2015; 53:4438-48. [PMID: 26250617 DOI: 10.1007/s12035-015-9360-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
The biological functions of the cellular prion protein remain poorly understood. In fact, numerous studies have aimed to determine specific functions for the different protein domains. Studies of cellular prion protein (PrP(C)) domains through in vivo expression of molecules carrying internal deletions in a mouse Prnp null background have provided helpful data on the implication of the protein in signalling cascades in affected neurons. Nevertheless, understanding of the mechanisms underlying the neurotoxicity induced by these PrP(C) deleted forms is far from complete. To better define the neurotoxic or neuroprotective potential of PrP(C) N-terminal domains, and to overcome the heterogeneity of results due to the lack of a standardized model, we used neuroblastoma cells to analyse the effects of overexpressing PrP(C) deleted forms. Results indicate that PrP(C) N-terminal deleted forms were properly processed through the secretory pathway. However, PrPΔF35 and PrPΔCD mutants led to death by different mechanisms sharing loss of alpha-cleavage and activation of caspase-3. Our data suggest that both gain-of-function and loss-of-function pathogenic mechanisms may be associated with N-terminal domains and may therefore contribute to neurotoxicity in prion disease. Dissecting the molecular response induced by PrPΔF35 may be the key to unravelling the physiological and pathological functions of the prion protein.
Collapse
Affiliation(s)
- Silvia Vilches
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Cristina Vergara
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Oriol Nicolás
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ágata Mata
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| | - Rosalina Gavín
- Molecular and Cellular Neurobiotechnology, Barcelona Science Park, Institute for Bioengineering of Catalonia (IBEC), Parc Científic de Catalunya, Baldiri Reixac 15-21, 08028, Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain. .,Department of Cell Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Benetti F, Biarnés X, Attanasio F, Giachin G, Rizzarelli E, Legname G. Structural determinants in prion protein folding and stability. J Mol Biol 2014; 426:3796-3810. [PMID: 25280897 DOI: 10.1016/j.jmb.2014.09.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 07/30/2014] [Accepted: 09/15/2014] [Indexed: 01/21/2023]
Abstract
Prions are responsible for a heterogeneous group of fatal neurodegenerative diseases, involving post-translational modifications of the cellular prion protein. Epidemiological studies on Creutzfeldt-Jakob disease, a prototype prion disorder, show a majority of cases being sporadic, while the remaining occurrences are either genetic or iatrogenic. The molecular mechanisms by which PrP(C) is converted into its pathological isoform have not yet been established. While point mutations and seeds trigger the protein to cross the energy barriers, thus causing genetic and infectious transmissible spongiform encephalopathies, respectively, the mechanism responsible for sporadic forms remains unclear. Since prion diseases are protein-misfolding disorders, we investigated prion protein folding and stability as functions of different milieus. Using spectroscopic techniques and atomistic simulations, we dissected the contribution of major structural determinants, also defining the energy landscape of prion protein. In particular, we elucidated (i) the essential role of the octapeptide region in prion protein folding and stability, (ii) the presence of a very enthalpically stable intermediate in prion-susceptible species, and (iii) the role of the disulfide bridge in prion protein folding.
Collapse
Affiliation(s)
- Federico Benetti
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy; Italian Institute of Technology, Scuola Internazionale Superiore di Studi Avanzati Unit, Via Bonomea 265, I-34136 Trieste, Italy
| | - Xevi Biarnés
- Department of Physics, Scuola Internazionale Superiore di Studi Avanzati, I-34136 Trieste, Italy
| | - Francesco Attanasio
- National Research Council, Institute of Biostructures and Bioimaging, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Gabriele Giachin
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
| | - Enrico Rizzarelli
- National Research Council, Institute of Biostructures and Bioimaging, Viale Andrea Doria 6, I-95125 Catania, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy; Italian Institute of Technology, Scuola Internazionale Superiore di Studi Avanzati Unit, Via Bonomea 265, I-34136 Trieste, Italy; Elettra - Sincrotrone Trieste S.C.p.A., AREA Science Park, I-34149 Basovizza Trieste, Italy.
| |
Collapse
|