1
|
Zhao T, Wan S, Li S, Feng Z. Leaf mining induced chemical defense of a Late Triassic ginkgophyte plant. THE NEW PHYTOLOGIST 2025; 245:27-32. [PMID: 39323206 DOI: 10.1111/nph.20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Affiliation(s)
- Tao Zhao
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, 650500, China
| | - Sui Wan
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, 650500, China
| | - Senleyi Li
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, 650500, China
| | - Zhuo Feng
- Institute of Palaeontology, Yunnan Key Laboratory of Earth System Science, Yunnan University, Kunming, 650500, China
- Southwest United Graduate School, Kunming, 650092, China
| |
Collapse
|
2
|
Yang H, Jiang L, Bao X, Liu H, Xu Q, Yao X, Cai S, Fang Y, Su J, Li J. CeJAZ3 suppresses longifolene accumulation in Casuarina equisetifolia, affecting the host preference of Anoplophora chinensis. PEST MANAGEMENT SCIENCE 2024. [PMID: 39723485 DOI: 10.1002/ps.8618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/27/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Casuarina equisetifolia, a crucial species of coastal windbreaks, is highly susceptible to infestation by Anoplophora chinensis. This stem-boring pest poses a significant threat to the health and sustainability of Casuarina equisetifolia forests. Understanding the molecular mechanisms underlying the host preference of A. chinensis to Casuarina equisetifolia is essential for developing effective pest management strategies. RESULTS Through field surveys, we identified two cultivars of Casuarina equisetifolia that exhibited differing levels of host preference for A. chinensis. Further analysis of multi-omics data (phenomics, transcriptomics, and metabolomics) from these cultivars revealed that longifolene plays a significant role in attracting A. chinensis to Casuarina equisetifolia. Additionally, the jasmonic acid (JA) signaling pathway was found to suppress longifolene accumulation, primarily through the interaction between the jasmonate ZIM-domain (JAZ) proteins and the terpene synthase (TPS) gene. Moreover, we identified a critical JAZ component, CeJAZ3, whose overexpression led to the down-regulation of TPS expression levels and, consequently, a reduced release of longifolene. CONCLUSION We confirmed that the negative regulator of host preference, CeJAZ3, in the JA signaling pathway can suppress the expression of TPSs, thereby down-regulating the accumulation of longifolene in Casuarina equisetifolia and indirectly suppressing the attraction of host plants to A. chinensis, which provides a basis for the integrated management of A. chinensis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hua Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lijuan Jiang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaochun Bao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haolan Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qianle Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingliang Yao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, China
| | - Yu Fang
- Institute of Resources, Environment and Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jian Li
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- The Higher Educational Key Laboratory for Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Chang H, Li C, Zhu T, Cai S, Chen J, Zhan F, Zeng L, Fang Y, Ye G, Li J, Su J. GLR36 T807I Mutation of Casuarina equisetifoli Is Associated With a Decreased JA Response to Insect Feeding by Lymantria xylina. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39718115 DOI: 10.1111/pce.15347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Lymantria xylina is the most important defoliator, damaging the effective coastal windbreak tree species Casuarina equisetifolia. However, the underlying genetic mechanisms through which C. equisetifolia responds to L. xylina attacks remain unknown. Here, we compared the transcriptional, phytohormone and metabolic differences between susceptible (S) and resistant (R) C. equisetifolia cultivars in response to L. xylina feeding. The main L. xylina-induced resistance in C. equisetifolia was a jasmonate (JA) response and JA synthesis was highly induced by L. xylina feeding at both the transcriptional and metabolic levels, thus promoting flavonoid accumulation. The JA response was highly activated by L. xylina feeding on the R but not in the S cultivar, although the JA signalling pathway was intact in both cultivars. We found a single amino acid mutation in the homologues of glutamate receptor-like protein 3.6 (CeGLR3.6T807I) in the S cultivar. Compared with the GLR3.6 homologues in the R cultivar, phosphorylation of CeGLR3.6T807I was not induced by insect feeding, leading to a decreased JA response in the S cultivar. Collectively, this study provides new insights into the function of CeGLR3.6 in regulating the JA response of C. equisetifolia to L. xylina feeding.
Collapse
Affiliation(s)
- Huan Chang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Chengli Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Tengfei Zhu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong Province, China
| | - Shouping Cai
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Jie Chen
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Fangfang Zhan
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Liqiong Zeng
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Yu Fang
- Institute of Soil Fertilizer, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Gongfu Ye
- Fujian Academy of Forestry Sciences, Fuzhou, Fujian Province, China
| | - Jian Li
- Key Laboratory of Forest Ecosystem Process and Management of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Jun Su
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
4
|
Liu Y, Shi J, Patra B, Singh SK, Wu X, Lyu R, Liu X, Li Y, Wang Y, Zhou X, Pattanaik S, Yuan L. Transcriptional Reprogramming Deploys a Compartmentalized 'Timebomb' in Catharanthus roseus to Fend Off Chewing Herbivores. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39718032 DOI: 10.1111/pce.15324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/14/2024] [Accepted: 11/29/2024] [Indexed: 12/25/2024]
Abstract
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants. Catharanthus roseus, a medicinal plant known for its insecticidal property against chewing herbivores, produces two terpenoid indole alkaloid monomers, vindoline and catharanthine. Individually, they exhibited negligible toxicity against Manduca sexta, a chewing herbivore; their condensed product, anhydrovinblastine; however, was highly toxic. Such a unique insecticidal mode of action demonstrates that terpenoid indole alkaloid 'timebomb' can only be activated when the two spatially isolated monomeric precursors are dimerized by herbivory. Without initial selection pressure and apparent fitness costs, this adaptive chemical defence against herbivory is innovative and sustainable. The biosynthesis of insecticidal terpenoid indole alkaloids is induced by herbivory but suppressed by cold. Here, we identified a transcription factor, herbivore-induced vindoline-gene Expression (HIVE), that coordinates the production of terpenoid indole alkaloids in response to herbivory and cold stress. The HIVE-mediated transcriptional reprogramming allows this herbaceous perennial to allocate its metabolic resources for chemical defence at a normal temperature when herbivory pressure is high, but switches to cold tolerance under a cooler temperature when insect infestation is secondary.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Jizhe Shi
- Department of Entomology, University of Kentucky, Martin-Gatton College of Agriculture, Food and Environment, Lexington, Kentucky, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xia Wu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu, Shanxi, China
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Martin-Gatton College of Agriculture, Food and Environment, Lexington, Kentucky, USA
- Department of Entomology, School of Integrative Biology, College of Liberal Arts & Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Li S, Ma C, Li S, Zhang M, Zhang C, Qi J, Wang L, Wu X, Li J, Wu J. Mitogen-activated protein kinase 4 phosphorylates MYC2 transcription factors to regulate jasmonic acid signaling and herbivory responses in maize. PLANT PHYSIOLOGY 2024; 197:kiae575. [PMID: 39471326 DOI: 10.1093/plphys/kiae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 11/01/2024]
Abstract
Regulation of responses induced by herbivory and jasmonic acid (JA) remains poorly understood in the important staple crop maize (Zea mays). MYC2 is the key transcription factor regulating many aspects of JA signaling, while mitogen-activated protein kinases (MAPKs or MPKs) play important roles in various plant physiological processes. Using a combination of reverse genetics, transcriptome analysis, and biochemical assays, we elucidated the important role of mitogen-activated protein kinase 4 (MPK4) in maize resistance to insects and in JA signaling. Silencing MPK4 increased the JA and jasmonoyl-isoleucine levels elicited by wounding or simulated herbivory but decreased maize resistance to armyworm (Mythimna separata) larvae. We showed that MPK4 is required for transcriptional regulation of many genes responsive to methyl jasmonate, indicating the important role of maize MPK4 in JA signaling. Biochemical analyses indicated that MPK4 directly phosphorylates MYC2s at Thr115 of MYC2a and Thr112 of MYC2b. Compared with nonphosphorylated MYC2s, phosphorylated MYC2s were more prone to degradation and exhibited enhanced transactivation activity against the promoters of several benzoxazinoid biosynthesis genes, which are important for maize defense against insects. This study reveals the essential role of maize MPK4 in JA signaling and provides insights into the functions of MAPKs in maize.
Collapse
Affiliation(s)
- Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Xuna Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
6
|
Galanti D, Jung JH, Müller C, Bossdorf O. Discarded sequencing reads uncover natural variation in pest resistance in Thlaspi arvense. eLife 2024; 13:RP95510. [PMID: 39699583 DOI: 10.7554/elife.95510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Understanding the genomic basis of natural variation in plant pest resistance is an important goal in plant science, but it usually requires large and labor-intensive phenotyping experiments. Here, we explored the possibility that non-target reads from plant DNA sequencing can serve as phenotyping proxies for addressing such questions. We used data from a whole-genome and -epigenome sequencing study of 207 natural lines of field pennycress (Thlaspi arvense) that were grown in a common environment and spontaneously colonized by aphids, mildew, and other microbes. We found that the numbers of non-target reads assigned to the pest species differed between populations, had significant SNP-based heritability, and were associated with climate of origin and baseline glucosinolate contents. Specifically, pennycress lines from cold and thermally fluctuating habitats, presumably less favorable to aphids, showed higher aphid DNA load, i.e., decreased aphid resistance. Genome-wide association analyses identified genetic variants at known defense genes but also novel genomic regions associated with variation in aphid and mildew DNA load. Moreover, we found several differentially methylated regions associated with pathogen loads, in particular differential methylation at transposons and hypomethylation in the promoter of a gene involved in stomatal closure, likely induced by pathogens. Our study provides first insights into the defense mechanisms of Thlaspi arvense, a rising crop and model species, and demonstrates that non-target whole-genome sequencing reads, usually discarded, can be leveraged to estimate intensities of plant biotic interactions. With rapidly increasing numbers of large sequencing datasets worldwide, this approach should have broad application in fundamental and applied research.
Collapse
Affiliation(s)
- Dario Galanti
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
- Royal Botanic Gardens, Kew, Richmond upon Thames, United Kingdom
| | - Jun Hee Jung
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | | | - Oliver Bossdorf
- Plant Evolutionary Ecology, Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Gautam A, Oliver JB, Perkovich C, Addesso KM. Investigation of hybrid Freeman maple resistance to Chrysobothris flatheaded borers (Coleoptera: Buprestidae). ENVIRONMENTAL ENTOMOLOGY 2024; 53:1120-1131. [PMID: 39304524 DOI: 10.1093/ee/nvae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Red maples (Acer rubrum L.; Sapindales: Sapindaceae) are common shade trees well known for their stunning autumn foliage and fast growth. They are a popular choice for landscapes, parks, and public places across the United States. Flatheaded borer species in the genus Chrysobothris (Coleoptera: Buprestidae) are some of the most damaging insects in red maple production, with attacks being most common on stressed and newly transplanted trees. In nurseries, red maples routinely experience flatheaded borer attacks, while the Freeman maple hybrid 'Autumn Blaze' has been reported as potentially resistant to flatheaded borers. In this study, traits of three borer susceptible red maple cultivars ('Brandywine', 'Sun Valley', and 'October Glory') were compared against a potentially resistant Freeman maple hybrid cultivar for baseline differences as well as differences under the stress of a foliar herbicide application Scythe (pelargonic acid 57%). Morphological, physiological, and biochemical traits of the red maple cultivars were evaluated and contrasted with the hybrid to identify traits related with borer resistance. Under normal conditions, the hybrid maple exhibited faster growth, greater concentrations of sulfur, and lower concentrations of zinc and flavonoids in leaf tissues compared to red maples. The herbicide stress treatment resulted in greater nitrogen and sulfur concentrations in hybrid foliage, but less chlorophyll, flavonoid, and zinc concentrations compared to the red maple cultivars. Field trials validated borer preference for red maples over the hybrid. Traits associated with the hybrid warrant additional study if an understanding of the causal relationship with borer resistance is to be achieved.
Collapse
Affiliation(s)
- Asmita Gautam
- Department of Agricultural and Environmental Science, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN, USA
| | - Jason B Oliver
- Department of Agricultural and Environmental Science, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN, USA
| | - Cindy Perkovich
- Department of Biology and Toxicology, Ashland University, Ashland, OH, USA
| | - Karla M Addesso
- Department of Agricultural and Environmental Science, Otis L. Floyd Nursery Research Center, Tennessee State University, McMinnville, TN, USA
| |
Collapse
|
8
|
Coyotl-Pérez WA, Ángeles-López YI, Luna-Suárez S, Rosas-Cárdenas FDF, Villa-Ruano N. Volatilomics of Capsicum pubescens Plants Infested by Solenopsis geminata: Unraveling the Role of Oleic and Palmitic Acids in Plant-Fire Ant Interaction. Chem Biodivers 2024:e202402380. [PMID: 39665862 DOI: 10.1002/cbdv.202402380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Solenopsis geminata is an aggressive pest of manzano pepper (Capsicum pubescens) crops. Herein, we report on the volatilomics profiling of manzano pepper plants obtained during S. geminata infestation by solid-phase microextraction coupled with gas chromatography-mass spectrometry. As a result, 68 volatile organic compounds were identified from ants, non-infested plants, and infested plants, including terpenes, esters, steroids, aldehydes, phenylpropanoids, and fatty acids. As a remarkable finding, oleic and palmitic acids were the main compounds released during ant infestation. These fatty acids were evaluated as biocidal or repellent agents under in vitro and in situ conditions. From these experiments, the biocidal effect of palmitic acid was more potent (median lethal dose [LC50], 0.97 mg/cm2) than that of oleic acid (LC50, 5.03 mg/cm2) on S. geminata workers. Nevertheless, only oleic acid had a repellent effect under in situ conditions (p < 0.01). Our results represent new insights into the role of both fatty acids in manzano pepper defense mechanisms.
Collapse
Affiliation(s)
- Wendy Abril Coyotl-Pérez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Yesenia Ithaí Ángeles-López
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla (BUAP), Prolongación 24 sur y Av. San Claudio, Puebla, Mexico
| | - Silvia Luna-Suárez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Flor de Fátima Rosas-Cárdenas
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional (IPN), Ex-Hacienda San Juan Molino Carretera Estatal, Santa Inés Tecuexcomac, Tepetitla, Tlaxcala, Mexico
| | - Nemesio Villa-Ruano
- CONAHCyT-Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma, de Puebla, Prolongación de la 24 Sur y Av. San Claudio, Puebla, Mexico
| |
Collapse
|
9
|
Kızılkan ND, Konuş M, Rişvanlı MR, Yılmaz C, Kara H, Özgökçe MS, Çetin D, Atlıhan R. Impact of Beneficial Microorganisms Inoculated Cotton Plants on Spodoptera exigua (Lepidoptera: Noctuidae). NEOTROPICAL ENTOMOLOGY 2024; 54:7. [PMID: 39663307 DOI: 10.1007/s13744-024-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/09/2024] [Indexed: 12/13/2024]
Abstract
This study discusses plant-mediated effects of beneficial soil-borne microorganisms on population growth parameters of Spodoptera exigua (Lepidoptera: Noctuidae), a major cotton pest. In particular, we investigated the impact of these microorganisms on oxidative stress, chlorophyll content, and sugar and protein levels in cotton plants, and how these changes in the plant affect the survival, development, reproduction, and ultimately population growth of the pest. A longer preadult period, lower preadult survival rate, and lower reproduction were obtained for the pest cohort feeding on treated plants, which resulted in lower population parameters, i.e., intrinsic growth rate, finite growth rate, and net reproduction rate. The population projection results showed the same trend as the population parameters. These results can be attributed to the changes caused by microorganisms in the treated plants. There was no oxidative stress in the treated plants. Instead, the chlorophyll content in these plants increased, and the protein-carbohydrate ratio decreased. Additionally, we assessed the effects of plant-insect-microorganisms interaction on total glutathione levels, glutathione S-transferase, and esterase enzyme activities in S. exigua. Overall results indicate that beneficial microorganisms tested enhance the plant's ability to defend against the pest. Additionally, the findings from this study provide valuable insights into the complex interplay among plants, microorganisms, and pests, offering potential strategies for incorporating these interactions into pest management practices.
Collapse
Affiliation(s)
- Nurhan Didem Kızılkan
- Dept of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yıl Univ, Van, Türkiye
| | - Metin Konuş
- Dept of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yıl Univ, Van, Türkiye.
- Dept of Molecular Biology and Genetics, Faculty of Science and Arts, Hitit Univ, Çorum, Türkiye.
| | | | - Can Yılmaz
- Dept of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yıl Univ, Van, Türkiye
| | - Hilmi Kara
- Dept of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl Univ, Van, Türkiye
| | - Mehmet Salih Özgökçe
- Dept of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl Univ, Van, Türkiye
| | - Doğan Çetin
- Dept of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yıl Univ, Van, Türkiye
| | - Remzi Atlıhan
- Dept of Plant Protection, Faculty of Agriculture, Van Yüzüncü Yıl Univ, Van, Türkiye
| |
Collapse
|
10
|
Ishwarya Lakshmi KS, Dhillon MK, Mukri G, Mahendra KR, Gowtham KV, Tanwar AK. Induced biochemical variations in maize parental lines affect the life table and age-specific reproductive potential of Spodoptera frugiperda (J.E. Smith). FRONTIERS IN PLANT SCIENCE 2024; 15:1517848. [PMID: 39717731 PMCID: PMC11663683 DOI: 10.3389/fpls.2024.1517848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 11/21/2024] [Indexed: 12/25/2024]
Abstract
In recent years, the fall armyworm, Spodoptera frugiperda has rapidly emerged as a global invasive pest, challenging the maize production and leading to considerable economic losses. Developing resistant hybrids is essential for sustainable maize cultivation, which requires a comprehensive understanding of resistance traits and the underlying mechanisms in parental lines. To address this need, the present study aimed to identify the sources of resistance, age and stage-specific effects and role of phytochemicals in plant defense against S. frugiperda in thirty diverse maize parental lines [17 female (A) and 13 male (R) lines]. The study revealed that the larvae fed on maize A-lines CML 565, AI 501, AI 544 and PDIM 639, and R-lines AI 125, AI 542, AI 155, AI 1100 and PML 105 exhibited a reduced intrinsic (r) and finite rate of increase (λ), and net (R0) and gross reproduction rates (GRR); while, increased mean generation time (T) and doubling time (DT). Among these, A-lines CML 565, PDIM 639 and AI 544, and R-lines AI 125, AI 155 and AI 1100 showed higher detrimental effect on reproductive value of S. frugiperda. Aforesaid A- and R-lines were also found with greater increase in insect-induced test phytochemicals compared to other lines, accounting for 25.0 to 72.8% variation in the life table parameters, indicating antibiosis effect on S. frugiperda. Among the test phytochemicals, tannins, CAT, PAL, TAL and APX inflicted greater effect, indicating their role in induced-biochemical defense against S. frugiperda.
Collapse
Affiliation(s)
| | - Mukesh K. Dhillon
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ganapati Mukri
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. R. Mahendra
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - K. V. Gowtham
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditya K. Tanwar
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Feio AC, Furtado ACS, Coutinho ÍAC. An exploratory study of the functional significance of the floral secretory structures in two Miconia species (Melastomataceae). AN ACAD BRAS CIENC 2024; 96:e20240468. [PMID: 39630716 DOI: 10.1590/0001-3765202420240468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/22/2024] [Indexed: 12/07/2024] Open
Abstract
Aiming to verify whether the diversity of secretory structures with their respective exudates are or not responsible for the attendance of floral visitors in Miconia species, the floral secretory structures of two Amazonian species of Miconia were described and interpreted from the functional perspectives and observations of floral visitors. Flowers and floral visitors were collected in the field for 16 months. The flowers were subjected to standard anatomical analyzes using light and scanning electron microscopy, and the secretory structures were evaluated using histochemical tests. The insects were photographed, collected and identified by a specialist. Floral secretory structures (stigmatic papillae and trichomes at the apex of the ovary) were found in M. alata and M. ciliata. Trichomes were found at the hypanthium of M. alata, and of the sepals and receptacles in M. ciliata. In both species, different hydrophilic compounds were detected in the exudates. Only phenolic compounds were found in the trichomes of the M. ciliata receptacle. This study provides information that confirms the hypothesis that other secretory structures and exudates are related to floral visitors, and adds new informations about the features of the secretory structures in Miconia.
Collapse
Affiliation(s)
- Ana Carla Feio
- Universidade Federal do Rio de Janeiro/Museu Nacional, Programa de Pós-graduação em Ciências Biológicas/Botânica, Parque Quinta da Boa Vista 1, 20940-040 Rio de Janeiro, RJ, Brazil
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Avenida Perimetral 1901, 66077-830 Belém, PA, Brazil
| | - Ana Catarina S Furtado
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Avenida Perimetral 1901, 66077-830 Belém, PA, Brazil
| | - Ítalo Antônio C Coutinho
- Universidade Federal do Ceará, Centro de Ciências, Departamento de Biologia, Programa de Pós-graduação em Sistemática Uso e Conservação da Biodiversidade, Avenida Mister Hull, s/n, Campus do PICI, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
12
|
Ramírez‐Serrano B, Querejeta M, Minchev Z, Pozo MJ, Dubreuil G, Giron D. Root inoculation with soil-borne microorganisms alters gut bacterial communities and performance of the leaf-chewer Spodoptera exigua. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70049. [PMID: 39592916 PMCID: PMC11598745 DOI: 10.1111/1758-2229.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua. We also explored the potential correlation between both parameters. We performed herbivory bioassay using leaves of tomato plants (Solanum lycopersicum), measured caterpillar weight gain and characterized the gut bacterial communities via 16S rRNA gene metabarcoding. All soil microbes modified the gut bacterial communities, but the extent of these changes depended on the inoculated species. Rhizophagus irregularis and Bacillus amyloliquefaciens had opposite effects on S. exigua weight. While plant inoculation with the fungus influenced gut bacterial diversity, B. amyloliquefaciens also affected the community composition. A reduced abundance of two S. exigua enterococcal symbionts correlated with decreased insect biomass. Our results show that soil microorganisms can induce plant-mediated changes in the gut bacterial community of foliar-feeding caterpillars. We propose that the impact of these alterations on insect performance might rely on specific adaptations within the gut bacteria, rather than solely on the occurrence of changes.
Collapse
Affiliation(s)
- Beatriz Ramírez‐Serrano
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Marina Querejeta
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
- UMR CNRS 7267, Ecologie et Biologie des InteractionsUniversité de PoitiersPoitiersFrance
| | - Zhivko Minchev
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
- Agronomical Development Department, Business Unit MicrobiologyKoppert Biological SystemsBerkel en RodenrijsThe Netherlands
| | - María J. Pozo
- Department of Soil and Plant MicrobiologyEstación Experimental del Zaidín (EEZ‐CSIC)GranadaSpain
| | - Géraldine Dubreuil
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| | - David Giron
- Biodiversity and Interactions Between Micro‐organisms/Insects/Plants (IMIP)Institut de Recherche sur la Biologie de l'Insecte (IRBI)—UMR 7261 CNRS/Université de ToursToursFrance
| |
Collapse
|
13
|
Ziaullah SM, Hamayun M, Iqbal A, Hussain A. Overcoming the challenge of invasive Parthenium hysterophorus management through integration of Aspergillus allahabadii (Eurotiales: Aspergillaceae) and Zygogramma bicolorata (Coleoptera: Chrysomelidae) as biocontrol agents. Heliyon 2024; 10:e38624. [PMID: 39634386 PMCID: PMC11616525 DOI: 10.1016/j.heliyon.2024.e38624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/08/2024] [Accepted: 09/26/2024] [Indexed: 12/07/2024] Open
Abstract
Parthenium hysterophorus is an invasive weed posing significant environmental challenges. This study explores the synergistic effects of the fungal strain Aspergillus allahabadii (P-Ph-13) and its interaction with the beetle Zygogramma bicolorata in controlling the weed. The combined action of A. allahabadii (P-Ph-13) and Z. bicolorata significantly suppressed the weed's germination and growth. Interaction with Z. bicolorata further boosted its effectiveness, decreasing seedling vigor by 78 % and increasing mortality by up to 42 % compared to the control group. Additionally, the interactive treatment severely disrupted the weed's physiological processes, causing extensive damage and ultimately leading to seedling death. These findings indicate that the synergistic effect of A. allahabadii and Z. bicolorata presents a promising strategy for managing Parthenium.
Collapse
Affiliation(s)
- Syed Muhammad Ziaullah
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Hamayun
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Amjad Iqbal
- Department of Food Science and Technology, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Anwar Hussain
- Department of Botany, Garden Campus, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
14
|
Wang Y, Di B, Sun Z, Sonali, Donovan-Mak M, Chen ZH, Wang MQ. Multi-Omics and Physiological Analysis Reveal Crosstalk Between Aphid Resistance and Nitrogen Fertilization in Wheat. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39545337 DOI: 10.1111/pce.15282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
The availability of nitrogen (N) can dramatically influence crops resistance to herbivorous insects. However, the interaction between N fertilization and crop resistance to insects is not well understood. In this study, the effects of N fertilization on the grain aphid (Sitobion miscanthi) were investigated using three wheat (Triticum aestivum) cultivars with different aphid resistances. We measured aphid life cycle parameters, fecundity, survival rate, weight and feeding behavior, in conjunction with wheat metabolomics, transcriptomics and alien introgression analysis. Our results demonstrated that higher N application benefits aphid feeding across all three wheat cultivars. We also reveal that the highly resistant cultivar (ZM9) can only exert its resistance-advantage under low N fertilization, losing its advantage compared to moderately resistant cultivar YN19 and susceptible cultivar YN23 under higher N fertilization. The effects of N fertilization on wheat-aphid interactions were due to changes in the regulation of carbon and nitrogen metabolism. Integration of multi-omics highlighted specific aphid-induced differentially expressed genes (DEGs, e.g., TUB6, Tubulin 6; ENODL20, Early nodulin-like protein 20; ACT7 Actin 7; Prx47, Peroxidase 47) and significantly different metabolites (SDMs, e.g., crotonoside, guanine, 2'-O-methyladenosine, ferulic acid) in ZM9. Additionally, we report the unique SDMs-DEGs interactions, associated with introgression during wheat domestication, may help infer aphid resistance. In summary, this study provides new insights into the relationships between N fertilization practices, defense responses and integrated pest management for sustainable wheat production.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Bin Di
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ze Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Sonali
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, New South Wales, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Zannou AJ, Romeis J, Collatz J. Response of the tomato leaf miner Phthorimaea absoluta to wild and domesticated tomato genotypes. PEST MANAGEMENT SCIENCE 2024. [PMID: 39530398 DOI: 10.1002/ps.8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Phthorimaea absoluta, a highly destructive invasive pest, poses a significant threat to tomato production globally. Exploring alternative control methods, such as host plant resistance can contribute to diminish reliance on insecticides and promote sustainable integrated pest management (IPM) practices. Thus, the identification of new P. absoluta-resistant tomato cultivars and potential wild sources for breeding programmes remains imperative. We evaluated the effect of 19 tomato genotypes, comprising 16 domesticated varieties and three wild tomato species, on oviposition output of female P. absoluta, as well as on larval performance under no-choice conditions using detached leaves. We also characterized and quantified glandular and nonglandular trichomes, exploring their potential correlation with the response of P. absoluta to the tomato plants. RESULTS Generally, fewer eggs were oviposited on domesticated plants, whereas the wild tomatoes Solanum arcanum and S. neorickii and the domesticated tomato Corona F1 impaired larval development. The pest larvae consumed a limited area of leaflets from S. arcanum and S. neorickii compared to other genotypes, leading to the lowest weights in both male and female pupae. All tomato plants exhibited a prevalence of nonglandular over glandular trichomes, except for S. arcanum, which exhibited a higher abundance of glandular trichomes. Although higher trichome density correlated with longer larval settlement on the leaflets, it did not influence female oviposition. CONCLUSION Our findings demonstrate that the wild tomatoes S. arcanum and S. neorickii could be considered as potential sources for breeding programmes, and the domesticated Corona F1 could offer IPM options against P. absoluta. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Jörg Romeis
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| | - Jana Collatz
- Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland
| |
Collapse
|
16
|
Morkunas I, Woźniak A, Bednarski W, Ostrowski A, Kęsy J, Glazińska P, Wojciechowska J, Bocianowski J, Rucińska-Sobkowiak R, Mai VC, Karolewski Z, Labudda M, Batista A, Jeandet P. The Effects of Lead and Cross-Talk Between Lead and Pea Aphids on Defence Responses of Pea Seedlings. Int J Mol Sci 2024; 25:11804. [PMID: 39519355 PMCID: PMC11546482 DOI: 10.3390/ijms252111804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The main goal of this study was to investigate the effect of lead (Pb) at various concentrations, as an abiotic factor, and the cross-talk between Pb and pea aphid (Acyrthosiphon pisum (Harris)) (Hemiptera: Aphididae), as a biotic factor, on the defence responses of pea seedlings (Pisum sativum L. cv. Cysterski). The analysis of growth parameters for pea seedlings demonstrated that Pb at a low concentration, i.e., 0.025-0.0625 mM Pb(NO3)2, caused a hormesis effect, i.e., stimulation of seedling growth, whereas Pb at higher concentrations, i.e., 0.01-0.325 mM Pb(NO3)2, inhibited growth, which manifested as the inhibition of length and fresh biomass. The differences in the level of the main defence-related phytohormones, such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA), and indole-3-acetic acid (IAA)-an auxin stimulating plant cell growth-depended on the dose of Pb, aphid infestation and direct contact of the stress factor with the organ. A high accumulation of soluble sugars in the organs of pea seedlings both at sublethal doses and hormetic doses at early experimental time points was observed. At 0 h and 24 h of the experiment, the hormetic doses of Pb significantly stimulated invertase activities, especially in the roots. Moreover, an increase was observed in the pisatin concentration in pea seedlings growing in the presence of different concentrations of Pb and in the case of cross-talk between Pb and A. pisum in relation to the control. Additionally, a significant induction of the expressions of isoflavone synthase (IFS) and 6α-hydroxymaackiain 3-O-methyltransferase (HMM) genes, which participate in the regulation of the pisatin biosynthesis pathway, in pea seedlings growing under the influence of sublethal 0.5 mM Pb(NO3)2 and hormetic 0.075 mM Pb(NO3)2 doses of Pb was noted. The obtained results showed that the response of P. sativum seedlings depends on the Pb dose applied, direct contact of the stress factor with the organ and the duration of contact.
Collapse
Affiliation(s)
- Iwona Morkunas
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (A.W.); (J.W.); (A.B.)
| | - Agnieszka Woźniak
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (A.W.); (J.W.); (A.B.)
| | - Waldemar Bednarski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland; (W.B.); (A.O.)
| | - Adam Ostrowski
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland; (W.B.); (A.O.)
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland (P.G.)
| | - Paulina Glazińska
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland (P.G.)
| | - Julia Wojciechowska
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (A.W.); (J.W.); (A.B.)
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland;
| | - Renata Rucińska-Sobkowiak
- Department of Plant Ecophysiology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Van Chung Mai
- Department of Research and International Affairs, Vinh University, Le Duan 182, Vinh 43108, Nghe An Province, Vietnam;
| | - Zbigniew Karolewski
- Department of Phytopathology, Seed Science and Technology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Collegium Zembala, Dąbrowskiego 159, 60-594 Poznań, Poland
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Anielkis Batista
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland; (A.W.); (J.W.); (A.B.)
- Polytechnic Institute of Huila, Universidade Mandume ya Ndemufayo, Lubango 3FJP+27X, Angola
| | - Philippe Jeandet
- Research Unit “Induced Resistance and Plant Bioprotection”, RIBP-USC INRAe 1488, University of Reims Champagne-Ardenne, 51100 Reims, France;
| |
Collapse
|
17
|
Mazumder K, Aktar A, Kerr PG, Dash R, Blanchard CL, Gulzarul Aziz M, Farahnaky A. Insights into seed coats of nine cultivars of Australian lupin: Unravelling LC-QTOF MS-based biochemical profiles, nutritional, functional, antioxidant, and antidiabetic properties together with rationalizing antidiabetic mechanism by in silico approaches. Food Res Int 2024; 195:114970. [PMID: 39277267 DOI: 10.1016/j.foodres.2024.114970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/17/2024]
Abstract
Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste'.
Collapse
Affiliation(s)
- Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh; School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW, Australia.
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408 Jashore, Bangladesh
| | - Philip G Kerr
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Christopher L Blanchard
- School of Dentistry and Medical Sciences, Charles Sturt University, Boorooma St, Wagga Wagga, NSW 2678, Australia
| | - Mohammad Gulzarul Aziz
- Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Asgar Farahnaky
- Biosciences and Food Technology, School of Science, RMIT University, Melbourne 3083, Australia
| |
Collapse
|
18
|
Maraia H, Charles‐Dominique T, Tomlinson K, Staver A, Jorge L, Gélin U, Jancuchova‐Laskova J, Sam L, Hattas D, Freiberga I, Sam K. Substantial Insect Herbivory in a South African Savanna-Forest Mosaic: A Neglected Topic. Ecol Evol 2024; 14:e70466. [PMID: 39524307 PMCID: PMC11549574 DOI: 10.1002/ece3.70466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/10/2024] [Accepted: 09/29/2024] [Indexed: 11/16/2024] Open
Abstract
Insect herbivory plays a crucial role in shaping plant communities in many terrestrial ecosystems. However, in African savannas, insect herbivory has been relatively understudied compared to large mammalian herbivory. In this study, we examined the impact of insect herbivory, focusing on leaf chewers and miners, in a South African savanna-forest mosaic (including patches of forest, thicket and savanna) in Hluhluwe iMfolozi Park, South Africa. Our investigation spanned gradients of rainfall, fire frequency and mammal density. We surveyed a total of 864 woody plants from 48 plant species in 38 plots. Insects consumed 6% of leaf biomass, which is comparable to their impact in temperate broadleaf forests, but the extent of herbivory damage varied between vegetation types. Overall, leaf loss was 70% higher in forests and savanna than that in thicket. Plants in the forests experienced greater damage from chewing insects, whereas miners caused relatively more damage in savannas. Rates of insect herbivory also varied among plant species, declining with carbon and dry matter content but increasing with specific leaf area. Although no significant trade-off was detected between insect and mammal herbivory, plant species with limited physical defences against mammals tended to experience high levels of insect herbivory. Our findings highlight the intricate dynamics of insect herbivory in different vegetation types and suggest that insect leaf herbivory, alongside mammalian herbivory, could play a significant role in influencing plant community composition and overall savanna ecosystem functioning.
Collapse
Affiliation(s)
- Heveakore Maraia
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Tristan Charles‐Dominique
- CIRAD, CNRS, INRAE, IRD, UMR AMAPUniversity of MontpellierMontpellierFrance
- CNRS UMR7618, Institute of Ecology and Environmental Sciences ParisSorbonne UniversityParisFrance
| | - Kyle W. Tomlinson
- Center for Integrative Conservation & Key Laboratory for Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaYunnanChina
| | - Ann Carla Staver
- Ecology and Evolutionary Biology and the Yale Institute for Biospheric StudiesNew HavenConnecticutUSA
| | - Leonardo Re Jorge
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Uriel Gélin
- Section of EcoInformatics and Biodiversity, Department of Biology, Centre for Biodiversity Dynamics in a Changing World (BIOCHANGE)5Aarhus UniversityAarhusDenmark
- Section of EcoInformatics and Biodiversity, Department of Biology, Centre for Ecological Dynamics in a Novel Biosphere (ECONOVO)Aarhus UniversityAarhusDenmark
| | - Jitka Jancuchova‐Laskova
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Legi Sam
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
| | - Dawood Hattas
- Department of Biological SciencesUniversity of Cape TownCape TownSouth Africa
| | - Inga Freiberga
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
| | - Katerina Sam
- Institute of Entomology, Biology CentreCzech Academy SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
19
|
Davidson-Lowe E, Zainuddin N, Trase O, McCarthy N, Ali JG. Arbuscular mycorrhizal fungi influence belowground interactions between a specialist root-feeder and its natural enemy. J Invertebr Pathol 2024; 207:108200. [PMID: 39374864 DOI: 10.1016/j.jip.2024.108200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/24/2024] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
As primary producers, plants play a central role in mediating interactions across trophic levels. Although plants are the primary food source for herbivorous insects, they can protect themselves from herbivore damage. Many plants produce toxic compounds that directly reduce herbivore feeding, but plants also protect themselves indirectly by attracting natural enemies of the attacking herbivore through volatile signaling. These so-called tri-trophic interactions have historically been documented aboveground in aerial plant parts but are also known to occur belowground in root systems. In addition to herbivores, plants directly interact with other organisms, which can influence the outcomes of tri-trophic interactions. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil microbes that colonize the roots of plants and facilitate nutrient uptake. These microbes can alter plant chemistry and subsequent resistance to herbivores. Few studies, however, have shown how AMF affect tri-trophic interactions above- or belowground. This study examines how AMF colonization affects the emission of root volatiles when plants are under attack by western corn rootworm, a problematic pest of corn, and subsequent attraction of entomopathogenic nematodes, a natural enemy of western corn rootworm. Mycorrhizal fungi increased rootworm survival but decreased larval weight. Differences were detected across root volatile profiles, but there was not a clear link between volatile signaling and nematode behavior. Nematodes were more attracted to non-mycorrhizal plants without rootworms and AMF alone in soil, suggesting that AMF may interfere with cues that are used in combination with volatiles which nematodes use to locate prey.
Collapse
Affiliation(s)
- Elizabeth Davidson-Lowe
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nursyafiqi Zainuddin
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Plant Protection, University Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Olivia Trase
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Nathaniel McCarthy
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jared Gregory Ali
- Center for Chemical Ecology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
20
|
Pelosi JA, Davenport R, Barbazuk WB, Sessa EB, Kuo L. An efficient and effective RNA extraction protocol for ferns. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11617. [PMID: 39628544 PMCID: PMC11610414 DOI: 10.1002/aps3.11617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 12/06/2024]
Abstract
Premise The extraction of high-quality RNA is the critical first step for the analysis of gene expression and gene space. This remains particularly challenging in plants, and especially in ferns, where the disruption of the cell wall and separation of organic compounds from nucleic acids is not trivial. Methods We developed a cetyltrimethylammonium bromide (CTAB)-based RNA extraction protocol that consistently performs well across a large phylogenetic breadth of ferns-a lineage of plants high in secondary compounds-and in an array of tissue types. Two alternative options (precipitation vs. clean-up without intermediate precipitation) are presented, both of which yield high-quality RNA extracts with optical density (OD) ratios of OD 260/280 = 1.9-2.1 and OD 260/230 > 1.6, and RNA integrity numbers >7. Conclusions This study presents an efficient protocol for the extraction of high-quality RNA from multiple tissues and across the fern phylogeny, a clade of plants that still lags behind other major lineages in the development of genomic resources. We hope that this method can be used to help facilitate the closing of this gap.
Collapse
Affiliation(s)
- Jessie A. Pelosi
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Ruth Davenport
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - W. Brad Barbazuk
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
- Genetics InstituteUniversity of FloridaGainesville32611FloridaUSA
| | - Emily B. Sessa
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
- William and Lynda Steere HerbariumNew York Botanical Garden, BronxNew York10458USA
| | - Li‐Yaung Kuo
- Institute of Molecular and Cellular BiologyNational Tsing Hua UniversityHsinchuTaiwan
| |
Collapse
|
21
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
22
|
Zhou W, Zhao L, Wang K, Renard CMGC, Le Bourvellec C, Hu Z, Liu X. Plant leaf proanthocyanidins: from agricultural production by-products to potential bioactive molecules. Crit Rev Food Sci Nutr 2024; 64:11757-11795. [PMID: 37584238 DOI: 10.1080/10408398.2023.2244079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.
Collapse
Affiliation(s)
- Wenyi Zhou
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | | | | | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Pan L, Huang R, Lu Z, Duan W, Sun S, Yan L, Cui G, Niu L, Wang Z, Zeng W. Combined transcriptome and metabolome analysis identifies triterpenoid-induced defense responses in Myzus persicae Sülzer-infested peach. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6644-6662. [PMID: 39110720 DOI: 10.1093/jxb/erae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/06/2024] [Indexed: 11/01/2024]
Abstract
Piercing/sucking insects such as green peach aphid (GPA) (Myzus persicae) cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees (Prunus persica) to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to GPA were studied. The gene expression of aphid-susceptible plants infested with aphids was similar to that of control plants, whereas the gene expression of aphid-resistant plants infested with aphids showed strong induced changes in gene expression compared with control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid infestation induced larger changes in aphid-resistant than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed highly significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid-susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, and NACs) were strongly induced upon GPA infestation in aphid-resistant, but not in aphid-susceptible peaches. These results suggested that the accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.
Collapse
Affiliation(s)
- Lei Pan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Rui Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhenhua Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenyi Duan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Shihang Sun
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Lele Yan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Guochao Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Liang Niu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Zhiqiang Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| | - Wenfang Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
24
|
Chakraborty S, Dwivedi S, Schuster S. Mathematical modeling predicts that endemics by generalist insects are eradicated if nearly all plants produce constitutive defense. Sci Rep 2024; 14:25771. [PMID: 39468088 PMCID: PMC11519633 DOI: 10.1038/s41598-024-74771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Plants with constitutive defense chemicals exist widely in nature. The phenomenon is backed by abundant data from plant chemical ecology. Sufficient data are also available to conclude that plant defenses act as deterrent and repellent to attacking herbivores, particularly deleterious generalist insects. In the wild, generalist species are usually not endemic, meaning they are not restricted to certain plant species in a region. Therefore, our objective is to inspect theoretically whether evolution of chemical defenses in all plant species eradicate an endemic by any generalist species. The objective is addressed by developing deterministic ordinary differential equations under the following conditions: Plants without constitutive defenses are susceptible to oviposition by generalist insects, while they become defended against generalists by storing chemical defenses. From the models, we explicitly obtain that a generalist-free stable state is only possible if the vast majority of all plant individuals have chemical defenses. The model also allows one to predict the highest possible percentage of undefended plant individuals, which may be considered as free-riders.
Collapse
Affiliation(s)
- Suman Chakraborty
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
- International Max Planck Research School 'Chemical Communication in Ecological Systems', Jena, 07745, Thuringia, Germany
| | - Shalu Dwivedi
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Matthias Schleiden Institute, Friedrich Schiller University Jena, Ernst-Abbe-Pl. 2, Jena, 07743, Thuringia, Germany.
| |
Collapse
|
25
|
Chen L, Shu Z, Zhou D, Zhou H, Wang J, Feng Y, Zheng S, He W. Metabolite profiling and transcriptome analyses reveal defense regulatory network against pink tea mite invasion in tea plant. BMC Genomics 2024; 25:989. [PMID: 39438821 PMCID: PMC11520189 DOI: 10.1186/s12864-024-10877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND The tea plant Camellia sinensis (L.) O. Kuntze is a perennial crop, invaded by diversity of insect pest species, and pink tea mite is one of the most devastating pests for sustainable tea production. However, molecular mechanism of defense responses against pink tea mites in tea is still unknown. In this study, metabolomics and transcriptome profiles of susceptible and resistant tea varieties were compared before and after pink tea mite infestation. RESULTS Metabolomics analysis revealed that abundance levels of polyphenol-related compounds changed significantly before and after infestation. At the transcript level, nearly 8 GB of clean reads were obtained from each sequenced library, and a comparison of infested plants of resistant and susceptible tea varieties revealed 9402 genes with significant differential expression. An array of genes enriched in plant pathogen interaction and biosynthetic pathways of phenylpropanoids showed significant differential regulation in response to pink tea mite invasion. In particular, the functional network linkage of disease resistant proteins, phenylalanine ammonia lyase, flavanone -3-hydroxylase, hydroxycinnamoyl-CoA shikimate transferase, brassinosteroid-6-oxidase 1, and gibberellin 2 beta-dioxygenase induced dynamic defense signals to suppress prolonged pink tea mite attacks. Further integrated analyses identified a complex network of transcripts and metabolites interlinked with precursors of various flavonoids that are likely modulate resistance against to pink tea mite. CONCLUSIONS Our results characterized the profiles of insect induced metabolic and transcript reprogramming and identified a defense regulatory network that can potentially be used to fend off pink tea mites damage.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Zaifa Shu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Huijuan Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, China
| | - Yaqi Feng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Shenghong Zheng
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China
| | - Weizhong He
- Lishui Institute of Agricultural and Forestry Sciences, Lishui, 323000, Zhejiang, China.
| |
Collapse
|
26
|
Sun C, Wei J, Gu X, Wu M, Li M, Liu Y, An N, Wu K, Wu S, Wu J, Xu M, Wu JC, Wang YL, Chao DY, Zhang Y, Wu S. Different multicellular trichome types coordinate herbivore mechanosensing and defense in tomato. THE PLANT CELL 2024; 36:koae269. [PMID: 39404780 PMCID: PMC11638769 DOI: 10.1093/plcell/koae269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/12/2024] [Accepted: 10/03/2024] [Indexed: 12/15/2024]
Abstract
Herbivore-induced wounding can elicit a defense response in plants. However, whether plants possess a surveillance system capable of detecting herbivore threats and initiating preparatory defenses before wounding occurs remains unclear. In this study, we reveal that tomato (Solanum lycopersicum) trichomes can detect and respond to the mechanical stimuli generated by herbivores. Mechanical stimuli are preferentially perceived by long trichomes, and this mechanosensation is transduced via intra-trichome communication. This communication presumably involves calcium waves, and the transduced signals activate the jasmonic acid (JA) signaling pathway in short glandular trichomes, resulting in the upregulation of the Woolly (Wo)-SlMYC1 regulatory module for terpene biosynthesis. This induced defense mechanism provides plants with an early warning system against the threat of herbivore invasion. Our findings represent a perspective on the role of multicellular trichomes in plant defense and the underlying intra-trichome communication.
Collapse
Affiliation(s)
- Chao Sun
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JinBo Wei
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - XinYun Gu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MinLiang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Meng Li
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - YiXi Liu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - NingKai An
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - KeMeng Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - ShaSha Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - JunQing Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - MeiZhi Xu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia-Chen Wu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ya-Ling Wang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dai-Yin Chao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - YouJun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuang Wu
- College of Life Sciences, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Zhang X, Wang X, Wang T. Comprehensive Transcriptomic Analysis Reveals Defense-Related Genes and Pathways of Rice Plants in Response to Fall Armyworm ( Spodoptera frugiperda) Infestation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2879. [PMID: 39458827 PMCID: PMC11510987 DOI: 10.3390/plants13202879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Rice (Oryza sativa L.) serves as a substitute for bread and is a staple food for half of the world's population, but it is heavily affected by insect pests. The fall armyworm (Spodoptera frugiperda) is a highly destructive pest, threatening rice and other crops in tropical regions. Despite its significance, little is known about the molecular mechanisms underlying rice's response to fall armyworm infestation. In this study, we used transcriptome analysis to explore the global changes in gene expression in rice leaves during a 1 h and 12 h fall armyworm feeding. The results reveal 2695 and 6264 differentially expressed genes (DEGs) at 1 and 12 h post-infestation, respectively. Gene Ontology (GO) and KEGG enrichment analyses provide insights into biological processes and pathways affected by fall armyworm feeding. Key genes associated with hormone regulation, defense metabolic pathways, and antioxidant and detoxification processes were upregulated, suggesting the involvement of jasmonic acid (JA) signaling, salicylic acid biosynthesis pathways, auxin response, and heat shock proteins in defense during 1 h and 12 h after fall armyworm infestation. Similarly, key genes involved in transcriptional regulation and defense mechanisms reveal the activation of calmodulins, transcription factors (TFs), and genes related to secondary metabolite biosynthesis. Additionally, MYB, WRKY, and ethylene-responsive factors (ERFs) are identified as crucial TF families in rice's defense response. This study provides a comprehensive understanding of the molecular dynamics in rice responding to fall armyworm infestation, offering valuable insights for developing pest-resistant rice varieties and enhancing global food security. The identified genes and pathways provide an extensive array of genomic resources that can be used for further genetic investigation into rice herbivore resistance. This also suggests that rice plants may have evolved strategies against herbivorous insects. It also lays the groundwork for novel pest-resistance techniques for rice.
Collapse
Affiliation(s)
| | | | - Tao Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China; (X.Z.); (X.W.)
| |
Collapse
|
28
|
Simard A, Gendjar M, Merewitz E, McGraw BA. Inducible defense phytohormones in annual bluegrass (Poa annua) and creeping bentgrass (Agrostis stolonifera) in response to annual bluegrass weevil (Listronotus maculicollis) infestation. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2113-2122. [PMID: 38981132 DOI: 10.1093/jee/toae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/02/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
The annual bluegrass weevil (Listronotus maculicollis) is the most damaging insect pest of short-mown turfgrass on golf courses in eastern North America. Listronotus maculicollis larvae cause limited visible damage as stem-borers (L1-3), compared to the crown-feeding (L4-5) developmental instars. Prolonged larval feeding results in discoloration and formation of irregular patches of dead turf, exposing soil on high-value playing surfaces (fairways, collars, tee boxes, and putting greens). Annual bluegrass (Poa annua) is highly susceptible to L. maculicollis compared to a tolerant alternate host plant, creeping bentgrass (Agrostis stolonifera). This study explored whether defense signaling phytohormones contribute to A. stolonifera tolerance in response to L. maculicollis. Concentrations (ng/g) of salicylic acid (SA), jasmonic acid (JA), jasmonic-isoleucine (JA-Ile), 12-oxophytodienoic acid (OPDA), and abscisic acid (ABA) were extracted from turfgrass (leaf, stem, and root) tissue samples as mean larval age reached 2nd (L2), 3rd (L3), and 4th (L4) instar. Poa annua infested with L. maculicollis larvae (L2-4) possessed significantly greater SA in above-ground tissues than A. stolonifera. Levels of constitutive JA, JA-Ile, OPDA, and ABA were significantly higher within non-infested A. stolonifera aboveground tissues compared to P. annua. Inducible defense phytohormones may play a role in P. annua susceptibility to L. maculicollis but are unlikely to provide tolerance in A. stolonifera. Additional studies in turfgrass breeding, particularly focusing on cultivar selection for increased constitutive JA content, could provide a non-chemical alternative management strategy for L. maculicollis for turfgrass managers.
Collapse
Affiliation(s)
- Audrey Simard
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Megan Gendjar
- Department of Plant Soil and Microbial Science, Michigan State University, East Lansing, MI, USA
| | - Emily Merewitz
- Department of Plant Soil and Microbial Science, Michigan State University, East Lansing, MI, USA
| | - Benjamin A McGraw
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
- Department of Plant Science, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
29
|
Fuchs B, Helander M, Saikkonen K, Dobrev PI, Vankova R, Blande JD, Salminen JP, Luntamo N, Muola A. Plant metabolic responses to soil herbicide residues differ under herbivory in two woodland strawberry genotypes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174198. [PMID: 38914330 DOI: 10.1016/j.scitotenv.2024.174198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The use of glyphosate-based herbicides (GBHs) to control weeds has increased exponentially in recent decades, and their residues and degradation products have been found in soils across the globe. GBH residues in soil have been shown to affect plant physiology and specialised metabolite biosynthesis, which, in turn, may impact plant resistance to biotic stressors. In a greenhouse study, we investigated the interactive effects between soil GBH residues and herbivory on the performance, phytohormone concentrations, phenolic compound concentrations and volatile organic compound (VOC) emissions of two woodland strawberry (Fragaria vesca) genotypes, which were classified as herbivore resistant and herbivore susceptible. Plants were subjected to herbivory by strawberry leaf beetle (Galerucella tenella) larvae, and to GBH residues by growing in soil collected from a field site with GBH treatments twice a year over the past eight years. Soil GBH residues reduced the belowground biomass of the susceptible genotype and the aboveground biomass of both woodland strawberry genotypes. Herbivory increased the belowground biomass of the resistant genotype and the root-shoot ratio of both genotypes. At the metabolite level, herbivory induced the emission of several VOCs. Jasmonic acid, abscisic acid and auxin concentrations were induced by herbivory, in contrast to salicylic acid, which was only induced by herbivory in combination with soil GBH residues in the resistant genotype. The concentrations of phenolic compounds were higher in the resistant genotype compared to the susceptible genotype and were induced by soil GBH residues in the resistant genotype. Our results indicate that soil GBH residues can differentially affect plant performance, phytohormone concentrations and phenolic compound concentrations under herbivore attack, in a genotype-dependent manner. Soil GBH altered plant responses to herbivory, which may impact plant resistance traits and species interactions. With ongoing agrochemical pollution, we need to consider plant cultivars with better resistance to polluted soils while maintaining plant resilience under challenging environmental conditions.
Collapse
Affiliation(s)
- Benjamin Fuchs
- Biodiversity Unit, University of Turku, 20014 Turku, Finland.
| | - Marjo Helander
- Department of Biology, University of Turku, 20014 Turku, Finland
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, 20014 Turku, Finland
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojova 263, 16502 Prague, Czech Republic
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Niko Luntamo
- Natural Chemistry Research Group, Department of Chemistry, FI-20014, University of Turku, Finland
| | - Anne Muola
- Biodiversity Unit, University of Turku, 20014 Turku, Finland; Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
| |
Collapse
|
30
|
Wang A, Tang H, Sun J, Wang L, Rasmann S, Ruan W, Wei X. Entomopathogenic Nematodes-Killed Insect Cadavers in the Rhizosphere Activate Plant Direct and Indirect Defences Aboveground. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370758 DOI: 10.1111/pce.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Plants can perceive and respond to external stimuli by activating both direct and indirect defences against herbivores. Soil-dwelling entomopathogenic nematodes (EPNs), natural enemies of root-feeding herbivores, carry symbiotic bacteria that grow and reproduce once inside arthropod hosts. We hypothesized that the metabolites produced by EPN-infected insect cadavers could be perceived by plants, thereby activating plant defences systemically. We tested this hypothesis by adding three EPN-infected Galleria mellonella cadavers to maize plants and testing plant responses against a major maize pest (Spodoptera frugiperda) and one of its parasitoids (Trichogramma dendrolimi). We found that S. frugiperda females deposited fewer, and caterpillars fed less on maize plants growing near EPN-infected cadavers than on control plants. Accordingly, EPN-infected cadavers triggered the systemic accumulation of defence hormones (SA), genes (PR1), and enzymes (SOD, POD, and CAT) in maize leaves. Furthermore, four volatile organic compounds produced by plants exposed to EPN-infected cadavers deterred S. frugiperda caterpillars and female adults. However, these compounds were more attractive to T. dendrolimi parasitoids. Our study enhances the understanding of the intricate relationships within the above- and belowground ecosystems and provides crucial insights for advancing sustainable pest management strategies.
Collapse
Affiliation(s)
- Ailing Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hongbo Tang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jie Sun
- College of Life Sciences, Nankai University, Tianjin, China
| | - Lei Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Weibin Ruan
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xianqin Wei
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
31
|
Makhlouf L, El Fakhouri K, Kemal SA, Maafa I, Meftah Kadmiri I, El Bouhssini M. Potential of volatile organic compounds in the management of insect pests and diseases of food legumes: a comprehensive review. FRONTIERS IN PLANT SCIENCE 2024; 15:1430863. [PMID: 39430890 PMCID: PMC11486643 DOI: 10.3389/fpls.2024.1430863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/22/2024]
Abstract
Cool season legumes (Faba bean, chickpea, lentil, pea, and grass pea) are important protein harvests for food and nutrition security in many countries. They play key roles in sustainable cereal production through their ecological benefits. However, diseases and pests attack continue to have a substantial impact on crop yield and quality. Although growers used different control options to manage these biotic stresses such as pesticide application, cultural practices, and resistant varieties, there is a pressing need for the development of new, more cost-effective and environmentally friendly solution to help farmers in facing the existing environmental issues. Recently, there is a growing interest among researchers in exploiting Volatile Organic Compounds (VOCs) for the elaboration of disease and pest control strategies in food legumes and other crops. These compounds have important functions in ecological relationships occurring between plants and their surrounding environment, as well as plants and others species, such as pests and pathogens. Due to their unique properties, VOCs can be employed in improving management alternatives for food legume diseases and pests. In this assessment, we investigated the role of VOCs in plant-pest and plant-pathogen interactions and their present applications in pest and diseases control strategies. We emphasized the ecological importance of employing plant VOCs in legume farming and crop breeding. Additionally, we highlighted the potential of microbial VOCs in facilitating microbe-microbe, microbe-plant and microbe-plant-pest interactions, along with their role in food legume protection.
Collapse
Affiliation(s)
- Leila Makhlouf
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Seid Ahmed Kemal
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ilyas Maafa
- Laboratory of Entomology and Phytopathology, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
32
|
Huve MAP, Bittner N, Kunze R, Hilker M, Remus-Emsermann MNP, Paniagua Voirol LR, Lortzing V. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. PLANTA 2024; 260:112. [PMID: 39361039 PMCID: PMC11450040 DOI: 10.1007/s00425-024-04541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
MAIN CONCLUSION Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
Collapse
Affiliation(s)
- Maryse A P Huve
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Mitja N P Remus-Emsermann
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Luis R Paniagua Voirol
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
33
|
Arouisse B, Thoen MPM, Kruijer W, Kunst JF, Jongsma MA, Keurentjes JJB, Kooke R, de Vos RCH, Mumm R, van Eeuwijk FA, Dicke M, Kloth KJ. Bivariate GWA mapping reveals associations between aliphatic glucosinolates and plant responses to thrips and heat stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:674-686. [PMID: 39316617 DOI: 10.1111/tpj.17009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
Although plants harbor a huge phytochemical diversity, only a fraction of plant metabolites is functionally characterized. In this work, we aimed to identify the genetic basis of metabolite functions during harsh environmental conditions in Arabidopsis thaliana. With machine learning algorithms we predicted stress-specific metabolomes for 23 (a)biotic stress phenotypes of 300 natural Arabidopsis accessions. The prediction models identified several aliphatic glucosinolates (GLSs) and their breakdown products to be implicated in responses to heat stress in siliques and herbivory by Western flower thrips, Frankliniella occidentalis. Bivariate GWA mapping of the metabolome predictions and their respective (a)biotic stress phenotype revealed genetic associations with MAM, AOP, and GS-OH, all three involved in aliphatic GSL biosynthesis. We, therefore, investigated thrips herbivory on AOP, MAM, and GS-OH loss-of-function and/or overexpression lines. Arabidopsis accessions with a combination of MAM2 and AOP3, leading to 3-hydroxypropyl dominance, suffered less from thrips feeding damage. The requirement of MAM2 for this effect could, however, not be confirmed with an introgression line of ecotypes Cvi and Ler, most likely due to other, unknown susceptibility factors in the Ler background. However, AOP2 and GS-OH, adding alkenyl or hydroxy-butenyl groups, respectively, did not have major effects on thrips feeding. Overall, this study illustrates the complex implications of aliphatic GSL diversity in plant responses to heat stress and a cell-content-feeding herbivore.
Collapse
Affiliation(s)
- Bader Arouisse
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Manus P M Thoen
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
- Enza Seeds, Enkhuizen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Jonathan F Kunst
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Maarten A Jongsma
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Rik Kooke
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
- Laboratory of Genetics, Wageningen University and Research, Wageningen, the Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen Plant Research, Wageningen University and Research, Wageningen, the Netherlands
| | - Fred A van Eeuwijk
- Biometris, Wageningen University and Research, Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| | - Karen J Kloth
- Laboratory of Entomology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
34
|
Rasool SG, Abdullah M, Li D, Yanping L. Relationship between secondary metabolites and insect loads in cabbage with different leaf shapes and positions. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1620-1632. [PMID: 38923178 DOI: 10.1002/pca.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Secondary metabolites in plants play a crucial role in defense mechanisms against insects, pests, and pathogens. These metabolites exhibit varying distributions within and among plant parts under different biotic and abiotic conditions. Understanding the intricate relationships between secondary metabolites and insect populations can be helpful for elucidating plant defense mechanisms and enhancing agricultural managing efficiencies. OBJECTIVE To investigate the influence of the glucosinolate profile in the leaves of three cabbage (Brassica oleracea var. capitata L.) varieties on insect loads. METHODS Glucosinolate profiles across different leaf positions (such as bottom, middle, and center) and leaf shapes (such as curly and non-curly leaf) of three cabbage varieties (Xiagan [XGA], Xiaguang [XGU], and Qiangxia [QIX]) were analyzed by using high-performance liquid chromatography-mass spectrometry (LC-MS). The insect loads were recorded by visually inspecting the upper and lower layers of each target leaf. RESULTS Increasing concentrations of four glucosinolates, namely, glucoiberin, progoitrin, glucoraphanin, and glucobrassicin, were positively related to insect loads. While increasing concentrations of the other four glucosinolates, such as neoglucobrassicin, 4-methoxyglucobrassicin, sinigrin, and gluconapin, were negatively related to insect loads. Furthermore, both glucosinolate synthesis and insect loads were significantly higher in the curly-shaped and middle-position leaves than in the non-curly-shaped and bottom- and central-position leaves across the cabbage varieties. CONCLUSION Differences in glucosinolate profiles across leaf positions and shapes strongly influenced the insect loads of the three Brassica varieties. This link may further extend our understanding of the real defense power of a particular variety against herbivore damage.
Collapse
Affiliation(s)
- Samreen Ghulam Rasool
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Muhammad Abdullah
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| | - Dezhi Li
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai, China
| | - Liu Yanping
- School of Ecological and Environmental Science, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
He T, Chen L, Wu Y, Wang J, Wu Q, Sun J, Ding C, Zhou T, Chen L, Jin A, Li Y, Zhu Q. Combined Metabolome and Transcriptome Analyses of Maize Leaves Reveal Global Effect of Biochar on Mechanisms Involved in Anti-Herbivory to Spodoptera frugiperda. Metabolites 2024; 14:498. [PMID: 39330505 PMCID: PMC11433984 DOI: 10.3390/metabo14090498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Fall armyworm (FAW, Spodoptera frugiperda) has now spread to more than 26 Chinese provinces. The government is working with farmers and researchers to find ways to prevent and control this pest. The use of biochar is one of the economic and environmentally friendly strategies to increase plant growth and improve pest resistance. We tested four v/v combinations of bamboo charcoal with coconut bran [BC1 (10:1), BC2(30:1), BC3(50:1)] against a control (CK) in maize. We found that plant height, stem thickness, fresh weight and chlorophyll content were significantly higher in BC2, in addition to the lowest FAW survival %. We then compared the metabolome and transcriptome profiles of BC2 and CK maize plants under FAW herbivory. Our results show that the levels of flavonoids, amino acids and derivatives, nucleotides and derivatives and most phenolic acids decreased, while terpenoids, organic acids, lipids and defense-related hormones increased in BC-grown maize leaves. Transcriptome sequencing revealed consistent expression profiles of genes enriched in these pathways. We also observed the increased expression of genes related to abscisic acid, jasmonic acid, auxin and MAPK signaling. Based on these observations, we discussed the possible pathways involved in maize against FAW herbivory. We conclude that bamboo charcoal induces anti-herbivory responses in maize leaves.
Collapse
Affiliation(s)
- Tianjun He
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Lin Chen
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Yingjun Wu
- Ecological Forestry Development Center of Suichang County, Lishui 323300, China;
| | - Jinchao Wang
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Quancong Wu
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Jiahao Sun
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Chaohong Ding
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Tianxing Zhou
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Limin Chen
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
- Lishui Institute of Agricultural and Forestry Sciences, Lishui 323000, China; (L.C.); (Q.W.); (J.S.); (C.D.); (T.Z.)
| | - Aiwu Jin
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| | - Yang Li
- Soil Fertilizer and Plant Protection Station of Lishui City, Lishui 323000, China
| | - Qianggen Zhu
- College of Ecology, Lishui University, Lishui 323000, China; (T.H.); (J.W.); (L.C.); (A.J.)
| |
Collapse
|
36
|
Wang Z, Qu L, Fan Z, Hou L, Hu J, Wang L. Dynamic Metabolic Responses of Resistant and Susceptible Poplar Clones Induced by Hyphantria cunea Feeding. BIOLOGY 2024; 13:723. [PMID: 39336150 PMCID: PMC11428749 DOI: 10.3390/biology13090723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
Poplar trees are significant for both economic and ecological purposes, and the fall webworm (Hyphantria cunea Drury) poses a major threat to their plantation in China. The preliminary resistance assessment in the previous research indicated that there were differences in resistance to the insect among these varieties, with '2KEN8' being more resistant and 'Nankang' being more susceptible. The present study analyzed the dynamic changes in the defensive enzymes and metabolic profiles of '2KEN8' and 'Nankang' at 24 hours post-infestation (hpi), 48 hpi, and 96 hpi. The results demonstrated that at the same time points, compared to susceptible 'Nankang', the leaf consumption by H. cunea in '2KEN8' was smaller, and the larval weight gain was slower, exhibiting clear resistance to the insect. Biochemical analysis revealed that the increased activity of the defensive enzymes in '2KEN8' triggered by the feeding of H. cunea was significantly higher than that of 'Nankang'. Metabolomics analysis indicated that '2KEN8' initiated an earlier and more intense reprogramming of the metabolic profile post-infestation. In the early stages of infestation, the differential metabolites induced in '2KEN8' primarily included phenolic compounds, flavonoids, and unsaturated fatty acids, which are related to the biosynthesis pathways of phenylpropanoids, flavonoids, unsaturated fatty acids, and jasmonates. The present study is helpful for identifying the metabolic biomarkers for inductive resistance to H. cunea and lays a foundation for the further elucidation of the chemical resistance mechanism of poplar trees against this insect.
Collapse
Affiliation(s)
- Zheshu Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Liangjian Qu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Zhibin Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Luxuan Hou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lijuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
37
|
Chi Y, Zhang H, Chen S, Cheng Y, Zhang X, Jia D, Chen Q, Chen H, Wei T. Leafhopper salivary carboxylesterase suppresses JA-Ile synthesis to facilitate initial arbovirus transmission in rice phloem. PLANT COMMUNICATIONS 2024; 5:100939. [PMID: 38725245 PMCID: PMC11412928 DOI: 10.1016/j.xplc.2024.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/09/2024]
Abstract
Plant jasmonoyl-L-isoleucine (JA-Ile) is a major defense signal against insect feeding, but whether or how insect salivary effectors suppress JA-Ile synthesis and thus facilitate viral transmission in the plant phloem remains elusive. Insect carboxylesterases (CarEs) are the third major family of detoxification enzymes. Here, we identify a new leafhopper CarE, CarE10, that is specifically expressed in salivary glands and is secreted into the rice phloem as a saliva component. Leafhopper CarE10 directly binds to rice jasmonate resistant 1 (JAR1) and promotes its degradation by the proteasome system. Moreover, the direct association of CarE10 with JAR1 clearly impairs JAR1 enzyme activity for conversion of JA to JA-Ile in an in vitro JA-Ile synthesis system. A devastating rice reovirus activates and promotes the co-secretion of virions and CarE10 via virus-induced vesicles into the saliva-storing salivary cavities of the leafhopper vector and ultimately into the rice phloem to establish initial infection. Furthermore, a virus-mediated increase in CarE10 secretion or overexpression of CarE10 in transgenic rice plants causes reduced levels of JAR1 and thus suppresses JA-Ile synthesis, promoting host attractiveness to insect vectors and facilitating initial viral transmission. Our findings provide insight into how the insect salivary protein CarE10 suppresses host JA-Ile synthesis to promote initial virus transmission in the rice phloem.
Collapse
Affiliation(s)
- Yunhua Chi
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongxiang Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Siyu Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yu Cheng
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaofeng Zhang
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Dongsheng Jia
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qian Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Hongyan Chen
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Taiyun Wei
- Vector-borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
38
|
Scott JL, Gupta RC, Aqil F, Jeyabalan J, Schultz DJ. Exosomal Delivery Enhances the Antiproliferative Effects of Acid-Hydrolyzed Apiaceae Spice Extracts in Breast Cancer Cells. Foods 2024; 13:2811. [PMID: 39272578 PMCID: PMC11395330 DOI: 10.3390/foods13172811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Breast cancer remains a leading cause of death worldwide. The Apiaceae plant family includes many culinary spices that have been shown to have medicinal properties. Many phytochemicals exhibit potent bioactivities but often suffer from poor uptake and oral bioavailability. Bovine milk and colostrum exosomes are a compelling drug delivery platform that could address this issue; these natural nanoparticles can be loaded with hydrophilic and lipophilic small molecules and biologics, resulting in lower doses needed to inhibit cancer growth. Ethanolic extracts of eight Apiaceae spices were examined for phytochemical content and antiproliferative potential. Acid hydrolysis (AH) was employed to remove glycosides, asses its impacts on extract efficacy, and evaluate its effects on exosome loading and subsequent formulation efficacy. Antiproliferative activity was assessed through MTT assays on T-47D, MDA-MB-231, and BT-474 breast cancer cells; all extracts exhibited broad antiproliferative activity. AH enhanced the bioactivity of cumin, caraway, and fennel in T-47D cells. Celery, cumin, anise, and ajwain showed the highest activity and were assayed in exosomal formulations, which resulted in reduced doses required to inhibit cellular proliferation for all extracts except AH-cumin. Apiaceae spice extracts demonstrated antiproliferative activities that can be improved with AH and further enhanced with exosomal delivery.
Collapse
Affiliation(s)
- Jared L Scott
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Ramesh C Gupta
- Brown Cancer Center and Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Farrukh Aqil
- Brown Cancer Center and Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | - David J Schultz
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
39
|
Prajapati VK, Vijayan V, Vadassery J. Secret Weapon of Insects: The Oral Secretion Cocktail and Its Modulation of Host Immunity. PLANT & CELL PHYSIOLOGY 2024; 65:1213-1223. [PMID: 38877965 DOI: 10.1093/pcp/pcae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 09/04/2024]
Abstract
Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.
Collapse
Affiliation(s)
| | - Vishakh Vijayan
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | |
Collapse
|
40
|
Liu XY, Cai XY, Wu HJ, Wan Y, Wei SF, Xu HJ. Salivary proteins NlSP5 and NlSP7 are required for optimal feeding and fitness of the brown planthopper, Nilaparvata lugens. PEST MANAGEMENT SCIENCE 2024; 80:4297-4305. [PMID: 38629775 DOI: 10.1002/ps.8134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Saliva has a crucial role in determining the compatibility between piercing-sucking insects and their hosts. The brown planthopper (BPH) Nilaparvata lugens, a notorious pest of rice in East and Southeast Asia, secretes gelling and watery saliva when feeding on rice sap. Nlsalivap-5 (NlSP5) and Nlsalivap-7 (NlSP7) were identified as potential planthopper-specific gelling saliva components, but their biological functions remain unknown. RESULTS Here, we showed by transcriptomic analyses that NlSP5 and NlSP7 were biasedly expressed in the salivary glands of BPHs. Using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated genome-editing system, we constructed NlSP5 and NlSP7 homozygous mutants (NlSP5-/- and NlSP7-/-). Electrical penetration graph assay showed that NlSP5-/- and NlSP7-/- mutants exhibited abnormal probing and feeding behaviors. Bioassays revealed that the loss-of-function of NlSP5 and NlSP7 significantly reduced the fitness of BPHs, with extended developmental duration, shortened lifespan, reduced weight, and impaired fecundity and hatching rates. CONCLUSION These findings deepen our understanding of the BPH-host interaction and may provide potential targets for the management of rice planthoppers. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Yang Liu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xin-Yu Cai
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Jie Wu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Wan
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Sheng-Fei Wei
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MBPP, Fathi F, Souto EB. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol 2024; 55:2753-2766. [PMID: 38888693 PMCID: PMC11405619 DOI: 10.1007/s42770-024-01410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
The current burden associated to multidrug resistance, and the emerging superbugs, result in a decreased and even loss of antibiotic efficacy, which poses significant challenges in the treatment of infectious diseases. This situation has created a high demand for the discovery of novel antibiotics that are both effective and safe. However, while antibiotics play a crucial role in preventing and treating diseases, they are also associated with adverse effects. The emergence of multidrug-resistant and the extensive appearance of drug-resistant microorganisms, has become one of the major hurdles in healthcare. Addressing this problem will require the development of at least 20 new antibiotics by 2060. However, the process of designing new antibiotics is time-consuming. To overcome the spread of drug-resistant microbes and infections, constant evaluation of innovative methods and new molecules is essential. Research is actively exploring alternative strategies, such as combination therapies, new drug delivery systems, and the repurposing of existing drugs. In addition, advancements in genomic and proteomic technologies are aiding in the identification of potential new drug targets and the discovery of new antibiotic compounds. In this review, we explore new sources of natural antibiotics from plants, algae other sources, and propose innovative bioinspired delivery systems for their use as an approach to promoting responsible antibiotic use and mitigate the spread of drug-resistant microbes and infections.
Collapse
Affiliation(s)
- Beatriz N Guedes
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - Karolline Krambeck
- Health Sciences School, Guarda Polytechnic Institute, Rua da Cadeia, Guarda, 6300-035, Portugal
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, Rome, 00178, Italy
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, Napoli, 80131, Italy
| | - M Beatriz P P Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal
| | - Faezeh Fathi
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 280, Porto, 4050-313, Portugal.
| | - Eliana B Souto
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.
| |
Collapse
|
42
|
Rasool S, Jensen B, Roitsch TG, Meyling NV. Enzyme regulation patterns in fungal inoculated wheat may reflect resistance and tolerance towards an insect herbivore. JOURNAL OF PLANT PHYSIOLOGY 2024; 300:154298. [PMID: 38924905 DOI: 10.1016/j.jplph.2024.154298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Seed inoculation with entomopathogenic fungi (EPF) causes plant-mediated effects against arthropod herbivores, but the responses vary among EPF isolates. We used a wheat model system with three isolates representing Beauveria bassiana and Metarhizium spp. causing either negative or positive effects against the aphid Rhopalosiphum padi. Activities of six carbohydrate enzymes increased in plants showing biomass build-up after EPF inoculations. However, only aldolase activity showed positive correlation with R. padi numbers. Plants inoculated with M. robertsii hosted fewest aphids and showed increased activity of superoxide dismutase, implying a defense strategy of resistance towards herbivores. In M. brunneum-inoculated plants, hosting most R. padi, activities of catalase and glutathione reductase were increased suggesting enhanced detoxification responses towards aphids. However, M. brunneum simultaneously increased plant growth indicating that this isolate may cause the plant to tolerate herbivory. EPF seed inoculants may therefore mediate either tolerance or resistance towards biotic stress in plants in an isolate-dependent manner.
Collapse
Affiliation(s)
- Shumaila Rasool
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.
| | - Birgit Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| | - Thomas G Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark; Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Nicolai V Meyling
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
43
|
Huang J, Zaynab M, Sharif Y, Khan J, Al-Yahyai R, Sadder M, Ali M, Alarab SR, Li S. Tannins as antimicrobial agents: Understanding toxic effects on pathogens. Toxicon 2024; 247:107812. [PMID: 38908527 DOI: 10.1016/j.toxicon.2024.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Accepted: 06/16/2024] [Indexed: 06/24/2024]
Abstract
"Tannins" are compounds that belong to a group of secondary metabolites found in plants. They have a polyphenolic nature and exhibit active actions as first line defenses against invading pathogens. Several studies have demonstrated the multiple activities of tannins, highlighting their effectiveness as broad-spectrum antimicrobial agents. Tannins have reported as antibacterial, antifungal, and antiviral compounds by preventing enzymatic activities and inhibiting the synthesis of nucleic acids. Additionally, tannins primarily strengthen the plant cell wall, making it almost impenetrable to harmful pathogens. Most tannins are synthesized via the phenylpropanoid pathway to become secondary metabolites. Increased uptake of tannins has the potential to provide permanent immunity to subsequent infections by strengthening cell walls and producing antimicrobial compounds. Tannins also demonstrate a synergistic response with other defense-related molecules, such as phytoalexins and pathogenesis-related proteins, including antimicrobial peptides. Studying the mechanisms mediated by tannins on pathogen behaviors would be beneficial in stimulating plant defense against pathogens. This understanding could help explain the occurrence of diseases and outbreaks and enable potential mitigation in both natural and agricultural ecosystems.
Collapse
Affiliation(s)
- Jianzi Huang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Madiha Zaynab
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Yasir Sharif
- College of Plant Protection, Fujian Agriculture and Forestry University, Fujian, China
| | - Jallat Khan
- Institute of Chemistry Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan, Pakistan
| | - Rashid Al-Yahyai
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34, Al-Khod 123, Muscat, Oman
| | - Monther Sadder
- School of Agriculture University of Jordan, Amman, 11942, Jordan
| | - Munawar Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saber R Alarab
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Sciences, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
44
|
Miyashita R, Ugajin A, Oda H, Ozaki K. Identification and in vivo functional analysis of furanocoumarin-responsive cytochrome P450s in a Rutaceae-feeding Papilio butterfly. J Exp Biol 2024; 227:jeb247791. [PMID: 39054940 DOI: 10.1242/jeb.247791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
The Order Lepidoptera contains nearly 160,000 described species and most of them are specialist herbivores that use restricted plant species as hosts. Speciation that originated from host shift is one of the important factors for the diversification of Lepidoptera. Because plants prepare secondary metabolites for defense against herbivores, with varying profiles of the components among different plant taxa, the specialist herbivores need to be adapted to the toxic substances unique to their host plants. Swallowtail butterflies of the genus Papilio consist of over 200 species. Approximately 80% of them utilize Rutaceae plants, and among the remaining species, a specific subgroup uses phylogenetically distant Apiaceae plants as larval hosts. Rutaceae and Apiaceae commonly contain toxic secondary metabolites, furanocoumarins, and molecular phylogenetic studies support the concept that Apiaceae feeders were derived from Rutaceae feeders. Molecular mechanisms underlying furanocoumarin tolerance in Papilio butterflies have been investigated almost exclusively in an Apiaceae feeder by an in vitro assay. In contrast, there is little information regarding the Rutaceae feeders. Here, we focused on a Rutaceae feeder, Papilio xuthus, and identified two furanocoumarin-responsive cytochrome P450-6B (CYP6B) genes, of which one was an ortholog of a furanocoumarin-metabolizing enzyme identified in the Apiaceae-feeding Papilio while the other was previously unreported. We further conducted in vivo functional analysis using the CRISPR/Cas9 system, revealing a contribution of these CYP6Bs to furanocoumarin tolerance of P. xuthus larvae. Our findings suggest that co-option of furanocoumarin-metabolizing CYP6B enzymes at least partially contributed to the host shift from Rutaceae to Apiaceae in Papilio butterflies.
Collapse
Affiliation(s)
- Rei Miyashita
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Atsushi Ugajin
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Hiroki Oda
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043, Japan
| | - Katsuhisa Ozaki
- JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| |
Collapse
|
45
|
Guzmán LF, Tirado B, Cruz-Cárdenas CI, Rojas-Anaya E, Aragón-Magadán MA. De Novo Transcriptome Assembly of Cedar ( Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance. Curr Issues Mol Biol 2024; 46:8794-8806. [PMID: 39194737 DOI: 10.3390/cimb46080520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified-165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance.
Collapse
Affiliation(s)
- Luis Felipe Guzmán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Bibiana Tirado
- Centro Universitario de los Altos, University of Guadalajara, Tepatitlán 47600, Jalisco, Mexico
| | - Carlos Iván Cruz-Cárdenas
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Edith Rojas-Anaya
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| | - Marco Aurelio Aragón-Magadán
- National Genetic Resources Center, National Agricultural, Forestry and Livestock Researches Institute, Tepatitlán 47600, Jalisco, Mexico
| |
Collapse
|
46
|
Rosa-Diaz I, Rowe J, Cayuela-Lopez A, Arbona V, Díaz I, Jones AM. Spider mite herbivory induces an ABA-driven stomatal defense. PLANT PHYSIOLOGY 2024; 195:2970-2984. [PMID: 38669227 PMCID: PMC11288753 DOI: 10.1093/plphys/kiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Arthropod herbivory poses a serious threat to crop yield, prompting plants to employ intricate defense mechanisms against pest feeding. The generalist pest 2-spotted spider mite (Tetranychus urticae) inflicts rapid damage and remains challenging due to its broad target range. In this study, we explored the Arabidopsis (Arabidopsis thaliana) response to T. urticae infestation, revealing the induction of abscisic acid (ABA), a hormone typically associated with abiotic stress adaptation, and stomatal closure during water stress. Leveraging a Forster resonance energy transfer (FRET)-based ABA biosensor (nlsABACUS2-400n), we observed elevated ABA levels in various leaf cell types postmite feeding. While ABA's role in pest resistance or susceptibility has been debated, an ABA-deficient mutant exhibited increased mite infestation alongside intact canonical biotic stress signaling, indicating an independent function of ABA in mite defense. We established that ABA-triggered stomatal closure effectively hinders mite feeding and minimizes leaf cell damage through genetic and pharmacological interventions targeting ABA levels, ABA signaling, stomatal aperture, and density. This study underscores the critical interplay between biotic and abiotic stresses in plants, highlighting how the vulnerability to mite infestation arising from open stomata, crucial for transpiration and photosynthesis, reinforces the intricate relationship between these stress types.
Collapse
Affiliation(s)
- Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - James Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
| | - Ana Cayuela-Lopez
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | | |
Collapse
|
47
|
Chacón-Fuentes M, Martínez-Cisterna D, Lizama M, Asencio-Cancino V, Matamala I, Bardehle L. A Countermeasure Strategy against Peramine Developed by Chilesia rudis in the Endophyte-Ryegrass-Herbivore Model. J Fungi (Basel) 2024; 10:512. [PMID: 39194838 DOI: 10.3390/jof10080512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Exploitation of the symbiotic relationship between endophytic fungi and ryegrass is a crucial technique for reducing the incidence of insect pests. This is primarily due to the production of alkaloids, such as peramine, by the fungi. This alkaloid has been reported as both a deterrent and toxic to a variety of insects. However, insects have developed various strategies to counteract plant defenses. One of the most studied methods is their ability to sequester toxic compounds from plants. In this study, we examined the feeding preferences and adaptation to peramine in Chilesia rudis, a native Chilean larva. Using a no-choice assay, we assessed larval feeding preferences and mass gain on seven experimental lines and two commercial cultivars of endophyte-infected and non-infected ryegrass. Pupal development time and adult performance were evaluated post-assay. Additionally, we measured peramine content in larval carcasses, feces, and ryegrass leaves. Jumbo was the most preferred cultivar with 32 mm2 of leaf tissues consumed. The longest pupal development time was observed in L161 and ALTO AR1, both at 28 days. Wing length in adults was greatest in the Jumbo and L163 cultivars, measuring 1.25 cm and 1.32 cm, respectively. Peramine concentrations were detected in the bodies of C. rudis. In conclusion, this larva can adapt to endophyte-infected ryegrass and develop counter-adaptation mechanisms to mitigate the effects of peramine.
Collapse
Affiliation(s)
- Manuel Chacón-Fuentes
- Agriaquaculture Nutritional Genomic Center, CGNA, Las Heras 350, Temuco 4780000, Chile
| | - Daniel Martínez-Cisterna
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, s/n, P.O. Box 58-D, Temuco 4780000, Chile
| | - Marcelo Lizama
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Escuela de Universidad de Valladolid Doctorado (ESDUVa), Departamento Producción Vegetal y Recursos Forestales, Escuela Técnica Superior de Ingenierías Agrarias, Campus "La Yutera", Avda. de Madrid, 50, 34004 Palencia, Spain
| | - Valeria Asencio-Cancino
- Carrera de Ingenieria en Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Ignacio Matamala
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Leonardo Bardehle
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
48
|
Shelake RM, Wagh SG, Patil AM, Červený J, Waghunde RR, Kim JY. Heat Stress and Plant-Biotic Interactions: Advances and Perspectives. PLANTS (BASEL, SWITZERLAND) 2024; 13:2022. [PMID: 39124140 PMCID: PMC11313874 DOI: 10.3390/plants13152022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Climate change presents numerous challenges for agriculture, including frequent events of plant abiotic stresses such as elevated temperatures that lead to heat stress (HS). As the primary driving factor of climate change, HS threatens global food security and biodiversity. In recent years, HS events have negatively impacted plant physiology, reducing plant's ability to maintain disease resistance and resulting in lower crop yields. Plants must adapt their priorities toward defense mechanisms to tolerate stress in challenging environments. Furthermore, selective breeding and long-term domestication for higher yields have made crop varieties vulnerable to multiple stressors, making them more susceptible to frequent HS events. Studies on climate change predict that concurrent HS and biotic stresses will become more frequent and severe in the future, potentially occurring simultaneously or sequentially. While most studies have focused on singular stress effects on plant systems to examine how plants respond to specific stresses, the simultaneous occurrence of HS and biotic stresses pose a growing threat to agricultural productivity. Few studies have explored the interactions between HS and plant-biotic interactions. Here, we aim to shed light on the physiological and molecular effects of HS and biotic factor interactions (bacteria, fungi, oomycetes, nematodes, insect pests, pollinators, weedy species, and parasitic plants), as well as their combined impact on crop growth and yields. We also examine recent advances in designing and developing various strategies to address multi-stress scenarios related to HS and biotic factors.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Sopan Ganpatrao Wagh
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Akshay Milind Patil
- Cotton Improvement Project, Mahatma Phule Krishi Vidyapeeth (MPKV), Rahuri 413722, India;
| | - Jan Červený
- Global Change Research Institute, Czech Academy of Sciences, Brno 60300, Czech Republic;
| | - Rajesh Ramdas Waghunde
- Department of Plant Pathology, College of Agriculture, Navsari Agricultural University, Bharuch 392012, India;
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
- Nulla Bio Inc., Jinju 52828, Republic of Korea
| |
Collapse
|
49
|
Cortez AO, Yoshinaga N, Mori N, Hwang SY. Plant growth-promoting rhizobacteria modulate induced corn defense against Spodoptera litura (Lepidoptera: Noctuidae). Biosci Biotechnol Biochem 2024; 88:872-884. [PMID: 38782714 DOI: 10.1093/bbb/zbae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Common cutworm, Spodoptera litura is an important pest of corn causing significant crop yield loss. Synthetic insecticides have mostly been used to combat this pest, raising human and environmental health concerns. Plant growth-promoting rhizobacteria (PGPR) could compensate for or augment the harmful effects of agrochemicals. Herein, we aimed to assess whether PGPR-induced defenses in corn plants impact the host-plant selection behavior of S. litura. Headspace volatile organic compounds were analyzed using gas chromatography-mass spectrometry. Larvae fed inoculated corn exhibited lower weights and relative growth rate than noninoculated plants. Under choice experiments, PGPR-treated plants significantly reduced percentage leaf damage area and oviposition rate compared to untreated plants. Volatile organic compound ratio emission varied significantly between control and PGPR treatments, which, in part, explains feeding and oviposition deterrence in PGPR-treated plants. The results demonstrate that PGPR inoculation can enhance corn resistance to S. litura, making it a promising candidate for crop protection strategies.
Collapse
Affiliation(s)
- Amado O Cortez
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
- Department of Crop Science, College of Agriculture, Isabela State University, Echague, Isabela, the Philippines
| | - Naoko Yoshinaga
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Naoki Mori
- Chemical Ecology Laboratory, Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shaw-Yhi Hwang
- Insect-Plant Interaction Laboratory, Department of Entomology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
50
|
Vasquez A, Belsky J, Khanal N, Puri H, Balakrishnan D, Joshi NK, Louis J, Studebaker G, Kariyat R. Melanaphis sacchari/sorghi complex: current status, challenges and integrated strategies for managing the invasive sap-feeding insect pest of sorghum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39001705 DOI: 10.1002/ps.8291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Melanaphis sacchari (Zehntner;Hemiptera: Aphididae), sugarcane aphid (SCA), is an invasive phloem-feeder found worldwide with a wide host range of economically important plants including sorghum and sugarcane. Given its high reproductive capacity and ability to rapidly spread over long distances, SCA presents challenges for effective control, leading to substantial economic losses. Recent studies have identified two multiloci SCA genotypes specialized in feeding on sugarcane (MLL-D) and sorghum (MLL-F) in the USA, which raises concerns as the USA is the second largest sorghum-producing country. This has encouraged research towards identifying these two biotypes where some research has stated them as two species; MLL-D clade to be M. sacchari and MLL-F clade to be M. sorghi Theobald (Hemiptera: Aphididae), sorghum aphid (SA). This review aims at compiling research progress that has been made on understanding the SCA/SA species complex. Furthermore, this review also highlights a wide range of management strategies against SCA/SA that includes both biological and chemical methods. In addition, the review emphasizes studies examining host plant resistance to understand and evaluate the role of R-genes and phytohormones such as jasmonic acid, salicylic acid and ethylene against SCA. Beside this, plant volatiles and other secondary metabolites such as flavonoids, terpenes and phytanes are also explored as potential control agents. Being an invasive pest, a single management tactic is inadequate to control SCA population and hence, integrated pest management practices incorporating physical, cultural and biological control methods should be implemented with exclusive chemical control as a last resort, which this review examines in detail. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alejandro Vasquez
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Joseph Belsky
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Neetu Khanal
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Heena Puri
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Neelendra K Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Glenn Studebaker
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|