Luo R, Yang K, Xiao W. Plant deubiquitinases: from structure and activity to biological functions.
PLANT CELL REPORTS 2023;
42:469-486. [PMID:
36567335 DOI:
10.1007/s00299-022-02962-y]
[Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
This article attempts to provide comprehensive review of plant deubiquitinases, paying special attention to recent advances in their biochemical activities and biological functions. Proteins in eukaryotes are subjected to post-translational modifications, in which ubiquitination is regarded as a reversible process. Cellular deubiquitinases (DUBs) are a key component of the ubiquitin (Ub)-proteasome system responsible for cellular protein homeostasis. DUBs recycle Ub by hydrolyzing poly-Ub chains on target proteins, and maintain a balance of the cellular Ub pool. In addition, some DUBs prefer to cleave poly-Ub chains not linked through the conventional K48 residue, which often alter the substrate activity instead of its stability. In plants, all seven known DUB subfamilies have been identified, namely Ub-binding protease/Ub-specific protease (UBP/USP), Ub C-terminal hydrolase (UCH), Machado-Joseph domain-containing protease (MJD), ovarian-tumor domain-containing protease (OTU), zinc finger with UFM1-specific peptidase domain protease (ZUFSP), motif interacting with Ub-containing novel DUB family (MINDY), and JAB1/MPN/MOV34 protease (JAMM). This review focuses on recent advances in the structure, activity, and biological functions of plant DUBs, particularly in the model plant Arabidopsis.
Collapse