1
|
Red Light Enhances Plant Adaptation to Spaceflight and Mars g-Levels. Life (Basel) 2022; 12:life12101484. [PMID: 36294919 PMCID: PMC9605285 DOI: 10.3390/life12101484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how plants respond and adapt to extraterrestrial conditions is essential for space exploration initiatives. Deleterious effects of the space environment on plant development have been reported, such as the unbalance of cell growth and proliferation in the root meristem, or gene expression reprogramming. However, plants are capable of surviving and completing the seed-to-seed life cycle under microgravity. A key research challenge is to identify environmental cues, such as light, which could compensate the negative effects of microgravity. Understanding the crosstalk between light and gravity sensing in space was the major objective of the NASA-ESA Seedling Growth series of spaceflight experiments (2013–2018). Different g-levels were used, with special attention to micro-g, Mars-g, and Earth-g. In spaceflight seedlings illuminated for 4 days with a white light photoperiod and then photostimulated with red light for 2 days, transcriptomic studies showed, first, that red light partially reverted the gene reprogramming induced by microgravity, and that the combination of microgravity and photoactivation was not recognized by seedlings as stressful. Two mutant lines of the nucleolar protein nucleolin exhibited differential requirements in response to red light photoactivation. This observation opens the way to directed-mutagenesis strategies in crop design to be used in space colonization. Further transcriptomic studies at different g-levels showed elevated plastid and mitochondrial genome expression in microgravity, associated with disturbed nucleus–organelle communication, and the upregulation of genes encoding auxin and cytokinin hormonal pathways. At the Mars g-level, genes of hormone pathways related to stress response were activated, together with some transcription factors specifically related to acclimation, suggesting that seedlings grown in partial-g are able to acclimate by modulating genome expression in routes related to space-environment-associated stress.
Collapse
|
2
|
Morales-Quintana L, Ramos P. A Talk between Flavonoids and Hormones to Reorient the Growth of Gymnosperms. Int J Mol Sci 2021; 22:ijms222312630. [PMID: 34884435 PMCID: PMC8657560 DOI: 10.3390/ijms222312630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| |
Collapse
|
3
|
Pozhvanov G, Sharova E, Medvedev S. Microgravity modelling by two-axial clinorotation leads to scattered organisation of cytoskeleton in Arabidopsis seedlings. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1062-1073. [PMID: 34372965 DOI: 10.1071/fp20225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Proper plant development in a closed ecosystem under weightlessness will be crucial for the success of future space missions. To supplement spaceflight experiments, such conditions of microgravity are modelled on Earth using a two-axial (2A) clinorotation, and in several fundamental studies resulted in the data on proteome and metabolome adjustments, embryo development, cell cycle regulation, etc. Nevertheless, our understanding of the cytoskeleton responses to the microgravity is still limited. In the present work, we study the adjustment of actin microfilaments (MFs) and microtubules (MTs) in Arabidopsis thaliana (L.) Heynh. seedlings under 2A clinorotation. Modelled microgravity resulted in not only the alteration of seedlings phenotype, but also a transient increase of the hydrogen peroxide level and in the cytoskeleton adjustment. Using GFP-fABD2 and Lifeact-Venus transgenic lines, we demonstrate that MFs became 'scattered' in elongating root and hypocotyl cells under 2A clinorotation. In addition, in GFP-MAP4 and GFP-TUA6 lines the tubulin cytoskeleton had higher fractions of transverse MTs under 2A clinorotation. Remarkably, the first static gravistimulation of continuously clinorotated seedlings reverted MF organisation to a longitudinal one in roots within 30 min. Our data suggest that the 'scattered' organisation of MFs in microgravity can serve as a good basis for the rapid cytoskeleton conversion to a 'longitudinal' structure under the gravity force.
Collapse
Affiliation(s)
- Gregory Pozhvanov
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation; and Laboratory of Analytical Phytochemistry, Komarov Botanical Institute, Russian Academy of Sciences, Professora Popova st. 2, St. Petersburg 197376, Russian Federation; and Herzen State Pedagogical University of Russia, 48 Moika Emb., St. Petersburg 191186, Russian Federation; and Corresponding authors. Emails: ;
| | - Elena Sharova
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Faculty of Biology, St. Petersburg State University, Universitetskaya emb. 7-9, St. Petersburg 199034, Russian Federation; and Corresponding authors. Emails: ;
| |
Collapse
|
4
|
El-Hallouty SM, Soliman AAF, Nassrallah A, Salamatullah A, Alkaltham MS, Kamal KY, Hanafy EA, Gaballa HS, Aboul-Soud MAM. Crude Methanol Extract of Rosin Gum Exhibits Specific Cytotoxicity against Human Breast Cancer Cells via Apoptosis Induction. Anticancer Agents Med Chem 2021; 20:1028-1036. [PMID: 32324522 DOI: 10.2174/1871520620666200423074826] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND Rosin (Colophony) is a natural resin derived from species of the pine family Pinaceae. It has wide industrial applications including printing inks, photocopying paper, adhesives and varnishes, soap and soda. Rosin and its derivatives are employed as ingredients in various pharmaceutical products such as ointments and plasters. Rosin-based products contain allergens that may exert some occupational health problems such as asthma and contact dermatitis. OBJECTIVE Our knowledge of the pharmaceutical and medicinal properties of rosin is limited. The current study aims at investigating the cytotoxic potential of Rosin-Derived Crude Methanolic Extract (RD-CME) and elucidation of its mode-of-action against breast cancer cells (MCF-7 and MDA-MB231). METHODS Crude methanol extract was prepared from rosin. Its phenolic contents were analyzed by Reversed- Phase High-Performance Liquid Chromatography (RP-HPLC). Antioxidant activity was evaluated by DPPH radical-scavenging assay. Antiproliferation activity against MCF-7 and MDA-MB231 cancerous cells was investigated by MTT assay; its potency compared with doxorubicin as positive control and specificity were assessed compared to two non-cancerous cell lines (BJ-1 and MCF-12F). Selected apoptosis protein markers were assayed by western blotting. Cell cycle analysis was performed by Annexin V-FITC/PI FACS assay. RESULTS RD-CME exhibited significant and selective cytotoxicity against the two tested breast cancer cells (MCF-7 and MDA-MB231) compared to normal cells as revealed by MTT assay. ELISA and western blotting indicated that the observed antiproliferative activity of RD-CME is mediated via the engagement of an intrinsic apoptosis signaling pathway, as judged by enhanced expression of key pro-apoptotic protein markers (p53, Bax and Casp 3) relative to vehicle solvent-treated MCF-7 control cells. CONCLUSION To our knowledge, this is the first report to investigate the medicinal anticancer and antioxidant potential of crude methanolic extract derived from colophony rosin. We provided evidence that RD-CME exhibits strong antioxidant and anticancer effects. The observed cytotoxic activity against MCF-7 is proposed to take place via G2/M cell cycle arrest and apoptosis. Colophony resin has a great potential to join the arsenal of plantderived natural anticancer drugs. Further thorough investigation of the potential cytotoxicity of RD-CME against various cancerous cell lines is required to assess the spectrum and potency of its novel activity.
Collapse
Affiliation(s)
- Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Center, Dokki, Giza, 12622, Egypt
| | - Amr Nassrallah
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Ahmad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Mohammed S Alkaltham
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh 11541, Saudi Arabia
| | - Khaled Y Kamal
- Agronomy Department, Faculty of Agriculture, Zagazig University, Zagazig, Sharqia, 44511, Egypt
| | - Eman A Hanafy
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Hanan S Gaballa
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| | - Mourad A M Aboul-Soud
- Biochemistry Department, Cairo University Research Park (CURP), Cairo University, Giza 12613, Egypt
| |
Collapse
|
5
|
Califar B, Sng NJ, Zupanska A, Paul AL, Ferl RJ. Root Skewing-Associated Genes Impact the Spaceflight Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:239. [PMID: 32194611 PMCID: PMC7064724 DOI: 10.3389/fpls.2020.00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/17/2020] [Indexed: 05/03/2023]
Abstract
The observation that plant roots skew in microgravity recently refuted the long-held conviction that skewing was a gravity-dependent phenomenon. Further, spaceflight root skewing suggests that specific root morphologies and cell wall remodeling systems may be important aspects of spaceflight physiological adaptation. However, connections between skewing, cell wall modification and spaceflight physiology are currently based on inferences rather than direct tests. Therefore, the Advanced Plant Experiments-03-2 (APEX-03-2) spaceflight study was designed to elucidate the contribution of two skewing- and cell wall-associated genes in Arabidopsis to root behavior and gene expression patterns in spaceflight, to assess whether interruptions of different skewing pathways affect the overall spaceflight-associated process. SPIRAL1 is a skewing-related protein implicated in directional cell expansion, and functions by regulating cortical microtubule dynamics. SKU5 is skewing-related glycosylphosphatidylinositol-anchored protein of the plasma membrane and cell wall implicated in stress response signaling. These two genes function in different cellular pathways that affect skewing on the Earth, and enable a test of the relevance of skewing pathways to spaceflight physiological adaptation. In this study, both sku5 and spr1 mutants showed different skewing behavior and markedly different patterns of gene expression in the spaceflight environment. The spr1 mutant showed fewer differentially expressed genes than its Col-0 wild-type, whereas sku5 showed considerably more than its WS wild-type. Developmental age played a substantial role in spaceflight acclimation in all genotypes, but particularly in sku5 plants, where spaceflight 4d seedlings had almost 10-times as many highly differentially expressed genes as the 8d seedlings. These differences demonstrated that the two skewing pathways represented by SKU5 and SPR1 have unique and opposite contributions to physiological adaptation to spaceflight. The spr1 response is less intense than wild type, suggesting that the loss of SPR1 positively impacts spaceflight adaptation. Conversely, the intensity of the sku5 responses suggests that the loss of SKU5 initiates a much more complex, deeper and more stress related response to spaceflight. This suggests that proper SKU5 function is important to spaceflight adaptation.
Collapse
Affiliation(s)
- Brandon Califar
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
| | - Natasha J. Sng
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Agata Zupanska
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Anna-Lisa Paul
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, FL, United States
- *Correspondence: Anna-Lisa Paul,
| | - Robert J. Ferl
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
- The Genetics Institute, University of Florida, Gainesville, FL, United States
- Program in Genetics and Genomics, University of Florida, Gainesville, FL, United States
- Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, United States
- Robert J. Ferl,
| |
Collapse
|
6
|
Zhou M, Sng NJ, LeFrois CE, Paul AL, Ferl RJ. Epigenomics in an extraterrestrial environment: organ-specific alteration of DNA methylation and gene expression elicited by spaceflight in Arabidopsis thaliana. BMC Genomics 2019; 20:205. [PMID: 30866818 PMCID: PMC6416986 DOI: 10.1186/s12864-019-5554-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 02/21/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Plants adapted to diverse environments on Earth throughout their evolutionary history, and developed mechanisms to thrive in a variety of terrestrial habitats. When plants are grown in the novel environment of spaceflight aboard the International Space Station (ISS), an environment completely outside their evolutionary history, they respond with unique alterations to their gene expression profile. Identifying the genes important for physiological adaptation to spaceflight and dissecting the biological processes and pathways engaged by plants during spaceflight has helped reveal spaceflight adaptation, and has furthered understanding of terrestrial growth processes. However, the underlying regulatory mechanisms responsible for these changes in gene expression patterns are just beginning to be explored. Epigenetic modifications, such as DNA methylation at position five in cytosine, has been shown to play a role in the physiological adaptation to adverse terrestrial environments, and may play a role in spaceflight as well. RESULTS Whole Genome Bisulfite Sequencing of DNA of Arabidopsis grown on the ISS from seed revealed organ-specific patterns of differential methylation compared to ground controls. The overall levels of methylation in CG, CHG, and CHH contexts were similar between flight and ground DNA, however, thousands of specifically differentially methylated cytosines were discovered, and there were clear organ-specific differences in methylation patterns. Spaceflight leaves had higher methylation levels in CHG and CHH contexts within protein-coding genes in spaceflight; about a fifth of the leaf genes were also differentially regulated in spaceflight, almost half of which were associated with reactive oxygen signaling. CONCLUSIONS The physiological adaptation of plants to spaceflight is likely nuanced by epigenomic modification. This is the first examination of differential genomic methylation from plants grown completely in the spaceflight environment of the ISS in plant growth hardware developed for informing exploration life support strategies. Yet even in this optimized plant habitat, plants respond as if stressed. These data suggest that gene expression associated with physiological adaptation to spaceflight is regulated in part by methylation strategies similar to those engaged with familiar terrestrial stress responses. The differential methylation maps generated here provide a useful reference for elucidating the layers of regulation of spaceflight responses.
Collapse
Affiliation(s)
- Mingqi Zhou
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Natasha J. Sng
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Collin E. LeFrois
- 0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Anna-Lisa Paul
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA
| | - Robert J. Ferl
- 0000 0004 1936 8091grid.15276.37Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Horticultural Sciences Department, University of Florida, Gainesville, FL USA ,0000 0004 1936 8091grid.15276.37Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, FL USA
| |
Collapse
|
7
|
Kamal KY, Herranz R, van Loon JJWA, Medina FJ. Cell cycle acceleration and changes in essential nuclear functions induced by simulated microgravity in a synchronized Arabidopsis cell culture. PLANT, CELL & ENVIRONMENT 2019; 42:480-494. [PMID: 30105864 DOI: 10.1111/pce.13422] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 07/22/2018] [Accepted: 08/04/2018] [Indexed: 06/08/2023]
Abstract
Zero gravity is an environmental challenge unknown to organisms throughout evolution on Earth. Nevertheless, plants are sensitive to altered gravity, as exemplified by changes in meristematic cell proliferation and growth. We found that synchronized Arabidopsis-cultured cells exposed to simulated microgravity showed a shortened cell cycle, caused by a shorter G2/M phase and a slightly longer G1 phase. The analysis of selected marker genes and proteins by quantitative polymerase chain reaction and flow cytometry in synchronic G1 and G2 subpopulations indicated changes in gene expression of core cell cycle regulators and chromatin-modifying factors, confirming that microgravity induced misregulation of G2/M and G1/S checkpoints and chromatin remodelling. Changes in chromatin-based regulation included higher DNA methylation and lower histone acetylation, increased chromatin condensation, and overall depletion of nuclear transcription. Estimation of ribosome biogenesis rate using nucleolar parameters and selected nucleolar genes and proteins indicated reduced nucleolar activity under simulated microgravity, especially at G2/M. These results expand our knowledge of how meristematic cells are affected by real and simulated microgravity. Counteracting this cellular stress is necessary for plant culture in space exploration.
Collapse
Affiliation(s)
- Khaled Y Kamal
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
- Agronomy Department, Zagazig University, Zagazig, Egypt
| | - Raúl Herranz
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center and Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, Noordwijk, The Netherlands
| | - F Javier Medina
- Plant Cell Nucleolus, Proliferation & Microgravity Laboratory, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Vandenbrink JP, Kiss JZ. Preparation of a Spaceflight Experiment to Study Tropisms in Arabidopsis Seedlings on the International Space Station. Methods Mol Biol 2019; 1924:207-214. [PMID: 30694478 DOI: 10.1007/978-1-4939-9015-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Utilization of orbiting spacecraft allows for studying biological processes in conditions of microgravity. Centrifuges on board these platforms also allow for the creation of partial gravity vectors (to simulate the Moon or Mars levels of gravity) as well as onboard 1-g controls for the space experiments. Thus, the mechanisms of gravity and light perception in plants can be analyzed in a unique environment which can give insights into fundamental processes in biology. Here, we describe the methods for preparation of a plant biology experiment with seedlings of Arabidopsis thaliana utilizing the European Modular Cultivation System (EMCS) on the International Space Station (ISS). The procedures outlined in this paper have been successfully used in several of our recent spaceflight experiments, which have given unique insights into the basic mechanisms of tropisms.
Collapse
Affiliation(s)
- Joshua P Vandenbrink
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC, USA
| | - John Z Kiss
- Department of Biology, University of North Carolina-Greensboro, Greensboro, NC, USA.
| |
Collapse
|
9
|
Valbuena MA, Manzano A, Vandenbrink JP, Pereda-Loth V, Carnero-Diaz E, Edelmann RE, Kiss JZ, Herranz R, Medina FJ. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. PLANTA 2018; 248:691-704. [PMID: 29948124 DOI: 10.1007/s00425-018-2930-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 05/04/2023]
Abstract
Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.
Collapse
Affiliation(s)
- Miguel A Valbuena
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain
- Institut Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE.57 rue Cuvier CP39, 75005, Paris, France
| | - Aránzazu Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Joshua P Vandenbrink
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Veronica Pereda-Loth
- Faculté de Médécine Rangeuil, Université de Toulouse III UPS, GSBMS-AMIS, Toulouse, France
| | - Eugénie Carnero-Diaz
- Institut Systématique, Evolution, Biodiversité (ISYEB), Museum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE.57 rue Cuvier CP39, 75005, Paris, France
| | | | - John Z Kiss
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, 27402, USA
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
10
|
Boucheron-Dubuisson E, Manzano AI, Le Disquet I, Matía I, Sáez-Vasquez J, van Loon JJWA, Herranz R, Carnero-Diaz E, Medina FJ. Functional alterations of root meristematic cells of Arabidopsis thaliana induced by a simulated microgravity environment. JOURNAL OF PLANT PHYSIOLOGY 2016; 207:30-41. [PMID: 27792899 DOI: 10.1016/j.jplph.2016.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/20/2023]
Abstract
Environmental gravity modulates plant growth and development, and these processes are influenced by the balance between cell proliferation and differentiation in meristems. Meristematic cells are characterized by the coordination between cell proliferation and cell growth, that is, by the accurate regulation of cell cycle progression and the optimal production of biomass for the viability of daughter cells after division. Thus, cell growth is correlated with the rate of ribosome biogenesis and protein synthesis. We investigated the effects of simulated microgravity on cellular functions of the root meristem in a sequential study. Seedlings were grown in a clinostat, a device producing simulated microgravity, for periods between 3 and 10days. In a complementary study, seedlings were grown in a Random Positioning Machine (RPM) and sampled sequentially after similar periods of growth. Under these conditions, the cell proliferation rate and the regulation of cell cycle progression showed significant alterations, accompanied by a reduction of cell growth. However, the overall size of the root meristem did not change. Analysis of cell cycle phases by flow cytometry showed changes in their proportion and duration, and the expression of the cyclin B1 gene, a marker of entry in mitosis, was decreased, indicating altered cell cycle regulation. With respect to cell growth, the rate of ribosome biogenesis was reduced under simulated microgravity, as shown by morphological and morphometric nucleolar changes and variations in the levels of the nucleolar protein nucleolin. Furthermore, in a nucleolin mutant characterized by disorganized nucleolar structure, the microgravity treatment intensified disorganization. These results show that, regardless of the simulated microgravity device used, a great disruption of meristematic competence was the first response to the environmental alteration detected at early developmental stages. However, longer periods of exposure to simulated microgravity do not produce an intensification of the cellular damages or a detectable developmental alteration in seedlings analyzed at further stages of their growth. This suggests that the secondary response to the gravity alteration is a process of adaptation, whose mechanism is still unknown, which eventually results in viable adult plants.
Collapse
Affiliation(s)
- Elodie Boucheron-Dubuisson
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Ana I Manzano
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Isabel Le Disquet
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - Isabel Matía
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Julio Sáez-Vasquez
- Laboratoire Génome et Développement des Plantes, CNRS, UMR 5096, Université de Perpignan via Domitia, 66860 Perpignan, France.
| | - Jack J W A van Loon
- DESC (Dutch Experiment Support Center), Dept. Oral and Maxillofacial Surgery/Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; ESA-ESTEC, TEC-MMG, Keplerlaan 1, NL-2200 AG, Noordwijk, The Netherlands.
| | - Raúl Herranz
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| | - Eugénie Carnero-Diaz
- Université Pierre et Marie Curie - Paris 6, Sorbonne Universités, Institut de Systématique, Évolution, Biodiversité, ISYEB - UMR 7205 - CNRS, MNHN, UPMC, EPHE, 57 rue Cuvier, CP50, 75005 Paris, France.
| | - F Javier Medina
- Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, E-28040 Madrid, Spain.
| |
Collapse
|