1
|
Dong K, Ye Z, Hu F, Shan C, Wen D, Cao J. Improvement of plant quality by amino acid transporters: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109084. [PMID: 39217823 DOI: 10.1016/j.plaphy.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Amino acids serve as the primary means of transport and organic nitrogen carrier in plants, playing an essential role in plant growth and development. Amino acid transporters (AATs) facilitate the movement of amino acids within plants and have been identified and characterised in a number of species. It has been demonstrated that these amino acid transporters exert an influence on the quality attributes of plants, in addition to their primary function of transporting amino acid transport. This paper presents a summary of the role of AATs in plant quality improvement. This encompasses the enhancement of nitrogen utilization efficiency, root development, tiller number and fruit yield. Concurrently, AATs can bolster the resilience of plants to pests, diseases and abiotic stresses, thereby further enhancing the yield and quality of fruit. AATs exhibit a wide range of substrate specificity, which greatly optimizes the use of pesticides and significantly reduces pesticide residues, and reduces the risk of environmental pollution while increasing the safety of fruit. The discovery of AATs function provides new ideas and ways to cultivate high-quality crop and promote changes in agricultural development, and has great potential in the application of plant quality improvement.
Collapse
Affiliation(s)
- Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
Wang Y, Liao R, Pan H, Wang X, Wan X, Han B, Song C. Comparative metabolic profiling of the mycelium and fermentation broth of Penicillium restrictum from Peucedanum praeruptorum rhizosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13286. [PMID: 38844388 PMCID: PMC11156492 DOI: 10.1111/1758-2229.13286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/30/2024] [Indexed: 06/10/2024]
Abstract
Microorganisms in the rhizosphere, particularly arbuscular mycorrhiza, have a broad symbiotic relationship with their host plants. One of the major fungi isolated from the rhizosphere of Peucedanum praeruptorum is Penicillium restrictum. The relationship between the metabolites of P. restrictum and the root exudates of P. praeruptorum is being investigated. The accumulation of metabolites in the mycelium and fermentation broth of P. restrictum was analysed over different fermentation periods. Non-targeted metabolomics was used to compare the differences in intracellular and extracellular metabolites over six periods. There were significant differences in the content and types of mycelial metabolites during the incubation. Marmesin, an important intermediate in the biosynthesis of coumarins, was found in the highest amount on the fourth day of incubation. The differential metabolites were screened to obtain 799 intracellular and 468 extracellular differential metabolites. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the highly enriched extracellular metabolic pathways were alanine, aspartate and glutamate metabolism, glyoxylate and dicarboxylate metabolism, and terpenoid backbone biosynthesis. In addition, the enrichment analysis associated with intracellular and extracellular ATP-binding cassette transporter proteins revealed that some ATP-binding cassette transporters may be involved in the transportation of certain amino acids and carbohydrates. Our results provide some theoretical basis for the regulatory mechanisms between the rhizosphere and the host plant and pave the way for the heterologous production of furanocoumarin.
Collapse
Affiliation(s)
- Yuanyuan Wang
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Ranran Liao
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Haoyu Pan
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
- School of Life ScienceAnhui Agricultural UniversityHefeiChina
| | - Xuejun Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Xiaoting Wan
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Bangxing Han
- School of PharmacyAnhui University of Chinese MedicineHefeiChina
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| | - Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Research Center for Eco‐agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical EngineeringWest Anhui UniversityLuanChina
| |
Collapse
|
3
|
Lardos M, Marmagne A, Bonadé Bottino N, Caris Q, Béal B, Chardon F, Masclaux-Daubresse C. Discovery of the biostimulant effect of asparagine and glutamine on plant growth in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 14:1281495. [PMID: 38317837 PMCID: PMC10839965 DOI: 10.3389/fpls.2023.1281495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/01/2023] [Indexed: 02/07/2024]
Abstract
Protein hydrolysates have gained interest as plant biostimulants due to their positive effects on plant performances. They are mainly composed of amino acids, but there is no evidence of the role of individual of amino acids as biostimulants. In this study we carried out in vitro experiments to monitor the development of Arabidopsis seedlings on amino acid containing media in order to analyze the biostimulant properties of the twenty individual proteinogenic amino acids. We demonstrated that proteinogenic amino acids are not good nitrogen sources as compared to nitrate for plant growth. Biostimulant analyses were based on leaf area measurements as a proxy of plant growth. We developed the Amino Acid Use Efficiency index to quantify the biostimulating effect of individual amino acids in the presence of nitrate. This index allowed us to classify amino acids into three groups, characterized by their inhibiting, neutral, and beneficial effects regarding leaf area. Glutamine and asparagine demonstrated the most significant effects in promoting leaf area in the presence of nitrate supply. The stimulating effect was confirmed by using the L and D enantiomeric forms. Both L-glutamine and L-asparagine stimulated leaf area at low concentrations, emphasizing their biostimulating properties. Our plant growth design and AAUE index pave the way for the identification of other bioactive molecules in protein hydrolysates and for the comparison of biostimulant performances.
Collapse
Affiliation(s)
- Manon Lardos
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- NOVAEM, Aigrefeuille d’Aunis, France
| | - Anne Marmagne
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Nolwenn Bonadé Bottino
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- NOVAEM, Aigrefeuille d’Aunis, France
| | - Quentin Caris
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
- NOVAEM, Aigrefeuille d’Aunis, France
| | | | - Fabien Chardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| | - Céline Masclaux-Daubresse
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France
| |
Collapse
|
4
|
Mashabela MD, Tugizimana F, Steenkamp PA, Piater LA, Dubery IA, Mhlongo MI. Metabolite profiling of susceptible and resistant wheat (Triticum aestivum) cultivars responding to Puccinia striiformis f. sp. tritici infection. BMC PLANT BIOLOGY 2023; 23:293. [PMID: 37264330 DOI: 10.1186/s12870-023-04313-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Puccinia striiformis f. sp. tritici (Pst) is an economically devasting disease that is prominent in cereal crops such as wheat (Triticum aestivum). The fungal pathogen can cause approximately 30-70% losses in crop productivity and yields. Pst has become difficult to manage due to its ease of transmission through wind dispersal over long distances, and intercontinental dispersal has been previously reported. The ease of transmission has resulted in further destruction because of new and more virulent strains infecting crops previously resistant to a different strain. RESULTS In this study, a liquid chromatography-mass spectrometry-based untargeted metabolomics approach, in combination with multivariate data analytical tools, was used to elucidate the mechanistic nature of the defence systems of a Pst-resistant and a susceptible wheat cultivar infected with P. striiformis. We also investigated the time-dependant metabolic reconfiguration of infected plants over a four-week period. The untargeted metabolomic analysis revealed a time-course metabolic reprogramming involving phenylpropanoids (majority flavonoids), amino acids, lipids, benzoic acids, TCA cycle intermediates and benzoxazinoids responding to Pst infection. Interestingly, the results do not show a linear course for the decrease and increase (up-/down-regulation) of said classes of metabolites, but rather the up- or down-regulation of specific metabolites in response to the pathogen infection. The resistant Koonap cultivar had an abundance of phenolic compounds such as rutin, isoorintin-7-O-glucoside and luteolin-6-C-hexoside-O-hexoside. These compounds showed a decrease over time in control Koonap plants compared to an increase in Pst-infected plants. These metabolites were down-regulated in the susceptible Gariep cultivar, which could serve as biomarkers for plant responses to biotic stress and resistance against Pst. CONCLUSIONS Overall, an LC-MS-based metabolomics approach allowed for the metabolic profiling and analysis of the impact of plant-pathogen interactions on the overall plant metabolome and provided a real-time snapshot of the differential significant metabolic perturbations occurring in wheat plants responding to the Pst pathogen. The Pst-resistant Koonap cultivar showed a rapid accumulation of defence metabolites in response to pathogen infection compared to the susceptible Gariep cultivar. These findings provide insight into the mechanistic biochemical nature of plant-microbe interactions and the prospects of metabolic engineering for improved plant tolerance and resistance to biotic stresses.
Collapse
Affiliation(s)
- Manamele Dannies Mashabela
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Fidele Tugizimana
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
- International Research and Development Division, Omnia Group, Ltd, Johannesburg, 2006, South Africa
| | - Paul Anton Steenkamp
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Lizelle Ann Piater
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Ian Augustus Dubery
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa
| | - Msizi Innocent Mhlongo
- Research Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, P.O. Box 524, Johannesburg, 2006, South Africa.
| |
Collapse
|
5
|
Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Mol Biol Rep 2023; 50:5319-5343. [PMID: 37155015 DOI: 10.1007/s11033-023-08429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Mechanical wounding (MW) is mainly caused due to high wind, sand, heavy rains and insect infestation, leading to damage to crop plants and an increase in the incidences of pathogen infection. Plants respond to MW by altering expression of genes, proteins, and metabolites that help them to cope up with the stress. METHODS AND RESULTS In order to characterize maize transcriptome in response to mechanical wounding, a microarray analysis was executed. The study revealed 407 differentially expressed genes (DEGs) (134 upregulated and 273 downregulated). The upregulated genes were engaged in protein synthesis, transcription regulation, phytohormone signaling-mediated by salicylic acid, auxin, jasmonates, biotic and abiotic stress including bacterial, insect, salt and endoplasmic reticulum stress, cellular transport, on the other hand downregulated genes were involved in primary metabolism, developmental processes, protein modification, catalytic activity, DNA repair pathways, and cell cycle. CONCLUSION The transcriptome data present here can be further utilized for understanding inducible transcriptional response during mechanical injury and their purpose in biotic and abiotic stress tolerance. Furthermore, future study concentrating on the functional characterization of the selected key genes (Bowman Bird trypsin inhibitor, NBS-LRR-like protein, Receptor-like protein kinase-like, probable LRR receptor-like ser/thr-protein kinase, Cytochrome P450 84A1, leucoanthocyanidin dioxygenase, jasmonate O-methyltransferase) and utilizing them for genetic engineering for crop improvement is strongly recommended.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Shrishti Naidu
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India
| | - Babita Kumari
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Department of Botany, North-Eastern Hill University, Shillong, India
| | - Indrakant K Singh
- Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India.
| | - Archana Singh
- Department of Botany, Hansraj College, University of Delhi, Delhi, India.
- J C Bose Center for Plant Genomics, Hansraj College, University of Delhi, Delhi, India.
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, New Delhi, India.
| |
Collapse
|
6
|
McNeil CJ, Araujo K, Godfrey K, Slupsky CM. Metabolite Signature and Differential Expression of Genes in Washington Navel Oranges ( Citrus sinensis) Infected by Spiroplasma citri. PHYTOPATHOLOGY 2023; 113:299-308. [PMID: 35984373 DOI: 10.1094/phyto-05-22-0177-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spiroplasma citri is the pathogen that causes citrus stubborn disease (CSD). Infection of citrus with S. citri has been shown to cause leaf mottling, reduce fruit yield, and stunt tree growth. Fruit from trees exhibiting symptoms of CSD are misshapen and discolored. The symptoms of CSD are easily confused with nutrient deficiencies or symptoms of citrus greening disease. In this study, young Washington navel oranges (Citrus sinensis) were graft-inoculated with budwood originating from trees confirmed to be infected with S. citri. Leaf samples were collected monthly for 10 months for metabolomics and differential gene expression analyses. Significant differences in the concentration of metabolites and expressed genes were observed between control and S. citri-infected trees throughout the experiment. Metabolites and genes associated with important defense and stress pathways, including jasmonic acid signaling, cell wall modification, amino acid biosynthesis, and the production of antioxidant and antimicrobial secondary metabolites, were impacted by S. citri throughout the study, and even prior to symptom development. This work fills a current gap in knowledge surrounding the pathogenicity of S. citri and provides an updated mechanistic explanation for the development of CSD symptoms in S. citri-infected plants.
Collapse
Affiliation(s)
- Christopher J McNeil
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616
| | - Karla Araujo
- Contained Research Facility, University of California-Davis, Davis, CA 95616
| | - Kristine Godfrey
- Contained Research Facility, University of California-Davis, Davis, CA 95616
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California-Davis, Davis, CA 95616
- Department of Nutrition, University of California-Davis, Davis, CA 95616
| |
Collapse
|
7
|
Weyandt N, Aghdam SA, Brown AMV. Discovery of Early-Branching Wolbachia Reveals Functional Enrichment on Horizontally Transferred Genes. Front Microbiol 2022; 13:867392. [PMID: 35547116 PMCID: PMC9084900 DOI: 10.3389/fmicb.2022.867392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Wolbachia is a widespread endosymbiont of insects and filarial nematodes that profoundly influences host biology. Wolbachia has also been reported in rhizosphere hosts, where its diversity and function remain poorly characterized. The discovery that plant-parasitic nematodes (PPNs) host Wolbachia strains with unknown roles is of interest evolutionarily, ecologically, and for agriculture as a potential target for developing new biological controls. The goal of this study was to screen communities for PPN endosymbionts and analyze genes and genomic patterns that might indicate their role. Genome assemblies revealed 1 out of 16 sampled sites had nematode communities hosting a Wolbachia strain, designated wTex, that has highly diverged as one of the early supergroup L strains. Genome features, gene repertoires, and absence of known genes for cytoplasmic incompatibility, riboflavin, biotin, and other biosynthetic functions placed wTex between mutualist C + D strains and reproductive parasite A + B strains. Functional terms enriched in group L included protoporphyrinogen IX, thiamine, lysine, fatty acid, and cellular amino acid biosynthesis, while dN/dS analysis suggested the strongest purifying selection on arginine and lysine metabolism, and vitamin B6, heme, and zinc ion binding, suggesting these as candidate roles in PPN Wolbachia. Higher dN/dS pathways between group L, wPni from aphids, wFol from springtails, and wCfeT from cat fleas suggested distinct functional changes characterizing these early Wolbachia host transitions. PPN Wolbachia had several putative horizontally transferred genes, including a lysine biosynthesis operon like that of the mitochondrial symbiont Midichloria, a spirochete-like thiamine synthesis operon shared only with wCfeT, an ATP/ADP carrier important in Rickettsia, and a eukaryote-like gene that may mediate plant systemic acquired resistance through the lysine-to-pipecolic acid system. The Discovery of group L-like variants from global rhizosphere databases suggests diverse PPN Wolbachia strains remain to be discovered. These findings support the hypothesis of plant-specialization as key to shaping early Wolbachia evolution and present new functional hypotheses, demonstrating promise for future genomics-based rhizosphere screens.
Collapse
Affiliation(s)
- Nicholas Weyandt
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Shiva A Aghdam
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Amanda M V Brown
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
8
|
Nutritional Composition and Bioactive Components in Quinoa ( Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022; 14:nu14030558. [PMID: 35276913 PMCID: PMC8840215 DOI: 10.3390/nu14030558] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/19/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a nutrient-rich grain native to South America and eaten worldwide as a healthy food, sometimes even referred to as a ”superfood”. Like quinoa grains, quinoa greens (green leaves, sprouts, and microgreens) are also rich in nutrients and have health promoting properties such as being antimicrobial, anticancer, antidiabetic, antioxidant, antiobesity, and cardio-beneficial. Quinoa greens are gluten-free and provide an excellent source of protein, amino acids, essential minerals, and omega-3 fatty acids. Quinoa greens represent a promising value-added vegetable that could resolve malnutrition problems and contribute to food and nutritional security. The greens can be grown year-round (in the field, high tunnel, and greenhouse) and have short growth durations. In addition, quinoa is salt-, drought-, and cold-tolerant and requires little fertilizer and water to grow. Nevertheless, consumption of quinoa greens as leafy vegetables is uncommon. To date, only a few researchers have investigated the nutritional properties, phytochemical composition, and human health benefits of quinoa greens. We undertook a comprehensive review of the literature on quinoa greens to explore their nutritional and functional significance to human health and to bring awareness to their use in human diets.
Collapse
|
9
|
Wahman R, Cruzeiro C, Graßmann J, Schröder P, Letzel T. The changes in Lemna minor metabolomic profile: A response to diclofenac incubation. CHEMOSPHERE 2022; 287:132078. [PMID: 34523431 DOI: 10.1016/j.chemosphere.2021.132078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 05/27/2023]
Abstract
Metabolomics is an emerging approach that investigates the changes in the metabolome profile. In the present study, Lemna minor -considered as an experimental aquatic plant model- was incubated with 10 and 100 μM diclofenac (DCF) for 96 h, respectively. Knowing that DCF is internationally often problematic in wastewater effluents and that it might affect particularly the metabolic profiles in aquatic plants, mainly the oxidoreductase, dehydrogenase, peroxidase, and glutathione reductase activities, here it was hypothesized (H) that in the common duckweed, DCF might increase the phenolic and flavonoids pathways, as an antioxidant response to this stress (H1). Also, it was expected DCF to alternate the physiological characteristics, especially the molecular interaction and biochemical properties, of Lemna (H2). Metabolic changes were investigated with target and untargeted screening analysis using RPLC-HILIC-ESI-TOF-MS. Twelve amino acids were identified in all treatments, together with three organic acids (p-coumaric, cinnamic, and sinapic acids). In untargeted screening, the important metabolites to discriminate between different treatments were assigned to Lemna such as organic acids, lignin, sugars, amino acids, dipeptides, flavonoids, biflavonoids, fatty acids, among others. In resume, Lemna responded to both DCF concentrations, showing different stress patterns. A similar metabolic response had already been identified in other studies in exposing Lemna to other anthropogenic stressors (like pesticides).
Collapse
Affiliation(s)
- Rofida Wahman
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany; Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, Arab Republic of Egypt, Egypt
| | - Catarina Cruzeiro
- German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Street 1, 85764, Neuherberg, Germany.
| | - Johanna Graßmann
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany
| | - Peter Schröder
- German Research Center for Environmental Health, Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Street 1, 85764, Neuherberg, Germany
| | - Thomas Letzel
- Chair of Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748, Garching, Germany; Analytisches Forschungsinstitut für Non-Target Screening GmbH (AFIN-TS), Am Mittleren Moos 48, 86167, Augsburg, Germany
| |
Collapse
|
10
|
Dhatterwal P, Mehrotra S, Miller AJ, Mehrotra R. Promoter profiling of Arabidopsis amino acid transporters: clues for improving crops. PLANT MOLECULAR BIOLOGY 2021; 107:451-475. [PMID: 34674117 DOI: 10.1007/s11103-021-01193-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The review describes the importance of amino acid transporters in plant growth, development, stress tolerance, and productivity. The promoter analysis provides valuable insights into their functionality leading to agricultural benefits. Arabidopsis thaliana genome is speculated to possess more than 100 amino acid transporter genes. This large number suggests the functional significance of amino acid transporters in plant growth and development. The current article summarizes the substrate specificity, cellular localization, tissue-specific expression, and expression of the amino acid transporter genes in response to environmental cues. However, till date functionality of a majority of amino acid transporter genes in plant development and stress tolerance is unexplored. Considering, that gene expression is mainly regulated by the regulatory motifs localized in their promoter regions at the transcriptional levels. The promoter regions ( ~ 1-kbp) of these amino acid transporter genes were analysed for the presence of cis-regulatory motifs responsive to developmental and external cues. This analysis can help predict the functionality of known and unexplored amino acid transporters in different tissues, organs, and various growth and development stages and responses to external stimuli. Furthermore, based on the promoter analysis and utilizing the microarray expression data we have attempted to identify plausible candidates (listed below) that might be targeted for agricultural benefits.
Collapse
Affiliation(s)
- Pinky Dhatterwal
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K.K. Birla Goa Campus, Goa, India.
| |
Collapse
|
11
|
Sardans J, Gargallo‐Garriga A, Urban O, Klem K, Holub P, Janssens IA, Walker TWN, Pesqueda A, Peñuelas J. Ecometabolomics of plant–herbivore and plant–fungi interactions: a synthesis study. Ecosphere 2021. [DOI: 10.1002/ecs2.3736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Albert Gargallo‐Garriga
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Otmar Urban
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Karel Klem
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Petr Holub
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| | - Ivan A. Janssens
- Department of Biology University of Antwerp Wilrijk 2610 Belgium
| | - Tom W. N. Walker
- Department of Environmental Systems Science Institute of Integrative Biology ETH Zürich Zurich 8092 Switzerland
| | - Argus Pesqueda
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
| | - Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra Catalonia 08193 Spain
- CREAF Cerdanyola del Valles Catalonia 08193 Spain
- Global Change Research Institute Czech Academy of Sciences Bělidla 986/4a Brno CZ‐60300 Czech Republic
| |
Collapse
|
12
|
Mohamed Ahmed IA, Al Juhaimi F, Özcan MM. Insights into the nutritional value and bioactive properties of quinoa (
Chenopodium quinoa
): past, present and future prospective. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Fahad Al Juhaimi
- Department of Food Science and Nutrition College of Food and Agricultural Sciences King Saud University Riyadh Saudi Arabia
| | - Mehmet Musa Özcan
- Department of Food Engineering Faculty of Agriculture Selcuk University Konya42031Turkey
| |
Collapse
|
13
|
Gao H, Zhou Q, Yang L, Zhang K, Ma Y, Xu ZQ. Metabolomics analysis identifies metabolites associated with systemic acquired resistance in Arabidopsis. PeerJ 2020; 8:e10047. [PMID: 33062444 PMCID: PMC7532762 DOI: 10.7717/peerj.10047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Systemic acquired resistance (SAR) is a type of plant defense response that provides a long-lasting resistance to broad-spectrum pathogens in uninfected distal tissues following an initial localized infection. However, little information is available at present on the biological basis of SAR at the molecular level, especially in uninfected distal leaves. Methods In the present work, we used two SAR-inducing pathogens, avirulent Pseudomonas syringae pv. maculicola ES4326 harboring avrRpm1 (Psm avrRpm1) and virulent P. syringae pv. maculicola ES4326 (Psm ES4326), to induce SAR in Arabidopsis ecotype Col-0. A metabolomics approach based on ultra-high-performance liquid chromatography (UPLC) coupled with mass spectrometry (MS) was used to identify SAR-related metabolites in infected local leaves, and in uninfected distal leaves. Results Differentially accumulated metabolites were distinguished by statistical analyses. The results showed that both the primary metabolism and the secondary metabolism were significantly altered in infected local leaves and in uninfected distal leaves, including phenolic compounds, amino acids, nucleotides, organic acids, and many other metabolites. Conclusions The content of amino acids and phenolic compounds increased in uninfected distal leaves, suggesting their contribution to the establishment of SAR. In addition, 2′-hydroxy-4, 4′, 6′-trimethoxychalcone, phenylalanine, and p-coumaric acid were identified as potential components which may play important roles both in basic resistance and in SAR. This work provides a reference for understanding of the metabolic mechanism associated with SAR in plants, which will be useful for further investigation of the molecular basis of the systemic immunity.
Collapse
Affiliation(s)
- Hang Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Zhou
- Shanghai Omicsspace Biotechnology Co. Ltd., Shanghai, People's Republic of China
| | - Liu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Kaili Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Yeye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
14
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
15
|
Haddadi P, Larkan NJ, Borhan MH. Dissecting R gene and host genetic background effect on the Brassica napus defense response to Leptosphaeria maculans. Sci Rep 2019; 9:6947. [PMID: 31061421 PMCID: PMC6502879 DOI: 10.1038/s41598-019-43419-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
While our understanding of the genetics underlying the Brassica-Leptosphaeria pathosystem has advanced greatly in the last decade, differences in molecular responses due to interaction between resistance genes and host genetic background has not been studied. We applied RNAseq technology to monitor the transcriptome profiles of Brassica napus (Bn) lines carrying one of four blackleg R genes (Rlm2, Rlm3, LepR1 & LepR2) in Topas or Westar background, during the early stages of infection by a Leptosphaeria maculans (Lm) isolate carrying the corresponding Avr genes. We observed upregulation of host genes involved in hormone signalling, cell wall thickening, response to chitin and glucosinolate production in all R gene lines at 3 day after inoculation (dai) albeit having higher level of expression in LepR1 and Rlm2 than in Rlm3 and LepR2 lines. Bn-SOBIR1 (Suppressor Of BIR1-1), a receptor like kinase (RLK) that forms complex receptor like proteins (RLPs) was highly expressed in LepR1 and Rlm2 at 3 dai. In contrast Bn-SOBIR1 induction was low in Rlm3 line, which could indicate that Rlm3 may function independent of SOBIR1. Expression of Salicylic acid (SA) related defense was enhanced in LepR1 and Rlm2 at 3 dai. In contrast to SA, expression of Bn genes with homology to PDF1.2, a jasmonic acid (JA) pathway marker, were increased in all Rlm and LepR lines at 6 and 9 dai. Effect of host genetic background on induction of defense, was determined by comparison of LepR1 and LepR2 in Topas vs Westar genotype (i.e. T-LepR1 vs W-LepR1 and T-LepR2 vs W-LepR2). In both cases (regardless of R gene) overall number of defense related genes at the earliest time point (3 dai) was higher in Tops compared to Westar. SA and JA markers genes such as PR1 and PDF1.2 were more induced in Topas compared to Westar introgression lines at this time point. Even in the absence of any R gene, effect of Topas genotype in enhanced defense, was also evident by the induction of PDF1.2 that started at a low level at 3 dai and peaked at 6 and 9 dai, while no induction in Westar genotype was observed at any of these time points. Overall, variation in time and intensity of expression of genes related to defense, was clearly dependent on both R gene and the host genotype.
Collapse
Affiliation(s)
- Parham Haddadi
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada
| | | | - M Hossein Borhan
- Agriculture and Agri-Food Canada, Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK, S7N 0X2, Canada.
| |
Collapse
|
16
|
Zhong Z, Lin L, Chen M, Lin L, Chen X, Lin Y, Chen X, Wang Z, Norvienyeku J, Zheng H. Expression Divergence as an Evolutionary Alternative Mechanism Adopted by Two Rice Subspecies Against Rice Blast Infection. RICE (NEW YORK, N.Y.) 2019; 12:12. [PMID: 30825020 PMCID: PMC6397267 DOI: 10.1186/s12284-019-0270-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/18/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rice (Oryza sativa L.) is one of the most important crops that serves as staple food for ~ 50% of the human population worldwide. Some important agronomic traits that allow rice to cope with numerous abiotic and biotic stresses have been selected and fixed during domestication. Knowledge on how expression divergence of genes gradually contributes to phenotypic differentiation in response to biotic stress and their contribution to rice population speciation is still limited. RESULTS Here, we explored gene expression divergence between a japonica rice cultivar Nipponbare and an indica rice cultivar 93-11 in response to invasion by the filamentous ascomycete fungus Magnaporthe oryzae (Pyricularia oryzae), a plant pathogen that causes significant loss to rice production worldwide. We investigated differentially expressed genes in the two cultivars and observed that evolutionarily conserved orthologous genes showed highly variable expression patterns under rice blast infection. Analysis of promoter region of these differentially expressed orthologous genes revealed the existence of cis-regulatory elements associated with the differentiated expression pattern of these genes in the two rice cultivars. Further comparison of these regions in global rice population indicated their fixation and close relationship with rice population divergence. CONCLUSION We proposed that variation in the expression patterns of these orthologous genes mediated by cis-regulatory elements in the two rice cultivars, may constitute an alternative evolutionary mechanism that distinguishes these two genetically and ecologically divergent rice cultivars in response to M. oryzae infection.
Collapse
Affiliation(s)
- Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianyu Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meilian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lili Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xiaofeng Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yahong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108 China
| | - Justice Norvienyeku
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huakun Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
17
|
Sonawala U, Dinkeloo K, Danna CH, McDowell JM, Pilot G. Review: Functional linkages between amino acid transporters and plant responses to pathogens. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:79-88. [PMID: 30466603 DOI: 10.1016/j.plantsci.2018.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/11/2018] [Accepted: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Upon infection, plant pathogens become dependent on their hosts for nutrition. Therefore, the interaction between the two organisms is tightly linked to the availability and flux of nutrients in the plant. The plant's nitrogen metabolism is reprogrammed during pathogen attack, likely reflecting plant's response to invasion by the pathogen and active modification by the pathogen to promote feeding. Several lines of evidence indicate that plant-derived amino acids are an important source of nitrogen for diverse pathogens. Moreover, amino acid homeostasis is interconnected with the plant's immune signaling pathways. Here, we critically examine the knowns and unknowns about connections between plant-encoded amino acid transporters and resistance or susceptibility to pathogens and pests. We use recent insights into sugar transporters to frame a perspective with potential applicability to amino acids and other nutrients. We emphasize different approaches that have provided insight in this topic and we conclude with suggestions to fill gaps in foundational knowledge and explore new avenues for disease control.
Collapse
Affiliation(s)
- Unnati Sonawala
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA
| | - Kasia Dinkeloo
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA
| | - Cristian H Danna
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA.
| | - Guillaume Pilot
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, 24060 VA, USA.
| |
Collapse
|
18
|
Yun T, Hua J, Ye W, Yu B, Ni Z, Chen L, Zhang C. Comparative proteomic analysis revealed complex responses to classical/novel duck reovirus infections in the spleen tissue of Cairna moschata. J Proteomics 2018; 193:162-172. [PMID: 30339941 DOI: 10.1016/j.jprot.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022]
Abstract
Duck reovirus (DRV), a member of the genus Orthoreovirus in the family Reoviridae, was first isolated from Muscovy ducks. The disease associated with DRV causes great economic losses to the duck industry. However, the responses of duck (Cairna moschata) to the classical/novel DRV (C/NDRV) infections are largely unknown. To reveal the relationship of pathogenesis and immune response, the proteomes of duck spleen cells under the control and C/NDRV infections were compared. In total, 5986 proteins were identified, of which 5389 proteins were quantified. The different accumulated proteins (DAPs) under the C/NDRV infections showed displayed various biological functions and diverse subcellular localizations. The proteins related to the serine protease system were siginificantly changed, suggesting that the activated serine protease system may play an important role under the C/NDRV infections. Furthermore, the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues were compared. Only a small number of common DAPs were identified in both liver and spleen tissues, suggesting diversified pattern involved in the responses to the C/NRDV infections. However, the changes in the proteins involved in the serine protease systems were similar in both liver and spleen cells. Our data may give a comprehensive resource for investigating the responses to C/NDRV infections in ducks. SIGNIFICANCE: A newly developed MS/MS-based method involving isotopomer labels and 'tandem mass' has been applied to protein accurate quantification in current years. However, no studies on the responses of duck (Cairna moschata) spleen tissue to the classical/novel DRV (C/NDRV) infections have been performed. As a continued study of our previous report on the responses of duck liver tissue to the C/NDRV infections, the current study further compared the differences in the responses to the C/NRDV infections between the duck liver and spleen tissues. Our results will provide an opportunity to reveal the relationship of pathogenesis and immune response and basic information on the pathogenicity of C/NDRV in ducks.
Collapse
Affiliation(s)
- Tao Yun
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jionggang Hua
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bin Yu
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Cun Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
19
|
Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC, Fan L, Yu X. Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 2018; 24:635-648. [PMID: 28992048 PMCID: PMC5726479 DOI: 10.1093/dnares/dsx031] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Ustilago esculenta, infects Zizania latifolia, and induced host stem swollen to be a popular vegetable called Jiaobai in China. It is the long-standing artificial selection that maximizes the occurrence of favourable Jiaobai, and thus maintaining the plant-fungi interaction and modulating the fungus evolving from plant pathogen to entophyte. In this study, whole genome of U. esculenta was sequenced and transcriptomes of the fungi and its host were analysed. The 20.2 Mb U. esculenta draft genome of 6,654 predicted genes including mating, primary metabolism, secreted proteins, shared a high similarity to related Smut fungi. But U. esculenta prefers RNA silencing not repeat-induced point in defence and has more introns per gene, indicating relatively slow evolution rate. The fungus also lacks some genes in amino acid biosynthesis pathway which were filled by up-regulated host genes and developed distinct amino acid response mechanism to balance the infection-resistance interaction. Besides, U. esculenta lost some surface sensors, important virulence factors and host range-related effectors to maintain the economic endophytic life. The elucidation of the U. esculenta genomic information as well as expression profiles can not only contribute to more comprehensive insights into the molecular mechanism underlying artificial selection but also into smut fungi-host interactions.
Collapse
Affiliation(s)
- Zihong Ye
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Yao Pan
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Yafen Zhang
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Haifeng Cui
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| | - Gulei Jin
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich Heine University, Düsseldorf, Germany.,Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - Longjiang Fan
- Department of Agronomy & Zhejiang Key Laboratory of Crop Germplasm Resources, Zhejiang University, Hangzhou, China
| | - Xiaoping Yu
- Department of Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou, China
| |
Collapse
|
20
|
Yang QQ, Zhao DS, Zhang CQ, Wu HY, Li QF, Gu MH, Sun SSM, Liu QQ. A Connection between Lysine and Serotonin Metabolism in Rice Endosperm. PLANT PHYSIOLOGY 2018; 176:1965-1980. [PMID: 29363563 PMCID: PMC5841688 DOI: 10.1104/pp.17.01283] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 01/10/2018] [Indexed: 05/21/2023]
Abstract
Cereal endosperms produce a vast array of metabolites, including the essential amino acid lysine (Lys). Enhanced accumulation of Lys has been achieved via metabolic engineering in cereals, but the potential connection between metabolic engineering and Lys fortification is unclear. In mature seeds of engineered High Free Lysine (HFL) rice (Oryza sativa), the endosperm takes on a characteristic dark-brown appearance. In this study, we use an integrated metabolomic and transcriptomic approach combined with functional validation to elucidate the key metabolites responsible for the dark-brown phenotype. Importantly, we found that serotonin biosynthesis was elevated dramatically and closely linked with dark-brown endosperm color in HFL rice. A functional connection between serotonin and endosperm color was confirmed via overexpression of TDC3, a key enzyme of serotonin biosynthesis. Furthermore, we show that both the jasmonate signaling pathway and TDC expression were strongly induced in the late stage of endosperm development of HFL rice, coinciding with serotonin accumulation and dark-brown pigmentation. We propose a model for the metabolic connection between Lys and serotonin metabolism in which elevated 2-aminoadipate from Lys catabolism may play a key role in the connection between the jasmonate signaling pathway, serotonin accumulation, and the brown phenotype in rice endosperm. Our data provide a deeper understanding of amino acid metabolism in rice. In addition, the finding that both Lys and serotonin accumulate in HFL rice grains should promote efforts to create a nutritionally favorable crop.
Collapse
Affiliation(s)
- Qing-Qing Yang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Dong-Sheng Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chang-Quan Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hong-Yu Wu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Qian-Feng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ming-Hong Gu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiao-Quan Liu
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
21
|
Maksym RP, Ghirardo A, Zhang W, von Saint Paul V, Lange B, Geist B, Hajirezaei MR, Schnitzler JP, Schäffner AR. The Defense-Related Isoleucic Acid Differentially Accumulates in Arabidopsis Among Branched-Chain Amino Acid-Related 2-Hydroxy Carboxylic Acids. FRONTIERS IN PLANT SCIENCE 2018; 9:766. [PMID: 29937770 PMCID: PMC6002512 DOI: 10.3389/fpls.2018.00766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 05/18/2023]
Abstract
The branched-chain amino acid (BCAA) related 2-hydroxy carboxylic acid isoleucic acid (ILA) enhances salicylic acid-mediated pathogen defense in Arabidopsis thaliana. ILA has been identified in A. thaliana as its glucose conjugate correlated with the activity of the small-molecule glucosyltransferase UGT76B1, which can glucosylate both salicylic acid and ILA in vitro. However, endogenous levels of the ILA aglycon have not yet been determined in planta. To quantify ILA as well as the related leucic acid (LA) and valic acid (VA) in plant extracts, a sensitive method based on the derivatization of small carboxylic acids by silylation and gas chromatography-mass spectrometric analysis was developed. ILA was present in all species tested including several monocotyledonous and dicotyledonous plants as well as broadleaf and coniferous trees, whereas LA and VA were only detectable in a few species. In A. thaliana both ILA and LA were found. However, their levels varied during plant growth and in root vs. leaves. ILA levels were higher in 2-week-old leaves and decreased in older plants, whereas LA exhibited a reverted accumulation pattern. Roots displayed higher ILA and LA levels compared to leaves. ILA was inversely related to UGT76B1 expression level indicating that UGT76B1 glucosylates ILA in planta. In contrast, LA was not affected by the expression of UGT76B1. To address the relation of both 2-hydroxy acids to plant defense, we studied ILA and LA levels upon infection by Pseudomonas syringae. LA abundance remained unaffected, whereas ILA was reduced. This change suggests an ILA-related attenuation of the salicylic acid response. Collectively, the BCAA-related ILA and LA differentially accumulated in Arabidopsis, supporting a specific role and regulation of the defense-modulating small-molecule ILA among these 2-hydroxy acids. The new sensitive method will pave the way to further unravel their role in plants.
Collapse
Affiliation(s)
- Rafał P. Maksym
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Andrea Ghirardo
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Wei Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | | | - Birgit Lange
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Mohammad-Reza Hajirezaei
- Molecular Plant Nutrition, Leibniz-Institute for Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Jörg-Peter Schnitzler
- Research Unit for Environmental Simulation, Helmholtz Zentrum München, Munich, Germany
| | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Munich, Germany
- *Correspondence: Anton R. Schäffner,
| |
Collapse
|
22
|
Killiny N, Nehela Y. Metabolomic Response to Huanglongbing: Role of Carboxylic Compounds in Citrus sinensis Response to 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:666-678. [PMID: 28510485 DOI: 10.1094/mpmi-05-17-0106-r] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Huanglongbing, a destructive disease of citrus, is caused by the fastidious bacterium 'Candidatus Liberibacter asiaticus' and transmitted by Asian citrus psyllid, Diaphorina citri. The impact of 'Ca. L. asiaticus' infection or D. citri infestation on Valencia sweet orange (Citrus sinensis) leaf metabolites was investigated using gas chromatography mass spectrometry, followed by gene expression analysis for 37 genes involved in jasmonic acid (JA), salicylic acid (SA), and proline-glutamine pathways. The total amino acid abundance increased after 'Ca. L. asiaticus' infection, while the total fatty acids increased dramatically after infestation with D. citri, compared with control plants. Seven amino acids (glycine, l-isoleucine, l-phenylalanine, l-proline, l-serine, l-threonine, and l-tryptophan) and five organic acids (benzoic acid, citric acid, fumaric acid, SA, and succinic acid) increased in 'Ca. L. asiaticus'-infected plants. On the other hand, the abundance of trans-JA and its precursor α-linolenic increased in D. citri-infested plants. Surprisingly, the double attack of both D. citri infestation and 'Ca. L. asiaticus' infection moderated the metabolic changes in all chemical classes studied. In addition, the gene expression analysis supported these results. Based on these findings, we suggest that, although amino acids such as phenylalanine are involved in citrus defense against 'Ca. L. asiaticus' infection through the activation of an SA-mediated pathway, fatty acids, especially α-linolenic acid, are involved in defense against D. citri infestation via the induction of a JA-mediated pathway.
Collapse
Affiliation(s)
- Nabil Killiny
- 1 Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred 33850, U.S.A.; and
| | - Yasser Nehela
- 1 Department of Plant Pathology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd., Lake Alfred 33850, U.S.A.; and
- 2 Department of Agricultural Botany, Faculty of Agriculture, Tanta University, Tanta, Egypt
| |
Collapse
|
23
|
Dinkeloo K, Boyd S, Pilot G. Update on amino acid transporter functions and on possible amino acid sensing mechanisms in plants. Semin Cell Dev Biol 2017; 74:105-113. [PMID: 28705659 DOI: 10.1016/j.semcdb.2017.07.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
Abstract
Amino acids are essential components of plant metabolism, not only as constituents of proteins, but also as precursors of important secondary metabolites and as carriers of organic nitrogen between the organs of the plant. Transport across intracellular membranes and translocation of amino acids within the plant is mediated by membrane amino acid transporters. The past few years have seen the identification of a new family of amino acid transporters in Arabidopsis, the characterization of intracellular amino acid transporters, and the discovery of new roles for already known proteins. While amino acid metabolism needs to be tightly coordinated with amino acid transport activity and carbohydrate metabolism, no gene involved in amino acid sensing in plants has been unequivocally identified to date. This review aims at summarizing the recent data accumulated on the identity and function of amino acid transporters in plants, and discussing the possible identity of amino acid sensors based on data from other organisms.
Collapse
Affiliation(s)
- Kasia Dinkeloo
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Shelton Boyd
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA.
| |
Collapse
|
24
|
Donze-Reiner T, Palmer NA, Scully ED, Prochaska TJ, Koch KG, Heng-Moss T, Bradshaw JD, Twigg P, Amundsen K, Sattler SE, Sarath G. Transcriptional analysis of defense mechanisms in upland tetraploid switchgrass to greenbugs. BMC PLANT BIOLOGY 2017; 17:46. [PMID: 28209137 PMCID: PMC5314684 DOI: 10.1186/s12870-017-0998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/08/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Aphid infestation of switchgrass (Panicum virgatum) has the potential to reduce yields and biomass quality. Although switchgrass-greenbug (Schizaphis graminum; GB) interactions have been studied at the whole plant level, little information is available on plant defense responses at the molecular level. RESULTS The global transcriptomic response of switchgrass cv Summer to GB was monitored by RNA-Seq in infested and control (uninfested) plants harvested at 5, 10, and 15 days after infestation (DAI). Differentially expressed genes (DEGs) in infested plants were analyzed relative to control uninfested plants at each time point. DEGs in GB-infested plants induced by 5-DAI included an upregulation of reactive burst oxidases and several cell wall receptors. Expression changes in genes linked to redox metabolism, cell wall structure, and hormone biosynthesis were also observed by 5-DAI. At 10-DAI, network analysis indicated a massive upregulation of defense-associated genes, including NAC, WRKY, and MYB classes of transcription factors and potential ancillary signaling molecules such as leucine aminopeptidases. Molecular evidence for loss of chloroplastic functions was also detected at this time point. Supporting these molecular changes, chlorophyll content was significantly decreased, and ROS levels were elevated in infested plants 10-DAI. Total peroxidase and laccase activities were elevated in infested plants at 10-DAI relative to control uninfested plants. The net result appeared to be a broad scale defensive response that led to an apparent reduction in C and N assimilation and a potential redirection of nutrients away from GB and towards the production of defensive compounds, such as pipecolic acid, chlorogenic acid, and trehalose by 10-DAI. By 15-DAI, evidence of recovery in primary metabolism was noted based on transcript abundances for genes associated with carbon, nitrogen, and nutrient assimilation. CONCLUSIONS Extensive remodeling of the plant transcriptome and the production of ROS and several defensive metabolites in an upland switchgrass cultivar were observed in response to GB feeding. The early loss and apparent recovery in primary metabolism by 15-DAI would suggest that these transcriptional changes in later stages of GB infestation could underlie the recovery response categorized for this switchgrass cultivar. These results can be exploited to develop switchgrass lines with more durable resistance to GB and potentially other aphids.
Collapse
Affiliation(s)
- Teresa Donze-Reiner
- Department of Biology, West Chester University of Pennsylvania, West Chester, PA 19383 USA
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Erin D. Scully
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
- Stored Product Insect and Engineering Research Unit, USDA-ARS, Manhattan, KS 66502 USA
| | - Travis J. Prochaska
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
- Present address: North Central Research Extension Center, North Dakota State University, South Minot, ND 58701 USA
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583-0816 USA
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849 USA
| | - Keenan Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915 USA
| | - Scott E. Sattler
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, 251 Filley Hall, East Campus, UNL, Lincoln, NE 68583-0937 USA
| |
Collapse
|
25
|
Pratelli R, Pilot G. Regulation of amino acid metabolic enzymes and transporters in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5535-56. [PMID: 25114014 DOI: 10.1093/jxb/eru320] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.
Collapse
Affiliation(s)
- Réjane Pratelli
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| | - Guillaume Pilot
- Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24060, USA
| |
Collapse
|