1
|
Sun L, Cao X, Du J, Wang Y, Zhang F. Canola ( Brassica napus) enhances sodium chloride and sodium ion tolerance by maintaining ion homeostasis, higher antioxidant enzyme activity and photosynthetic capacity fluorescence parameters. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23089. [PMID: 39088691 DOI: 10.1071/fp23089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/08/2024] [Indexed: 08/03/2024]
Abstract
Under salt stress, plants are forced to take up and accumulate large amounts of sodium (Na+ ) and chloride (Cl- ). Although most studies have focused on the toxic effects of Na+ on plants, Cl- stress is also very important. This study aimed to clarify physiological mechanisms underpinning growth contrasts in canola varieties with different salt tolerance. In hydroponic experiments, 150mM Na+ , Cl- and NaCl were applied to salt-tolerant and sensitive canola varieties. Both NaCl and Na+ treatments inhibited seedling growth. NaCl caused the strongest damage to both canola varieties, and stress damage was more severe at high concentrations of Na+ than Cl- . High Cl- promoted the uptake of ions (potassium K+ , calcium Ca2+ ) and induced antioxidant defence. Salt-tolerant varieties were able to mitigate ion toxicity by maintaining lower Na+ content in the root system for a short period of time, and elevating magnesium Mg2+ content, Mg2+ /Na+ ratio, and antioxidant enzyme activity to improve photosynthetic capacity. They subsequently re-established new K+ /Na+ and Ca2+ /Na+ balances to improve their salt tolerance. High concentrations of Cl salts caused less damage to seedlings than NaCl and Na salts, and Cl- also had a positive role in inducing oxidative stress and responsive antioxidant defence in the short term.
Collapse
Affiliation(s)
- Lupeng Sun
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xiaoqiang Cao
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Juncan Du
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yan Wang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Fenghua Zhang
- College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
2
|
Zhang P, Zhang F, Wu Z, Cahaeraduqin S, Liu W, Yan Y. Analysis on the salt tolerance of Nitraria sibirica Pall. based on Pacbio full-length transcriptome sequencing. PLANT CELL REPORTS 2023; 42:1665-1686. [PMID: 37479883 DOI: 10.1007/s00299-023-03052-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
KEY MESSAGE Nitraria sibirica Pall. regulates its tolerance to salt stress mainly by adjusting ion balance, modifying cell wall structure, and activating signal transduction pathways. N. sibirica, as a typical halophyte, can not only effectively restore saline-alkali land, but also has high economic value. However, studies on its salt tolerance at combining molecular and physiological levels were limited. In this study, the salt tolerance of N. sibirica was analyzed based on Pacbio full-length transcriptome sequencing, and the salt tolerance in the physiological level was verified by key genes. The results showed that 89,017 full-length transcripts were obtained, of which 84,632 sequences were annotated. A total of 86,482 coding sequences (CDS) were predicted and 6561 differentially expressed genes (DEGs) were identified. DEGs were significantly enriched in "sodium ion homeostasis", "response to osmotic stress", "reactive oxygen species metabolic process", "defense response by cell wall thickening", "signal transduction", etc. The expression levels for most of these DEGs increased under salt stress. A total of 69 key genes were screened based on weighted gene co-expression network analysis (WGCNA), of which 33 were first reported on salt tolerance. Moreover, NsRabE1c gene with the highest expression level was selected to verify its salt tolerance. Over-expression of NsRabE1c gene enhanced the germination potential and root length of transgenic Arabidopsis thaliana plants without salt treatment as compared to those of Col-0 and AtRabE1c mutant. The expression levels of NsRabE1c decreased in the growth stagnation phase, while significantly increased in the growth recovery phase under salt stress. We predicted that NsRabE1c gene help N. sibirica resist salt stress through the regulation of plant growth. The results of this study deepen the understanding of salinity resistance in N. sibirica.
Collapse
Affiliation(s)
- Panpan Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fengxiang Zhang
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Zhiheng Wu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Sunaer Cahaeraduqin
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Liu
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| | - Yongqing Yan
- School of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Improvement of Salinity Tolerance in Water-Saving and Drought-Resistance Rice (WDR). Int J Mol Sci 2023; 24:ijms24065444. [PMID: 36982522 PMCID: PMC10049413 DOI: 10.3390/ijms24065444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Rice is one of the most economically important staple food crops in the world. Soil salinization and drought seriously restrict sustainable rice production. Drought aggravates the degree of soil salinization, and, at the same time, increased soil salinity also inhibits water absorption, resulting in physiological drought stress. Salt tolerance in rice is a complex quantitative trait controlled by multiple genes. This review presents and discusses the recent research developments on salt stress impact on rice growth, rice salt tolerance mechanisms, the identification and selection of salt-tolerant rice resources, and strategies to improve rice salt tolerance. In recent years, the increased cultivation of water-saving and drought-resistance rice (WDR) has shown great application potential in alleviating the water resource crisis and ensuring food and ecological security. Here, we present an innovative germplasm selection strategy of salt-tolerant WDR, using a population that is developed by recurrent selection based on dominant genic male sterility. We aim to provide a reference for efficient genetic improvement and germplasm innovation of complex traits (drought and salt tolerance) that can be translated into breeding all economically important cereal crops.
Collapse
|
4
|
Karmakar K, Chakraborty S, Kumar JR, Nath U, Nataraja KN, Chakravortty D. Role of lactoyl-glutathione lyase of Salmonella in the colonization of plants under salinity stress. Res Microbiol 2023; 174:104045. [PMID: 36842715 DOI: 10.1016/j.resmic.2023.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
Salmonella, a foodborne human pathogen, can colonize the members of the kingdom Plantae. However, the basis of the persistence of Salmonella in plants is largely unknown. Plants encounter various biotic and abiotic stress agents in soil. We conjectured that methylglyoxal (MG), one of the common metabolites that accumulate in plants during both biotic and abiotic stress, plays a role in regulating the plant-Salmonella interaction. The interaction of Salmonella Typhimurium with plants under salinity stress was investigated. It was observed that wild-type Salmonella Typhimurium can efficiently colonize the root, but mutant bacteria lacking MG detoxifying enzyme, lactoyl-glutathione lyase (Lgl), showed lower colonization in roots exclusively under salinity stress. This colonization defect is due to the poor viability of the mutated bacterial strains under these conditions. This is the first report to prove the role of MG-detoxification genes in the colonization of stressed plants and highlights the possible involvement of metabolic genes in the evolution of the plant-associated life of Salmonella.
Collapse
Affiliation(s)
- Kapudeep Karmakar
- Regional Research Station, Terai Zone, Uttar Banga Krishi Viswavidyalaya, Coochbehar-736165, India.
| | - Sangeeta Chakraborty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Jyothsna R Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
| | - Karaba N Nataraja
- Department of Crop Physiology, University of Agricultural Science, Bangalore 560012, India.
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Adjunct Faculty, School of Biology, Indian Institute of Science and Educational Research, Thiruvananthapuram 695551, India.
| |
Collapse
|
5
|
Salinity Tolerance of Halophytic Grass Puccinellia nuttalliana Is Associated with Enhancement of Aquaporin-Mediated Water Transport by Sodium. Int J Mol Sci 2022; 23:ijms23105732. [PMID: 35628537 PMCID: PMC9145133 DOI: 10.3390/ijms23105732] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
In salt-sensitive plants, root hydraulic conductivity is severely inhibited by NaCl, rapidly leading to the loss of water balance. However, halophytic plants appear to effectively control plant water flow under salinity conditions. In this study, we tested the hypothesis that Na+ is the principal salt factor responsible for the enhancement of aquaporin-mediated water transport in the roots of halophytic grasses, and this enhancement plays a significant role in the maintenance of water balance, gas exchange, and the growth of halophytic plants exposed to salinity. We examined the effects of treatments with 150 mM of NaCl, KCl, and Na2SO4 to separate the factors that affect water relations and, consequently, physiological and growth responses in three related grass species varying in salt tolerance. The grasses included relatively salt-sensitive Poa pratensis, moderately salt-tolerant Poa juncifolia, and the salt-loving halophytic grass Puccinellia nuttalliana. Our study demonstrated that sustained growth, chlorophyll concentrations, gas exchange, and water transport in Puccinellia nuttalliana were associated with the presence of Na in the applied salt treatments. Contrary to the other examined grasses, the root cell hydraulic conductivity in Puccinellia nuttalliana was enhanced by the 150 mM NaCl and 150 mM Na2SO4 treatments. This enhancement was abolished by the 50 µM HgCl2 treatment, demonstrating that Na was the factor responsible for the increase in mercury-sensitive, aquaporin-mediated water transport. The observed increases in root Ca and K concentrations likely played a role in the transcriptional and (or) posttranslational regulation of aquaporins that enhanced root water transport capacity in Puccinellia nuttalliana. The study demonstrates that Na plays a key role in the aquaporin-mediated root water transport of the halophytic grass Puccinellia nuttalliana, contributing to its salinity tolerance.
Collapse
|
6
|
OKUBO S, OZEKI Y, YAMADA T, SAITO K, ISHIHARA N, YANAGIDA Y, MAYANAGI G, WASHIO J, TAKAHASHI N. Facile Fabrication of All-solid-state Ion-selective Electrodes by Laminating and Drop-casting for Multi-sensing. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shingo OKUBO
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Yoshihisa OZEKI
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Tetsuya YAMADA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Kosuke SAITO
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Noboru ISHIHARA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Yasuko YANAGIDA
- Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Institute of Technology
| | - Gen MAYANAGI
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| | - Jumpei WASHIO
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| | - Nobuhiro TAKAHASHI
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry
| |
Collapse
|
7
|
Application of High Voltage Electrical Discharge Treatment to Improve Wheat Germination and Early Growth under Drought and Salinity Conditions. PLANTS 2021; 10:plants10102137. [PMID: 34685946 PMCID: PMC8538633 DOI: 10.3390/plants10102137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/02/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
The environmentally friendly, physical method of high voltage electrical discharge (HVED) was developed to improve the drought and salinity tolerance of two wheat genotypes. Unlike other plasma technologies, HVED treatment involves the discharge of electricity in water. In this study, the effect of HVED pretreatment on wheat germination and early vegetative growth under drought (0%, 15%, 20% and 30% PEG) and salinity (0, 90, 160 and 230 mM NaCl) stress conditions was investigated. HVED-exposed seeds showed altered seed surfaces and became more permeable to water uptake, resulting in higher germination percentages, germination index values, and shoot and root growth under the control and all drought and salinity concentrations. Moreover, the electrical conductivity of the water medium increased significantly, indicating HVED-induced reactions of ionization and dissociations of water molecules occurred. In addition, HVED pretreatment in the salt experiment improved the tolerance index values of the shoots and roots. The most pronounced genotypic variations occurred under the highest stress levels (30% PEG or 230 mM NaCl) and varied with the stress intensity and growth stage. The study results indicate that HVED pretreatment has the potential to improve drought and salt tolerance in wheat.
Collapse
|
8
|
Wang Y, Liu M, Wang X, Zhong L, Shi G, Xu Y, Li Y, Li R, Huang Y, Ye X, Li Z, Cui Z. A novel β-1,3-glucanase Gns6 from rice possesses antifungal activity against Magnaporthe oryzae. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153493. [PMID: 34403886 DOI: 10.1016/j.jplph.2021.153493] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 05/21/2023]
Abstract
As members of the pathogenesis-related protein (PR)-2 family, β-1,3-glucanases play pivotal roles in plant defense. Previous study showed that the rice genome contains 16 genes encoding putative β-1,3-glucanases, and the β-1,3-glucanases in subfamily A were deduced to be involved in plant defense. However, there was limited direct evidence. In this study, the expression of rice β-1,3-glucanases Gns2-Gns6 belonging to subfamily A in rice plant infection with Magnaporthe oryzae was investigated, and the enhanced expression of Gns6 during infection confirmed its crucial role in the defense of rice seedlings. Enzymological characterization revealed that Gns6 preferentially hydrolyzed laminarin, pachymaran, and yeast glucan. The β-1,3; 1,6-glucanase Gns6 exhibited a specific activity of 1.2 U/mg with laminarin as the substrate. In addition, Gns6 could hydrolyze laminarin via an endo-type mechanism, yielding a series of oligosaccharides with various degrees of polymerization that are known immune elicitors in plants. Moreover, Gns6 exhibited a significant inhibitory effect against the formation of the germ tubes and appressoria, with potential applications in plant protection. Taken together, this study shows that Gns6 is an essential effector in the defensive response of rice against pathogenic fungi.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Muxing Liu
- The Key Laboratory of Monitoring and Management of Plant Diseases and Insects of Chinese Ministry of Agriculture, College of Plant Protection, Nanjing Agriculture University, 210095, Nanjing, PR China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Lingli Zhong
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Guolong Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ye Xu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yangqing Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Ruolin Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences of Nanjing Agricultural University, 210095, Nanjing, PR China; Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
9
|
Ammonium Accumulation Caused by Reduced Tonoplast V-ATPase Activity in Arabidopsis thaliana. Int J Mol Sci 2020; 22:ijms22010002. [PMID: 33374906 PMCID: PMC7792577 DOI: 10.3390/ijms22010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
Plant vacuoles are unique compartments that play a critical role in plant growth and development. The vacuolar H+-ATPase (V-ATPase), together with the vacuolar H+-pyrophosphatase (V-PPase), generates the proton motive force that regulates multiple cell functions and impacts all aspects of plant life. We investigated the effect of V-ATPase activity in the vacuole on plant growth and development. We used an Arabidopsisthaliana (L.) Heynh. double mutant, vha-a2 vha-a3, which lacks two tonoplast-localized isoforms of the membrane-integral V-ATPase subunit VHA-a. The mutant is viable but exhibits impaired growth and leaf chlorosis. Nitrate assimilation led to excessive ammonium accumulation in the shoot and lower nitrogen uptake, which exacerbated growth retardation of vha-a2 vha-a3. Ion homeostasis was disturbed in plants with missing VHA-a2 and VHA-a3 genes, which might be related to limited growth. The reduced growth and excessive ammonium accumulation of the double mutant was alleviated by potassium supplementation. Our results demonstrate that plants lacking the two tonoplast-localized subunits of V-ATPase can be viable, although with defective growth caused by multiple factors, which can be alleviated by adding potassium. This study provided a new insight into the relationship between V-ATPase, growth, and ammonium accumulation, and revealed the role of potassium in mitigating ammonium toxicity.
Collapse
|
10
|
Wang GL, Ren XQ, Liu JX, Yang F, Wang YP, Xiong AS. Transcript profiling reveals an important role of cell wall remodeling and hormone signaling under salt stress in garlic. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:87-98. [PMID: 30529171 DOI: 10.1016/j.plaphy.2018.11.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/07/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Salt stress is one of the environmental factors that evidently limit plant growth and yield. Despite the fact that understanding plant response to salt stress is important to agricultural practice, the molecular mechanisms underlying salt tolerance in garlic remain unclear. In this study, garlic seedlings were exposed to 200 mM NaCl stress for 0, 1, 4, and 12 h, respectively. RNA-seq was applied to analyze the transcriptional response under salinity conditions. A total of 13,114 out of 25,530 differentially expressed unigenes were identified to have pathway annotation, which were mainly involved in purine metabolism, starch and sucrose metabolism, plant hormone signal transduction, flavone and flavonol biosynthesis, isoflavonoid biosynthesis, MAPK signaling pathway, and circadian rhythm. In addition, 272 and 295 differentially expressed genes were identified to be cell wall and hormone signaling-related, respectively, and their interactions under salinity stress were extensively discussed. The results from the current work would provide new resources for the breeding aimed at improving salt tolerance in garlic.
Collapse
Affiliation(s)
- Guang-Long Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Xu-Qin Ren
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Yang
- Institute of Horticulture, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou, 221131, China
| | - Yun-Peng Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
11
|
Maintenance of K+/Na+ Balance in the Roots of Nitraria sibirica Pall. in Response to NaCl Stress. FORESTS 2018. [DOI: 10.3390/f9100601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Using Non-invasive Micro-test Technology (NMT), the Na+, K+ and H+ flux profiles in the root meristem regions were investigated in Nitraria sibirica Pall. seedlings under different NaCl concentrations. NaCl stress increased the K+ and Na+ contents in the roots of N. sibirica seedlings. NaCl stress significantly increased the steady Na+ efflux from the N. sibirica seedling roots. Steady K+ effluxes were measured in the control roots (without NaCl) and in the roots treated with 200 mM NaCl, and no significant differences were observed between the two treatments. The steady K+ efflux from roots treated with 400 mM NaCl decreased gradually. NaCl treatment significantly increased the H+ influx. Pharmacological experiments showed that amiloride and sodium vanadate significantly inhibited the Na+ efflux and H+ influx, suggesting that the Na+ efflux was mediated by a Na+/H+ antiporter using energy provided by plasma membrane H+-ATPase. The NaCl-induced root K+ efflux was inhibited by the K+ channel inhibitor tetraethylammonium chloride (TEA), and was significantly increased by the H+-ATPase inhibitor sodium vanadate. The NaCl-induced K+ efflux was mediated by depolarization-activated outward-rectifying K+ channels and nonselective cation channels (NSCCs). Under salt stress, N. sibirica seedlings showed increased Na+ efflux due to increased plasma membrane H+-ATPase and Na+/H+ antiporter activity. High H+ pump activity not only restricts the Na+ influx through NSCCs, but also limits K+ leakage through outward-rectifying K+ channels and NSCCs, leading to maintenance of the K+/Na+ balance and higher salt tolerance.
Collapse
|
12
|
Jia B, Sun M, DuanMu H, Ding X, Liu B, Zhu Y, Sun X. GsCHX19.3, a member of cation/H + exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 2017; 7:9423. [PMID: 28842677 PMCID: PMC5573395 DOI: 10.1038/s41598-017-09772-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 07/28/2017] [Indexed: 01/21/2023] Open
Abstract
Cation/H+ exchangers (CHX) are characterized to be involved in plant growth, development and stress responses. Although soybean genome sequencing has been completed, the CHX family hasn't yet been systematically analyzed, especially in wild soybean. Here, through Hidden Markov Model search against Glycine soja proteome, 34 GsCHXs were identified and phylogenetically clustered into five groups. Members within each group showed high conservation in motif architecture. Interestingly, according to our previous RNA-seq data, only Group IVa members exhibited highly induced expression under carbonate alkaline stress. Among them, GsCHX19.3 displayed the greatest up-regulation in response to carbonate alkaline stress, which was further confirmed by quantitative real-time PCR analysis. We also observed the ubiquitous expression of GsCHX19.3 in different tissues and its localization on plasma membrane. Moreover, we found that GsCHX19.3 expression in AXT4K, a yeast mutant lacking four ion transporters conferred resistance to low K+ at alkali pH, as well as carbonate stress. Consistently, in Arabidopsis, GsCHX19.3 overexpression increased plant tolerance both to high salt and carbonate alkaline stresses. Furthermore, we also confirmed that GsCHX19.3 transgenic lines showed lower Na+ concentration but higher K+/Na+ values under salt-alkaline stress. Taken together, our findings indicated that GsCHX19.3 contributed to high salinity and carbonate alkaline tolerance.
Collapse
Affiliation(s)
- Bowei Jia
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Mingzhe Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China
| | - Huizi DuanMu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, Medicinaregatan, 9ES-413 90, Gothenburg, Sweden
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, P.R. China.
| | - Xiaoli Sun
- Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing, 163319, P.R. China.
| |
Collapse
|
13
|
Yaish MW, Patankar HV, Assaha DVM, Zheng Y, Al-Yahyai R, Sunkar R. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genomics 2017; 18:246. [PMID: 28330456 PMCID: PMC5423419 DOI: 10.1186/s12864-017-3633-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/16/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Date palm, as one of the most important fruit crops in North African and West Asian countries including Oman, is facing serious growth problems due to salinity, arising from persistent use of saline water for irrigation. Although date palm is a relatively salt-tolerant plant species, its adaptive mechanisms to salt stress are largely unknown. RESULTS In order to get an insight into molecular mechanisms of salt tolerance, RNA was profiled in leaves and roots of date palm seedlings subjected to NaCl for 10 days. Under salt stress, photosynthetic parameters were differentially affected; all gas exchange parameters were decreased but the quantum yield of PSII was unaffected while non-photochemical quenching was increased. Analyses of gene expression profiles revealed 2630 and 4687 genes were differentially expressed in leaves and roots, respectively, under salt stress. Of these, 194 genes were identified as commonly responding in both the tissue sources. Gene ontology (GO) analysis in leaves revealed enrichment of transcripts involved in metabolic pathways including photosynthesis, sucrose and starch metabolism, and oxidative phosphorylation, while in roots genes involved in membrane transport, phenylpropanoid biosynthesis, purine, thiamine, and tryptophan metabolism, and casparian strip development were enriched. Differentially expressed genes (DEGs) common to both tissues included the auxin responsive gene, GH3, a putative potassium transporter 8 and vacuolar membrane proton pump. CONCLUSIONS Leaf and root tissues respond differentially to salinity stress and this study has revealed genes and pathways that are associated with responses to elevated NaCl levels and thus may play important roles in salt tolerance providing a foundation for functional characterization of salt stress-responsive genes in the date palm.
Collapse
Affiliation(s)
- Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Himanshu V Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Dekoum V M Assaha
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Rashid Al-Yahyai
- Department of Crop Science, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| |
Collapse
|
14
|
Wang X, Komatsu S. Plant subcellular proteomics: Application for exploring optimal cell function in soybean. J Proteomics 2016; 143:45-56. [PMID: 26808589 DOI: 10.1016/j.jprot.2016.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 01/13/2016] [Indexed: 01/11/2023]
Abstract
UNLABELLED Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. BIOLOGICAL SIGNIFICANCE Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of subcellular proteomics are presented, and functional proteins regulated among different subcellular are discussed. Subcellular proteomics contributes greatly to uncovering responses and interactions among subcellular compartments during development and under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xin Wang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
15
|
Volkov V. Salinity tolerance in plants. Quantitative approach to ion transport starting from halophytes and stepping to genetic and protein engineering for manipulating ion fluxes. FRONTIERS IN PLANT SCIENCE 2015; 6:873. [PMID: 26579140 PMCID: PMC4621421 DOI: 10.3389/fpls.2015.00873] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/01/2015] [Indexed: 05/18/2023]
Abstract
Ion transport is the fundamental factor determining salinity tolerance in plants. The Review starts from differences in ion transport between salt tolerant halophytes and salt-sensitive plants with an emphasis on transport of potassium and sodium via plasma membranes. The comparison provides introductory information for increasing salinity tolerance. Effects of salt stress on ion transport properties of membranes show huge opportunities for manipulating ion fluxes. Further steps require knowledge about mechanisms of ion transport and individual genes of ion transport proteins. Initially, the Review describes methods to measure ion fluxes, the independent set of techniques ensures robust and reliable basement for quantitative approach. The Review briefly summarizes current data concerning Na(+) and K(+) concentrations in cells, refers to primary thermodynamics of ion transport and gives special attention to individual ion channels and transporters. Simplified scheme of a plant cell with known transport systems at the plasma membrane and tonoplast helps to imagine the complexity of ion transport and allows choosing specific transporters for modulating ion transport. The complexity is enhanced by the influence of cell size and cell wall on ion transport. Special attention is given to ion transporters and to potassium and sodium transport by HKT, HAK, NHX, and SOS1 proteins. Comparison between non-selective cation channels and ion transporters reveals potential importance of ion transporters and the balance between the two pathways of ion transport. Further on the Review describes in detail several successful attempts to overexpress or knockout ion transporters for changing salinity tolerance. Future perspectives are questioned with more attention given to promising candidate ion channels and transporters for altered expression. Potential direction of increasing salinity tolerance by modifying ion channels and transporters using single point mutations is discussed and questioned. An alternative approach from synthetic biology is to create new regulation networks using novel transport proteins with desired properties for transforming agricultural crops. The approach had not been widely used earlier; it leads also to theoretical and pure scientific aspects of protein chemistry, structure-function relations of membrane proteins, systems biology and physiology of stress and ion homeostasis. Summarizing, several potential ways are aimed at required increase in salinity tolerance of plants of interest.
Collapse
Affiliation(s)
- Vadim Volkov
- Faculty of Life Sciences and Computing, London Metropolitan UniversityLondon, UK
| |
Collapse
|
16
|
Khan MS, Ahmad D, Khan MA. Trends in genetic engineering of plants with (Na+/H+) antiporters for salt stress tolerance. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1060868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
17
|
Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN. Ionic and photosynthetic homeostasis in quinoa challenged by salinity and drought - mechanisms of tolerance. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:136-148. [PMID: 32480660 DOI: 10.1071/fp14132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/30/2014] [Indexed: 06/11/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) grown under field conditions was exposed to five irrigation water salinities (0, 10, 20, 30 and 40dSm-1; 4:1 NaCl:CaCl2 molar ratio) from flowering, and divided between full irrigation and progressive drought (PD) during seed filling. Quinoa demonstrated homeostatic mechanisms which contributed to quinoa's extraordinary tolerance. Salinity increased K+ and Na+ uptake by 60 and 100kgha-1, respectively, resulting in maintenance of cell turgor by osmotic adjustment, and a 50% increase of the leaf's fresh weight (FW):dry weight (DW) ratio and non-significant increase in elasticity enhanced crop water-capacitance. Day respiration (Rd) increased 2.7 times at high salinity but decreased 0.6 times during drought compared with control. Mesophyll conductance (gm) tended to be negatively affected by salinity as the increased succulence (FW:DW) possibly decreased intercellular space and increased cell-wall thickness. However, the increased K+ uptake seemed to alleviate biochemical limitations, as maximum Rubisco carboxylation rate (Vcmax) and photosynthetic electron transport (J) tended to increase under salinity. Overall, salinity and PD restricted stomatal conductance (gs) and photosynthesis (An) moderately, leading to decreased leaf internal to ambient [CO2], increase of intrinsic-water-use-efficiency (An/gs). The saturated electrical conductivity (ECe) resulting in 50% yield was estimated to be 25dSm-1, reaching no yield at 51.5dSm-1.
Collapse
Affiliation(s)
- Fatemeh Razzaghi
- Water Engineering Department, College of Agriculture, Shiraz University, Iran
| | - Sven-Erik Jacobsen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Højbakkeggaard Allé 13, 2630 Taastrup, Denmark
| | - Christian Richardt Jensen
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Højbakkeggaard Allé 13, 2630 Taastrup, Denmark
| | - Mathias Neumann Andersen
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Blichers Allé 20, DK-8830 Tjele, Denmark
| |
Collapse
|
18
|
Newman I, Chen SL, Porterfield DM, Sun J. Non-invasive flux measurements using microsensors: theory, limitations, and systems. Methods Mol Biol 2013; 913:101-17. [PMID: 22895754 DOI: 10.1007/978-1-61779-986-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Knowledge of the fluxes of ions and neutral molecules across the outer membrane or boundary of living tissues and cells is an important strand of applied molecular biology. Such fluxes can be measured non-invasively with good resolution in time and space. Two systems (MIFE™ and SIET) have been developed and have become widely used to implement this technique, and they are commercially available. This Chapter is the first comparative description of these two systems. It gives the context, the basic underlying theory, practical limitations inherent in the technique, theoretical developments, guidance on the practicalities of the technique, and the functionality of the two systems. Although the technique is strongly relevant to plant salt tolerance and other plant stresses (drought, temperature, pollutants, waterlogging), it also has rich relevance throughout biomedical studies and the molecular genetics of transport proteins.
Collapse
Affiliation(s)
- Ian Newman
- School of Mathematics and Physics, University of Tasmania, Hobart, TAS, Australia.
| | | | | | | |
Collapse
|
19
|
Huang H, Wang Y, Wang S, Wu X, Yang K, Niu Y, Dai S. Transcriptome-wide survey and expression analysis of stress-responsive NAC genes in Chrysanthemum lavandulifolium. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:18-27. [PMID: 22794915 DOI: 10.1016/j.plantsci.2012.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/09/2012] [Accepted: 05/10/2012] [Indexed: 05/22/2023]
Abstract
The plant-specific NAC (NAM, ATAF, and CUC) transcription factor family plays a vital role in various plant growth and developmental processes as well as in stress resistance. Using RNA sequencing, we found that the ClNAC genes (ClNAC1-44) were the most strongly up-regulated transcription factor family in Chrysanthemum lavandulifolium leaves under salt treatment. We carried out reverse transcriptase polymerase chain reaction to monitor ClNAC genes response against multiple stresses and hormonal treatments including salt, drought, cold, heat, abscisic acid and salicylic acid treatments. The results showed that 35 ClNAC genes were differentially expressed in different organ, and 32 ClNAC genes could respond to at least 2 kinds of treatments. Quantitative real time polymerase chain reaction showed that 10 ClNAC genes belonging to 7 different subfamilies could respond to at least 5 kinds of treatments. Over 50-fold variation in transcriptional levels of ClNAC17 and ClNAC21 genes was observed under 6 different types of treatments. In the present study, high-level expression of ClNAC genes under abiotic stresses and hormonal treatments suggests that the NAC transcription factors play important roles in abiotic stress tolerance and adaptation.
Collapse
Affiliation(s)
- He Huang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China
| | - Yi Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China
| | - Shunli Wang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China; College of Life Science, Beijing Forestry University, Beijing 100038, China
| | - Xuan Wu
- College of Foresty, Beijing Forestry University, Beijing 100038, China
| | - Ke Yang
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China; School of Forestry and Environmental Studies, Yale University, New Haven, CT 06511, USA
| | - Yajing Niu
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China
| | - Silan Dai
- College of Landscape Architecture, Beijing Forestry University, Beijing 100038, China.
| |
Collapse
|
20
|
Patch-clamp protocols to study cell ionic homeostasis under saline conditions. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2012; 913:3-18. [PMID: 22895749 DOI: 10.1007/978-1-61779-986-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The patch-clamp technique was designed to measure any electrogenic transport across the whole cell and organelle (vacuolar) membranes and excised membrane patches. Here, we describe preparation of protoplasts and vacuoles, as well as patch-clamp assays, to detect the functional expression of K(+) and cation channels of plasma membrane and tonoplast, as well as plasma membrane anion channels and vacuolar and plasma membrane H(+) pumps. All of these contribute to the intracellular ionic homeostasis under saline conditions.
Collapse
|
21
|
Hossain Z, Nouri MZ, Komatsu S. Plant Cell Organelle Proteomics in Response to Abiotic Stress. J Proteome Res 2011; 11:37-48. [DOI: 10.1021/pr200863r] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zahed Hossain
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Department of Botany, West Bengal State University, Kolkata-700126, West Bengal, India
| | - Mohammad-Zaman Nouri
- National Institute of Crop Science, Tsukuba 305-8518, Japan
- Rice Research Institute of Iran, Deputy of Mazandaran, Amol 46191-91951, Iran
| | | |
Collapse
|
22
|
Kitsios G, Doonan JH. Cyclin dependent protein kinases and stress responses in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:204-9. [PMID: 21512322 PMCID: PMC3121979 DOI: 10.4161/psb.6.2.14835] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/13/2011] [Accepted: 01/15/2011] [Indexed: 05/18/2023]
Abstract
Plants have to adjust, grow and establish themselves in various changing environmental conditions. Additionally, the sessile life-style of plants requires the development of response mechanisms for their adaptation in such environmental cues. Under biotic and abiotic stress, plant growth is negatively affected mainly as a result of cell cycle inhibition. The perception of stress involves the activation of signaling cascades that result in a prolonged S-phase and delayed entry into mitosis. Although the molecular interactions that link the cell cycle machinery to perception of stress are not fully understood, recent studies indicated the involvement of Cyclin Dependent Kinases (CDKs) in the plant response machinery. CDKs are core cell cycle regulators but their activity has been implicated in additional diverse cellular processes. Here we review the impact of different types of abiotic stress on plant cell cycle progression and CDK activity, and discuss the contribution of CDK function in the signaling control of stress tolerance.
Collapse
Affiliation(s)
- Georgios Kitsios
- Agricultural University of Athens, Agricultural Biotechnology, Athens, Greece
| | | |
Collapse
|