1
|
Kisiel A, Krzemińska A, Cembrowska-Lech D, Miller T. Data Science and Plant Metabolomics. Metabolites 2023; 13:metabo13030454. [PMID: 36984894 PMCID: PMC10054611 DOI: 10.3390/metabo13030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
The study of plant metabolism is one of the most complex tasks, mainly due to the huge amount and structural diversity of metabolites, as well as the fact that they react to changes in the environment and ultimately influence each other. Metabolic profiling is most often carried out using tools that include mass spectrometry (MS), which is one of the most powerful analytical methods. All this means that even when analyzing a single sample, we can obtain thousands of data. Data science has the potential to revolutionize our understanding of plant metabolism. This review demonstrates that machine learning, network analysis, and statistical modeling are some techniques being used to analyze large quantities of complex data that provide insights into plant development, growth, and how they interact with their environment. These findings could be key to improving crop yields, developing new forms of plant biotechnology, and understanding the relationship between plants and microbes. It is also necessary to consider the constraints that come with data science such as quality and availability of data, model complexity, and the need for deep knowledge of the subject in order to achieve reliable outcomes.
Collapse
Affiliation(s)
- Anna Kisiel
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Adrianna Krzemińska
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| | - Danuta Cembrowska-Lech
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
- Department of Physiology and Biochemistry, Institute of Biology, University of Szczecin, Felczaka 3c, 71-412 Szczecin, Poland
| | - Tymoteusz Miller
- Institute of Marine and Environmental Sciences, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Polish Society of Bioinformatics and Data Science BIODATA, Popiełuszki 4c, 71-214 Szczecin, Poland
| |
Collapse
|
2
|
Romero-Muñoz M, Gálvez A, Martínez-Melgarejo PA, Piñero MC, del Amor FM, Albacete A, López-Marín J. The Interaction between Hydromulching and Arbuscular Mycorrhiza Improves Escarole Growth and Productivity by Regulating Nutrient Uptake and Hormonal Balance. PLANTS (BASEL, SWITZERLAND) 2022; 11:2795. [PMID: 36297821 PMCID: PMC9612124 DOI: 10.3390/plants11202795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
To improve water and nutrient use efficiencies some strategies have been proposed, such as the use of mulching techniques or arbuscular mycorrhizal fungi (AMF) inoculation. To gain insights into the interaction between the use of hydromulch and AMF inoculation on plant growth and productivity, escarole plants (Cichorium endivia, L.) were inoculated with the AMF Rhizophagus irregularis and grown with non-inoculated plants under different soil cover treatments: ecological hydromulching based on the substrate of mushroom cultivation (MS), low-density black polyethylene (PE), and non-covered soil (BS). AMF inoculation or the use of mulching alone, but especially their interaction, increased the plant growth. The growth improvement observed in AMF-inoculated escarole plants grown under hydromulching conditions was mainly associated with the upgrading of nitrogen and phosphorous use efficiency through the regulation of the hormonal balance. Both hydromulching and AMF inoculation were found to increase the active gibberellins (GAs) and cytokinins (CKs), resulting in a positive correlation between these hormones and the growth-related parameters. In contrast, the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and abscisic acid (ABA) decreased in AMF-inoculated plants and especially in those grown with the MS treatment. This study demonstrates that there exists a positive interaction between AMF and hydromulching which enhances the growth of escarole plants by improving nutrient use efficiency and hormonal balance.
Collapse
Affiliation(s)
- Miriam Romero-Muñoz
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Amparo Gálvez
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Purificación A. Martínez-Melgarejo
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - María Carmen Piñero
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Francisco M. del Amor
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| | - Alfonso Albacete
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | - Josefa López-Marín
- Institute for Agro-Environmental Research and Development of Murcia (IMIDA), Department of Plant Production and Agrotechnology, C/Mayor s/n, E-30150 Murcia, Spain
| |
Collapse
|
3
|
Wang Q, Wang B, Liu H, Han H, Zhuang H, Wang J, Yang T, Wang H, Qin Y. Comparative proteomic analysis for revealing the advantage mechanisms of salt-tolerant tomato ( Solanum lycoperscium). PeerJ 2022; 10:e12955. [PMID: 35251781 PMCID: PMC8893030 DOI: 10.7717/peerj.12955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/27/2022] [Indexed: 01/11/2023] Open
Abstract
Salt stress causes the quality change and significant yield loss of tomato. However, the resources of salt-resistant tomato were still deficient and the mechanisms of tomato resistance to salt stress were still unclear. In this study, the proteomic profiles of two salt-tolerant and salt-sensitive tomato cultivars were investigated to decipher the salt-resistance mechanism of tomato and provide novel resources for tomato breeding. We found high abundance proteins related to nitrate and amino acids metabolismsin the salt-tolerant cultivars. The significant increase in abundance of proteins involved in Brassinolides and GABA biosynthesis were verified in salt-tolerant cultivars, strengthening the salt resistance of tomato. Meanwhile, salt-tolerant cultivars with higher abundance and activity of antioxidant-related proteins have more advantages in dealing with reactive oxygen species caused by salt stress. Moreover, the salt-tolerant cultivars had higher photosynthetic activity based on overexpression of proteins functioned in chloroplast, guaranteeing the sufficient nutrient for plant growth under salt stress. Furthermore, three key proteins were identified as important salt-resistant resources for breeding salt-tolerant cultivars, including sterol side chain reductase, gamma aminobutyrate transaminase and starch synthase. Our results provided series valuable strategies for salt-tolerant cultivars which can be used in future.
Collapse
Affiliation(s)
- Qiang Wang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China,Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Baike Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Huifang Liu
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongwei Han
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hongmei Zhuang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Juan Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Tao Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Hao Wang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yong Qin
- College of Horticulture, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Ali AAM, Romdhane WB, Tarroum M, Al-Dakhil M, Al-Doss A, Alsadon AA, Hassairi A. Analysis of Salinity Tolerance in Tomato Introgression Lines Based on Morpho-Physiological and Molecular Traits. PLANTS 2021; 10:plants10122594. [PMID: 34961065 PMCID: PMC8704676 DOI: 10.3390/plants10122594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
The development of salt-tolerant tomato genotypes is a basic requirement to overcome the challenges of tomato production under salinity in the field or soil-free farming. Two groups of eight tomato introgression lines (ILs) each, were evaluated for salinity tolerance. Group-I and the group-II resulted from the following crosses respectively: Solanum lycopersicum cv-6203 × Solanum habrochaites and Solanum lycopersicum M82 × Solanum pennellii. Salt tolerance level was assessed based on a germination percentage under NaCl (0, 75, 100 mM) and in the vegetative stage using a hydroponic growing system (0, 120 mM NaCl). One line from group I (TA1648) and three lines from group II (IL2-1, IL2-3, and IL8-3) were shown to be salt-tolerant since their germination percentages were significantly higher at 75 and 100 mM NaCl than that of their respective cultivated parents cvE6203 and cvM82. Using the hydroponic system, IL TA1648 and IL 2-3 showed the highest value of plant growth traits and chlorophyll concentration. The expression level of eight salt-responsive genes in the leaves and roots of salt-tolerant ILs (TA1648 and IL 2-3) was estimated. Interestingly, SlSOS1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated in leaves of both TA1648 and IL 2-3 genotypes under NaCl stress. While SlHKT1.1, SlNHX2, SlNHX4, and SlERF4 genes were upregulated under salt stress in the roots of both TA1648 and IL 2-3 genotypes. Furthermore, SlSOS2 and SlSOS3 genes were upregulated in TA1648 root and downregulated in IL 2-3. On the contrary, SlSOS1 and SlHKT1.2 genes were upregulated in the IL 2-3 root and downregulated in the TA1648 root. Monitoring of ILs revealed that some of them have inherited salt tolerance from S. habrochaites and S. pennellii genetic background. These ILs can be used in tomato breeding programs to develop salt-tolerant tomatoes or as rootstocks in grafting techniques under saline irrigation conditions.
Collapse
Affiliation(s)
- Ahmed Abdelrahim Mohamed Ali
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
| | - Mohamed Tarroum
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 11451, Riyadh 11451, Saudi Arabia;
| | - Mohammed Al-Dakhil
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
- Natural Resources and Environmental Research Institute, King Abdulaziz City for Science and Technology, Riyadh 11442, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
| | - Abdullah A. Alsadon
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
| | - Afif Hassairi
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia; (A.A.M.A.); (W.B.R.); (M.A.-D.); (A.A.-D.); (A.A.A.)
- Centre of Biotechnology of Sfax, University of Sfax, B.P 1177, Sfax 3018, Tunisia
- Correspondence:
| |
Collapse
|
5
|
Ninmanont P, Wongchai C, Pfeiffer W, Chaidee A. Salt stress of two rice varieties: root border cell response and multi-logistic quantification. PROTOPLASMA 2021; 258:1119-1131. [PMID: 33677735 DOI: 10.1007/s00709-021-01629-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
How to capture the rice varieties salt stress sensitivity? Here, we measure responses of root border cells (1 day, ± 60 mM NaCl) and apply multi-logistic quantification of growth variables (21 days, ± 60 mM NaCl) to two rice varieties, salt-sensitive IR29 and tolerant Pokkali. Thus, logistic models determine the maximum response velocities (Vmax) and times of half-maximum (T0) for root border cell (RBC) and growth parameters. Thereof, seven variables show logistic models (0.58 < R ≤ 1) and monotonous responses in both Pokkali and IR29: root to shoot ratio by water content, primary root length, shoot water, adventitious root number, shoot dry and fresh weight, and root dry weight. Moreover, the regression to lognormal distribution (R = 0.99) of these seven Vmax fractionated by T0 represents the rice variety's comprehensive response. Its quotient IR29/Pokkali is peaking at 98-fold higher velocity of IR29, thus capturing the variety's sensitivity. Consequently, our finding of 66-fold higher Vmax of primary root length response of IR29 indicates an essential salt sensor in the root, including RBC. Finally, the effects of salt stress on RBC confirm multi-logistic quantification, showing 36% decrease of RBC mucilage layer in IR29, without change in Pokkali. Inversely, RBC number of Pokkali increases 43% without change in IR29. Briefly, this suggests both RBC and multi-logistic quantification for the screening for salt tolerance in two thousand rice varieties.
Collapse
Affiliation(s)
- Ployphilin Ninmanont
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchawal Wongchai
- Division of Biology, School of Science, University of Phayao, Phayao, 56000, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Contrasting Rootstock-Mediated Growth and Yield Responses in Salinized Pepper Plants ( Capsicum annuum L.) Are Associated with Changes in the Hormonal Balance. Int J Mol Sci 2021; 22:ijms22073297. [PMID: 33804877 PMCID: PMC8037536 DOI: 10.3390/ijms22073297] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 01/10/2023] Open
Abstract
Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. “Gacela F1”) was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.
Collapse
|
7
|
|
8
|
Lekklar C, Chadchawan S, Boon-Long P, Pfeiffer W, Chaidee A. Salt stress in rice: multivariate analysis separates four components of beneficial silicon action. PROTOPLASMA 2019; 256:331-347. [PMID: 30097762 DOI: 10.1007/s00709-018-1293-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
How many subcellular targets of the beneficial silicon effect do exist in salt-stressed rice? Here, we investigate the effects of silicon on the different components of salt stress, i.e., osmotic stress, sodium, and chloride toxicity. These components are separated by multivariate analysis of 18 variables measured in rice seedlings (Oryza sativa L.). Multivariate analysis can dissect vectors and extract targets as principal components, given the regressions between all variables are known. Consequently, the exploration of 153 correlations and 306 regression models between all variables is essential, and regression parameters for variables of shoot (silicon, sodium, chloride, carotenoids, chlorophylls a and b, and relative growth rate) and variables of shoot and root (hydrogen peroxide, ascorbate peroxidase (APX), catalase (CAT), fresh weight, dry weight, root-to-shoot ratio) are determined. The regression models [log (y) = y0 + a × log (x)] are confirmed by variance analysis of global goodness of fits (p < 0.0001). Thereby, logarithmic transformation yields linearization for multivariate analysis by Pearson's correlation. Four principal components are extracted: two targets of osmotic stress, one target of sodium toxicity, and one target of chloride toxicity. Thereby, silicon improves salt tolerance by increasing APX and CAT activities and decreasing hydrogen peroxide, salt ion accumulation, photosynthetic pigment losses, and growth inhibition. Salt stress increases silicon uptake pointing to a physiological regulation of plant salt stress in the presence of silicon. This mechanism and its four components are promising targets for further agricultural application.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeda Boon-Long
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Rouphael Y, Kyriacou MC, Colla G. Vegetable Grafting: A Toolbox for Securing Yield Stability under Multiple Stress Conditions. FRONTIERS IN PLANT SCIENCE 2018; 8:2255. [PMID: 29375615 PMCID: PMC5770366 DOI: 10.3389/fpls.2017.02255] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 12/27/2017] [Indexed: 05/28/2023]
Affiliation(s)
- Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, Nicosia, Cyprus
| | - Giuseppe Colla
- Department of Agricultural and Forestry Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Albacete A, Martínez-Andújar C, Martínez-Pérez A, Thompson AJ, Dodd IC, Pérez-Alfocea F. Unravelling rootstock×scion interactions to improve food security. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2211-26. [PMID: 25754404 PMCID: PMC4986720 DOI: 10.1093/jxb/erv027] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 01/08/2015] [Indexed: 05/19/2023]
Abstract
While much recent science has focused on understanding and exploiting root traits as new opportunities for crop improvement, the use of rootstocks has enhanced productivity of woody perennial crops for centuries. Grafting of vegetable crops has developed very quickly in the last 50 years, mainly to induce shoot vigour and to overcome soil-borne diseases in solanaceous and cucurbitaceous crops. In most cases, such progress has largely been due to empirical interactions between farmers, gardeners, and botanists, with limited insights into the underlying physiological mechanisms. Only during the last 20 years has science realized the potential of this old activity and studied the physiological and molecular mechanisms involved in rootstock×scion interactions, thereby not only explaining old phenomena but also developing new tools for crop improvement. Rootstocks can contribute to food security by: (i) increasing the yield potential of elite varieties; (ii) closing the yield gap under suboptimal growing conditions; (iii) decreasing the amount of chemical (pesticides and fertilizers) contaminants in the soil; (iv) increasing the efficiency of use of natural (water and soil) resources; (v) generating new useful genotypic variability (via epigenetics); and (vi) creating new products with improved quality. The potential of grafting is as broad as the genetic variability able to cross a potential incompatibility barrier between the rootstock and the scion. Therefore, understanding the mechanisms underlying the phenotypic variability resulting from rootstock×scion×environment interactions will certainly contribute to developing and exploiting rootstocks for food security.
Collapse
Affiliation(s)
- Alfonso Albacete
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Cristina Martínez-Andújar
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Ascensión Martínez-Pérez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| | - Andrew J Thompson
- School of Energy, Environment and Agrifood, Cranfield University, Bedfordshire MK43 0AL, UK
| | - Ian C Dodd
- Lancaster Environment Centre, University of Lancaster, Lancaster LA1 4YQ, UK
| | - Francisco Pérez-Alfocea
- Departamento de Nutrición Vegetal, CEBAS-CSIC, Campus Universitario de Espinardo, 25, E-30100 Murcia, Spain
| |
Collapse
|
11
|
Stetsenko LA, Vedenicheva NP, Likhnevsky RV, Kuznetsov VV. Influence of abscisic acid and fluridone on the content of phytohormones and polyamines and the level of oxidative stress in plants of Mesembryanthemum crystallinum L. under salinity. BIOL BULL+ 2015. [DOI: 10.1134/s1062359015020107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Albacete A, Cantero-Navarro E, Großkinsky DK, Arias CL, Balibrea ME, Bru R, Fragner L, Ghanem ME, González MDLC, Hernández JA, Martínez-Andújar C, van der Graaff E, Weckwerth W, Zellnig G, Pérez-Alfocea F, Roitsch T. Ectopic overexpression of the cell wall invertase gene CIN1 leads to dehydration avoidance in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:863-78. [PMID: 25392479 PMCID: PMC4321548 DOI: 10.1093/jxb/eru448] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Drought stress conditions modify source-sink relations, thereby influencing plant growth, adaptive responses, and consequently crop yield. Invertases are key metabolic enzymes regulating sink activity through the hydrolytic cleavage of sucrose into hexose monomers, thus playing a crucial role in plant growth and development. However, the physiological role of invertases during adaptation to abiotic stress conditions is not yet fully understood. Here it is shown that plant adaptation to drought stress can be markedly improved in tomato (Solanum lycopersicum L.) by overexpression of the cell wall invertase (cwInv) gene CIN1 from Chenopodium rubrum. CIN1 overexpression limited stomatal conductance under normal watering regimes, leading to reduced water consumption during the drought period, while photosynthetic activity was maintained. This caused a strong increase in water use efficiency (up to 50%), markedly improving water stress adaptation through an efficient physiological strategy of dehydration avoidance. Drought stress strongly reduced cwInv activity and induced its proteinaceous inhibitor in the leaves of the wild-type plants. However, the CIN1-overexpressing plants registered 3- to 6-fold higher cwInv activity in all analysed conditions. Surprisingly, the enhanced invertase activity did not result in increased hexose concentrations due to the activation of the metabolic carbohydrate fluxes, as reflected by the maintenance of the activity of key enzymes of primary metabolism and increased levels of sugar-phosphate intermediates under water deprivation. The induced sink metabolism in the leaves explained the maintenance of photosynthetic activity, delayed senescence, and increased source activity under drought stress. Moreover, CIN1 plants also presented a better control of production of reactive oxygen species and sustained membrane protection. Those metabolic changes conferred by CIN1 overexpression were accompanied by increases in the concentrations of the senescence-delaying hormone trans-zeatin and decreases in the senescence-inducing ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) in the leaves. Thus, cwInv critically functions at the integration point of metabolic, hormonal, and stress signals, providing a novel strategy to overcome drought-induced limitations to crop yield, without negatively affecting plant fitness under optimal growth conditions.
Collapse
Affiliation(s)
- Alfonso Albacete
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Cintia L Arias
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | - Roque Bru
- Departamento de Agroquímica y Bioquímica, Facultad de Ciencias, Universidad de Alicante, 03080 Alicante, Spain
| | - Lena Fragner
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Michel E Ghanem
- Department of Plant Nutrition, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Jose A Hernández
- Department of Fruit Breeding, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, Spain
| | | | - Eric van der Graaff
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark
| | - Wolfram Weckwerth
- Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Günther Zellnig
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria
| | | | - Thomas Roitsch
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, 8010 Graz, Austria Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Højbakkegård Allé 13, DK-2630 Taastrup, Denmark Global Change Research Centre, Czech Globe AS CR, v.v.i., Drásov 470, Cz-664 24 Drásov, Czech Republic
| |
Collapse
|
13
|
Young NF, Ferguson BJ, Antoniadi I, Bennett MH, Beveridge CA, Turnbull CGN. Conditional Auxin Response and Differential Cytokinin Profiles in Shoot Branching Mutants. PLANT PHYSIOLOGY 2014; 165:1723-1736. [PMID: 24904042 PMCID: PMC4119051 DOI: 10.1104/pp.114.239996] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Strigolactone (SL), auxin, and cytokinin (CK) are hormones that interact to regulate shoot branching. For example, several ramosus (rms) branching mutants in pea (Pisum sativum) have SL defects, perturbed xylem CK levels, and diminished responses to auxin in shoot decapitation assays. In contrast with the last of these characteristics, we discovered that buds on isolated nodes (explants) of rms plants instead respond normally to auxin. We hypothesized that the presence or absence of attached roots would result in transcriptional and hormonal differences in buds and subtending stem tissues, and might underlie the differential auxin response. However, decapitated plants and explants both showed similar up-regulation of CK biosynthesis genes, increased CK levels, and down-regulation of auxin transport genes. Moreover, auxin application counteracted these trends, regardless of the effectiveness of auxin at inhibiting bud growth. Multivariate analysis revealed that stem transcript and CK changes were largely associated with decapitation and/or root removal and auxin response, whereas bud transcript profiles related more to SL defects. CK clustering profiles were indicative of additional zeatin-type CKs in decapitated stems being supplied by roots and thus promoting bud growth in SL-deficient genotypes even in the presence of added auxin. This difference in CK content may explain why rms buds on explants respond better to auxin than those on decapitated plants. We further conclude that rapid changes in CK status in stems are auxin dependent but largely SL independent, suggesting a model in which auxin and CK are dominant regulators of decapitation-induced branching, whereas SLs are more important in intact plants.
Collapse
Affiliation(s)
- Naomi F Young
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Brett J Ferguson
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Ioanna Antoniadi
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christine A Beveridge
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| | - Colin G N Turnbull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom (N.F.Y., I.A., M.H.B., C.G.N.T.); andAustralian Research Council Centre of Excellence for Integrative Legume Research (B.J.F.) and School of Biological Sciences (C.A.B.), University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants. J Chem Ecol 2014; 40:804-15. [PMID: 25023078 DOI: 10.1007/s10886-014-0478-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.
Collapse
|
15
|
Wang Y, Li B, Du M, Eneji AE, Wang B, Duan L, Li Z, Tian X. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5887-901. [PMID: 22962680 PMCID: PMC3467299 DOI: 10.1093/jxb/ers238] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29-65% and leaf CK concentration by 16-57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| | - Bo Li
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
- ShanDong Kingenta Ecological Engineering Co., Ltd,
China
| | - Mingwei Du
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| | - A. Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife
Resources Management, University of Calabar, Nigeria
| | - Baomin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of
Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural
University, Beijing 100193,
China
| |
Collapse
|
16
|
Singh K, Singla-Pareek SL, Pareek A. Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:913-24. [PMID: 22181020 DOI: 10.1089/omi.2011.0098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Phytohormones are chemical messengers that play a leading role in regulating the vital activity of plants, including transcription, posttranscriptional pre-mRNA splicing, translation, and posttranslational modifications by interacting with specific protein receptors. Plant hormones are synthesized in one tissue and act on specific target sites in other tissues at vanishingly low concentrations. High salinity is one of the main factors limiting Arabidopsis growth and productivity. In this study, phytohormones including abscisic acid, auxin, ethylene, and cytokinin responsive genes regulating salinity stress in Arabidopsis roots were monitored using microarray data. We identified phytohormone responsive genes on the basis of their expression pattern at genomic level at various time points. Using publicly available microarray data, we analyzed the effect of salt stress on the transcription of phytohormone responsive genes. Gene ontology (GO) analysis of phytohormone responsive genes showed their role in important biological processes such as signal transduction, hormone metabolism, biosynthetic process, and gene expression. Gene enrichment terms also reveal that transcription regulator activity is the main class of ABA responsive genes under salinity stress. We conclude that expression of ABA responsive genes involves induction of several transcription factors under salt stress treatment in Arabidopsis roots.
Collapse
Affiliation(s)
- Khushwant Singh
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | |
Collapse
|
17
|
Li B, Wang Y, Zhang Z, Wang B, Eneji AE, Duan L, Li Z, Tian X. Cotton shoot plays a major role in mediating senescence induced by potassium deficiency. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:327-35. [PMID: 22154601 DOI: 10.1016/j.jplph.2011.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 05/20/2023]
Abstract
The objective of this study was to determine the roles of shoot and root in the regulation of premature leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.). Two contrasting cultivars (CCRI41, more sensitive to K deficiency; and SCRC22, a less sensitive cultivar) were selected for self- and reciprocal-grafting, using standard grafting (one scion/one rootstock), Y grafting (two scions/one rootstock) and inverted Y grafting (one scion/two rootstocks) at the seedling stage. Standard grafting was studied in the field in 2007 and 2008. There were no obvious differences in senescence between CCRI41 and SCRC22 scions while supplied with sufficient K. However, SCRC22 scions showed significantly greater K content, SPAD values (chlorophyll content), soluble protein content and net photosynthetic rates than CCRI41 scions while grown in K deficient solution or soil, regardless of rootstock cultivars, grafting types, growth stage and growth conditions. Also, SCRC22 scions had greater yield and less variation in boll weight either between upper- and lower sympodials, or between proximal and distal fruit positions from the main stem in the field under K deficiency, probably owing to reduced leaf senescence. Although the effect of rootstocks on leaf senescence under K deficiency was significant in some cases, the scion cultivars explained the highest percentage of variations within grafting treatments. The shoot-to-root feedback signal(s), rather than high shoot demand for K nutrition, was involved in the shoot regulation of premature senescence in cotton plants, achieved possibly by altering root K uptake.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Plant Physiology and Biochemistry, Key Laboratory of Crop Cultivation and Farming System, Center of Crop Chemical Control, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Michaelis KA, Knox AJ, Xu M, Kiseljak-Vassiliades K, Edwards MG, Geraci M, Kleinschmidt-DeMasters BK, Lillehei KO, Wierman ME. Identification of growth arrest and DNA-damage-inducible gene beta (GADD45beta) as a novel tumor suppressor in pituitary gonadotrope tumors. Endocrinology 2011; 152:3603-13. [PMID: 21810943 PMCID: PMC4714647 DOI: 10.1210/en.2011-0109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Gonadotrope and null cell pituitary tumors cause significant morbidity, often presenting with signs of hypogonadism together with visual disturbances due to mass effects. Surgery and radiation are the only therapeutic options to date. To identify dysregulated genes and pathways that may play a role in tumorigenesis and/or progression, molecular profiling was performed on 14 gonadotrope tumors, with nine normal human pituitaries obtained at autopsy serving as controls. Bioinformatic analysis identified putative downstream effectors of tumor protein 53 (p53) that were consistently repressed in gonadotrope pituitary tumors, including RPRM, P21, and PMAIP1, with concomitant inhibition of the upstream p53 regulator, PLAGL1(Zac1). Further analysis of the growth arrest and DNA damage-inducible (GADD45) family revealed no change in the p53 target, GADD45α, but identified repression of GADD45β in pituitary tumors in addition to the previously reported inhibition of GADD45γ. Overexpression of GADD45β in LβT2 mouse gonadotrope cells blocked tumor cell proliferation and increased rates of apoptosis in response to growth factor withdrawal. Stable gonadotrope cell transfectants expressing increased GADD45β showed decreased colony formation in soft agar, confirming its normal role as a tumor suppressor. Unlike previous studies of GADD45γ in pituitary tumors and α and β in other tumors, bisulfite sequencing showed no evidence of hypermethylation of the GADD45β promoter in human pituitary tumor samples to explain the repression of its expression. Thus, GADD45β is a novel pituitary tumor suppressor whose reexpression blocks proliferation, survival, and tumorigenesis. Together these studies identify new targets and mechanisms to explore in pituitary tumor initiation and progression.
Collapse
Affiliation(s)
- Katherine A Michaelis
- Department of Medicine, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ghanem ME, Albacete A, Smigocki AC, Frébort I, Pospíšilová H, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Lutts S, Dodd IC, Pérez-Alfocea F. Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:125-40. [PMID: 20959628 PMCID: PMC2993914 DOI: 10.1093/jxb/erq266] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/14/2010] [Accepted: 07/26/2010] [Indexed: 05/18/2023]
Abstract
Salinity limits crop productivity, in part by decreasing shoot concentrations of the growth-promoting and senescence-delaying hormones cytokinins. Since constitutive cytokinin overproduction may have pleiotropic effects on plant development, two approaches assessed whether specific root-localized transgenic IPT (a key enzyme for cytokinin biosynthesis) gene expression could substantially improve tomato plant growth and yield under salinity: transient root IPT induction (HSP70::IPT) and grafting wild-type (WT) shoots onto a constitutive IPT-expressing rootstock (WT/35S::IPT). Transient root IPT induction increased root, xylem sap, and leaf bioactive cytokinin concentrations 2- to 3-fold without shoot IPT gene expression. Although IPT induction reduced root biomass (by 15%) in control (non-salinized) plants, in salinized plants (100 mM NaCl for 22 d), increased cytokinin concentrations delayed stomatal closure and leaf senescence and almost doubled shoot growth (compared with WT plants), with concomitant increases in the essential nutrient K(+) (20%) and decreases in the toxic ion Na(+) (by 30%) and abscisic acid (by 20-40%) concentrations in transpiring mature leaves. Similarly, WT/35S::IPT plants (scion/rootstock) grown with 75 mM NaCl for 90 d had higher fruit trans-zeatin concentrations (1.5- to 2-fold) and yielded 30% more than WT/non-transformed plants. Enhancing root cytokinin synthesis modified both shoot hormonal and ionic status, thus ameliorating salinity-induced decreases in growth and yield.
Collapse
Affiliation(s)
- Michel Edmond Ghanem
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium
| | - Alfonso Albacete
- CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain
| | - Ann C. Smigocki
- USDA, ARS, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA
| | - Ivo Frébort
- Department of Biochemistry, Palacký University, Czech Republic
| | | | | | - Manuel Acosta
- Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - José Sánchez-Bravo
- Facultad de Biología, Universidad de Murcia, Campus de Espinardo, Murcia, Spain
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute (ELI), Université catholique de Louvain (UCL), B-1348 Louvain-la-Neuve, Belgium
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Francisco Pérez-Alfocea
- CEBAS-CSIC, Campus de Espinardo, E-30100, Espinardo, Murcia, Spain
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|