1
|
Morère-Le Paven MC, Clochard T, Limami AM. NPF and NRT2 from Pisum sativum Potentially Involved in Nodule Functioning: Lessons from Medicago truncatula and Lotus japonicus. PLANTS (BASEL, SWITZERLAND) 2024; 13:322. [PMID: 38276779 PMCID: PMC10820289 DOI: 10.3390/plants13020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024]
Abstract
In addition to absorbing nitrogen from the soil, legumes have the ability to use atmospheric N2 through symbiotic nitrogen fixation. Therefore, legumes have developed mechanisms regulating nodulation in response to the amount of nitrate in the soil; in the presence of high nitrate concentrations, nodulation is inhibited, while low nitrate concentrations stimulate nodulation and nitrogen fixation. This allows the legumes to switch from soil nitrogen acquisition to symbiotic nitrogen fixation. Recently, particular interest has been given to the nitrate transporters, such as Nitrate Transporter1/Peptide transporter Family (NPF) and Nitrate Transporter 2 (NRT2), having a role in the functioning of nodules. Nitrate transporters of the two model plants, Lotus japonicus and Medicago truncatula, shown to have a positive and/or a negative role in nodule functioning depending on nitrate concentration, are presented in this article. In particular, the following transporters were thoroughly studied: (i) members of NPF transporters family, such as LjNPF8.6 and LjNPF3.1 in L. japonicus and MtNPF1.7 and MtNPF7.6 in M. truncatula, and (ii) members of NRT2 transporters family, such as LjNRT2.4 and LjNRT2.1 in L. japonicus and MtNRT2.1 in M. truncatula. Also, by exploiting available genomic and transcriptomic data in the literature, we have identified the complete PsNPF family in Pisum sativum (69 sequences previously described and 21 new that we have annotated) and putative nitrate transporters candidate for playing a role in nodule functioning in P. sativum.
Collapse
|
2
|
Zhong Y, Tian J, Li X, Liao H. Cooperative interactions between nitrogen fixation and phosphorus nutrition in legumes. THE NEW PHYTOLOGIST 2023; 237:734-745. [PMID: 36324147 DOI: 10.1111/nph.18593] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Legumes such as soybean are considered important crops as they provide proteins and oils for humans and livestock around the world. Different from other crops, leguminous crops accumulate nitrogen (N) for plant growth through symbiotic nitrogen fixation (SNF) in coordination with rhizobia. A number of studies have shown that efficient SNF requires the cooperation of other nutrients, especially phosphorus (P), a nutrient deficient in most soils. During the last decades, great progress has been made in understanding the molecular mechanisms underlying the interactions between SNF and P nutrition, specifically through the identification of transporters involved in P transport to nodules and bacteroids, signal transduction, and regulation of P homeostasis in nodules. These studies revealed a distinct N-P interaction in leguminous crops, which is characterized by specific signaling cross talk between P and SNF. This review aimed to present an updated picture of the cross talk between N fixation and P nutrition in legumes, focusing on soybean as a model crop, and Medicago truncatula and Lotus japonicus as model plants. We also discuss the possibilities for enhancing SNF through improving P nutrition, which are important for high and sustainable production of leguminous crops.
Collapse
Affiliation(s)
- Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Tian
- Root Biology Center, South China Agricultural University, Guangzhou, 510642, China
| | - Xinxin Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Carley CN, Zubrod MJ, Dutta S, Singh AK. Using machine learning enabled phenotyping to characterize nodulation in three early vegetative stages in soybean. CROP SCIENCE 2023; 63:204-226. [PMID: 37503354 PMCID: PMC10369931 DOI: 10.1002/csc2.20861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/29/2022] [Indexed: 07/29/2023]
Abstract
The symbiotic relationship between soybean [Glycine max L. (Merr.)] roots and bacteria (Bradyrhizobium japonicum) lead to the development of nodules, important legume root structures where atmospheric nitrogen (N2) is fixed into bio-available ammonia (NH3) for plant growth and development. With the recent development of the Soybean Nodule Acquisition Pipeline (SNAP), nodules can more easily be quantified and evaluated for genetic diversity and growth patterns across unique soybean root system architectures. We explored six diverse soybean genotypes across three field year combinations in three early vegetative stages of development and report the unique relationships between soybean nodules in the taproot and non-taproot growth zones of diverse root system architectures of these genotypes. We found unique growth patterns in the nodules of taproots showing genotypic differences in how nodules grew in count, size, and total nodule area per genotype compared to non-taproot nodules. We propose that nodulation should be defined as a function of both nodule count and individual nodule area resulting in a total nodule area per root or growth regions of the root. We also report on the relationships between the nodules and total nitrogen in the seed at maturity, finding a strong correlation between the taproot nodules and final seed nitrogen at maturity. The applications of these findings could lead to an enhanced understanding of the plant-Bradyrhizobium relationship and exploring these relationships could lead to leveraging greater nitrogen use efficiency and nodulation carbon to nitrogen production efficiency across the soybean germplasm.
Collapse
|
4
|
Banasiak J, Jamruszka T, Murray JD, Jasiński M. A roadmap of plant membrane transporters in arbuscular mycorrhizal and legume-rhizobium symbioses. PLANT PHYSIOLOGY 2021; 187:2071-2091. [PMID: 34618047 PMCID: PMC8644718 DOI: 10.1093/plphys/kiab280] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 05/20/2023]
Abstract
Most land plants live in close contact with beneficial soil microbes: the majority of land plant species establish symbiosis with arbuscular mycorrhizal fungi, while most legumes, the third largest plant family, can form a symbiosis with nitrogen-fixing rhizobia. These microbes contribute to plant nutrition via endosymbiotic processes that require modulating the expression and function of plant transporter systems. The efficient contribution of these symbionts involves precisely controlled integration of transport, which is enabled by the adaptability and plasticity of their transporters. Advances in our understanding of these systems, driven by functional genomics research, are rapidly filling the gap in knowledge about plant membrane transport involved in these plant-microbe interactions. In this review, we synthesize recent findings associated with different stages of these symbioses, from the pre-symbiotic stage to nutrient exchange, and describe the role of host transport systems in both mycorrhizal and legume-rhizobia symbioses.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Tomasz Jamruszka
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
| | - Jeremy D Murray
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań 61-704, Poland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznań 60-632, Poland
| |
Collapse
|
5
|
Yu YC, Dickstein R, Longo A. Structural Modeling and in planta Complementation Studies Link Mutated Residues of the Medicago truncatula Nitrate Transporter NPF1.7 to Functionality in Root Nodules. FRONTIERS IN PLANT SCIENCE 2021; 12:685334. [PMID: 34276736 PMCID: PMC8282211 DOI: 10.3389/fpls.2021.685334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/17/2021] [Indexed: 05/25/2023]
Abstract
Symbiotic nitrogen fixation is a complex and regulated process that takes place in root nodules of legumes and allows legumes to grow in soils that lack nitrogen. Nitrogen is mostly acquired from the soil as nitrate and its level in the soil affects nodulation and nitrogen fixation. The mechanism(s) by which legumes modulate nitrate uptake to regulate nodule symbiosis remain unclear. In Medicago truncatula, the MtNPF1.7 transporter has been shown to control nodulation, symbiosis, and root architecture. MtNPF1.7 belongs to the nitrate/peptide transporter family and is a symporter with nitrate transport driven by proton(s). In this study we combined in silico structural predictions with in planta complementation of the severely defective mtnip-1 mutant plants to understand the role of a series of distinct amino acids in the transporter's function. Our results support hypotheses about the functional importance of the ExxE(R/K) motif including an essential role for the first glutamic acid of the motif in proton(s) and possibly substrate transport. Results reveal that Motif A, a motif conserved among major facilitator transport (MFS) proteins, is essential for function. We hypothesize that it participates in intradomain packing of transmembrane helices and stabilizing one conformation during transport. Our results also question the existence of a putative TMH4-TMH10 salt bridge. These results are discussed in the context of potential nutrient transport functions for MtNPF1.7. Our findings add to the knowledge of the mechanism of alternative conformational changes as well as symport transport in NPFs and enhance our knowledge of the mechanisms for nitrate signaling.
Collapse
|
6
|
Sun X, Chen F, Yuan L, Mi G. The physiological mechanism underlying root elongation in response to nitrogen deficiency in crop plants. PLANTA 2020; 251:84. [PMID: 32189077 DOI: 10.1007/s00425-020-03376-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/11/2020] [Indexed: 05/22/2023]
Abstract
In response to low nitrogen stress, multiple hormones together with nitric oxide signaling pathways work synergistically and antagonistically in crop root elongation. Changing root morphology allows plants to adapt to soil nutrient availability. Nitrogen is the most important essential nutrient for plant growth. An important adaptive strategy for crops responding to nitrogen deficiency is root elongation, thereby accessing increased soil space and nitrogen resources. Multiple signaling pathways are involved in this regulatory network, working together to fine-tune root elongation in response to soil nitrogen availability. Based on existing research, we propose a model to explain how different signaling pathways interact to regulate root elongation in response to low nitrogen stress. In response to a low shoot nitrogen status signal, auxin transport from the shoot to the root increases. High auxin levels in the root tip stimulate the production of nitric oxide, which promotes the synthesis of strigolactones to accelerate cell division. In this process, cytokinin, ethylene, and abscisic acid play an antagonistic role, while brassinosteroids and auxin play a synergistic role in regulating root elongation. Further study is required to identify the QTLs, genes, and favorable alleles which control the root elongation response to low nitrogen stress in crops.
Collapse
Affiliation(s)
- Xichao Sun
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Fanjun Chen
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Lixing Yuan
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Guohua Mi
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
8
|
Abstract
Medicago truncatula is able to perform a symbiotic association with Sinorhizobium spp. This interaction leads to the formation of a new root organ, the nodule, in which bacteria infect the host cells and fix atmospheric nitrogen for the plant benefit. Multiple and complex processes are essential for the success of this interaction from the recognition phase to nodule formation and functioning, and a wide range of plant host genes is required to orchestrate this phenomenon. Thanks to direct and reverse genetic as well as transcriptomic approaches, numerous genes involved in this symbiosis have been described and improve our understanding of this fantastic association. Herein we propose to update the recent molecular knowledge of how M. truncatula associates to its symbiotic partner Sinorhizobium spp.
Collapse
|
9
|
Pellizzaro A, Alibert B, Planchet E, Limami AM, Morère-Le Paven MC. Nitrate transporters: an overview in legumes. PLANTA 2017; 246:585-595. [PMID: 28653185 DOI: 10.1007/s00425-017-2724-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/19/2017] [Indexed: 05/02/2023]
Abstract
The nitrate transporters, belonging to NPF and NRT2 families, play critical roles in nitrate signaling, root growth and nodule development in legumes. Nitrate plays an essential role during plant development as nutrient and also as signal molecule, in both cases working via the activity of nitrate transporters. To date, few studies on NRT2 or NPF nitrate transporters in legumes have been reported, and most of those concern Lotus japonicus and Medicago truncatula. A molecular characterization led to the identification of 4 putative LjNRT2 and 37 putative LjNPF gene sequences in L. japonicus. In M. truncatula, the NRT2 family is composed of 3 putative members. Using the new genome annotation of M. truncatula (Mt4.0), we identified, for this review, 97 putative MtNPF sequences, including 32 new sequences relative to previous studies. Functional characterization has been published for only two MtNPF genes, encoding nitrate transporters of M. truncatula. Both transporters have a role in root system development via abscisic acid signaling: MtNPF6.8 acts as a nitrate sensor during the cell elongation of the primary root, while MtNPF1.7 contributes to the cellular organization of the root tip and nodule formation. An in silico expression study of MtNPF genes confirmed that NPF genes are expressed in nodules, as previously shown for L. japonicus, suggesting a role for the corresponding proteins in nitrate transport, or signal perception in nodules. This review summarizes our knowledge of legume nitrate transporters and discusses new roles for these proteins based on recent discoveries.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Bénédicte Alibert
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Elisabeth Planchet
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé Cedex, France
| | - Anis M Limami
- IRHS, Agrocampus Ouest, INRA, Université d'Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé Cedex, France
| | | |
Collapse
|
10
|
Li X, Zeng R, Liao H. Improving crop nutrient efficiency through root architecture modifications. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:193-202. [PMID: 26460087 DOI: 10.1111/jipb.12434] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/10/2015] [Indexed: 05/20/2023]
Abstract
Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition.
Collapse
Affiliation(s)
- Xinxin Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Haixia Institute of Science and Technology, Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rensen Zeng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Haixia Institute of Science and Technology, Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
11
|
Sharma P, Lin T, Hannapel DJ. Targets of the StBEL5 Transcription Factor Include the FT Ortholog StSP6A. PLANT PHYSIOLOGY 2016; 170:310-24. [PMID: 26553650 PMCID: PMC4704582 DOI: 10.1104/pp.15.01314] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/06/2015] [Indexed: 05/03/2023]
Abstract
The BEL1-like family of transcription factors is ubiquitous in plants and plays important roles in regulating development. They function in tandem with KNOTTED1 types to bind to a double TTGAC motif in the upstream sequence of target genes. StBEL5 of potato (Solanum tuberosum) functions as a mobile RNA signal that is transcribed in leaves, moves down into stolons in response to short days, and induces tuber formation. Despite their importance, however, very little is known about the targets of BEL1-like transcription factors. To better understand this network, we made use of a phloem-mobile BEL5 induction model, an ethanol-inducible system coupled with RNA sequencing analysis, and a screen for tandem TTGAC cis-elements in the upstream sequence to catalog StBEL5 target genes. Induction of StBEL5 activated several genes that are also induced by StSP6A (S. tuberosum SELF-PRUNING 6A), a FLOWERING LOCUS T coregulator that functions as a signal for tuberization. Both enhancement and suppression of StBEL5 expression were also closely linked to StSP6A transcriptional activity. Site mutagenesis in tandem TTGAC motifs located in the upstream sequence of StSP6A suppressed the short day-induced activity of its promoter in both young tubers and leaves. The expression profile of StBEL5 induced in stolons from plants grown under long-day conditions revealed almost 10,000 differentially expressed genes, including important tuber marker genes and genes involved in cell growth, transcription, floral development, and hormone metabolism. In a random screen of 200 differentially expressed targets of StBEL5, 92% contained tandem TTGAC motifs in the upstream sequence within 3 kb of the transcription start site.
Collapse
Affiliation(s)
- Pooja Sharma
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| | - Tian Lin
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| | - David J Hannapel
- Plant Biology Major, Iowa State University, Ames, Iowa 50011-1100
| |
Collapse
|
12
|
Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S, Dumas B, Niebel A, Jacquet C. MtNF-YA1, A Central Transcriptional Regulator of Symbiotic Nodule Development, Is Also a Determinant of Medicago truncatula Susceptibility toward a Root Pathogen. FRONTIERS IN PLANT SCIENCE 2016; 7:1837. [PMID: 27994614 PMCID: PMC5137509 DOI: 10.3389/fpls.2016.01837] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/22/2016] [Indexed: 05/20/2023]
Abstract
Plant NF-Y transcription factors control a wide array of biological functions enabling appropriate reproductive and developmental processes as well as adaptation to various abiotic and biotic environments. In Medicago truncatula, MtNF-YA1 was previously identified as a key determinant for nodule development and establishment of rhizobial symbiosis. Here, we highlight a new role for this protein in compatibility to Aphanomyces euteiches, a root pathogenic oomycete. The Mtnf-ya1-1 mutant plants showed better survival rate, reduced symptoms, and increased development of their root apparatus as compared to their wild-type (WT) background A17. MtNF-YA-1 was specifically up-regulated by A. euteiches in F83005.5, a highly susceptible natural accession of M. truncatula while transcript level remained stable in A17, which is partially resistant. The role of MtNF-YA1 in F83005.5 susceptibility was further documented by reducing MtNF-YA1 expression either by overexpression of the miR169q, a microRNA targeting MtNF-YA1, or by RNAi approaches leading to a strong enhancement in the resistance of this susceptible line. Comparative analysis of the transcriptome of WT and Mtnf-ya1-1 led to the identification of 1509 differentially expressed genes. Among those, almost 36 defense-related genes were constitutively expressed in Mtnf-ya1-1, while 20 genes linked to hormonal pathways were repressed. In summary, we revealed an unexpected dual role for this symbiotic transcription factor as a key player in the compatibility mechanisms to a pathogen.
Collapse
Affiliation(s)
- Thomas Rey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
- *Correspondence: Thomas Rey,
| | - Philippe Laporte
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| | - Marie-Françoise Jardinaud
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Stéphanie Huguet
- POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d’Évry Val-d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Sandrine Balzergue
- POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Paris-Sud, Université d’Évry Val-d’Essonne, Université Paris Diderot, Sorbonne Paris-Cite, Universite Paris-SaclayOrsay, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| | - Andreas Niebel
- Institut National de la Recherche Agronomique, Laboratoire des Interactions Plantes-Microorganismes, UMR441Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, Laboratoire des Interactions Plantes-Microorganismes, UMR2594Castanet-Tolosan, France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSCastanet Tolosan, France
| |
Collapse
|
13
|
Clarke VC, Loughlin PC, Gavrin A, Chen C, Brear EM, Day DA, Smith PMC. Proteomic analysis of the soybean symbiosome identifies new symbiotic proteins. Mol Cell Proteomics 2015; 14:1301-22. [PMID: 25724908 PMCID: PMC4424401 DOI: 10.1074/mcp.m114.043166] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
Legumes form a symbiosis with rhizobia in which the plant provides an energy source to the rhizobia bacteria that it uses to fix atmospheric nitrogen. This nitrogen is provided to the legume plant, allowing it to grow without the addition of nitrogen fertilizer. As part of the symbiosis, the bacteria in the infected cells of a new root organ, the nodule, are surrounded by a plant-derived membrane, the symbiosome membrane, which becomes the interface between the symbionts. Fractions containing the symbiosome membrane (SM) and material from the lumen of the symbiosome (peribacteroid space or PBS) were isolated from soybean root nodules and analyzed using nongel proteomic techniques. Bicarbonate stripping and chloroform-methanol extraction of isolated SM were used to reduce complexity of the samples and enrich for hydrophobic integral membrane proteins. One hundred and ninety-seven proteins were identified as components of the SM, with an additional fifteen proteins identified from peripheral membrane and PBS protein fractions. Proteins involved in a range of cellular processes such as metabolism, protein folding and degradation, membrane trafficking, and solute transport were identified. These included a number of proteins previously localized to the SM, such as aquaglyceroporin nodulin 26, sulfate transporters, remorin, and Rab7 homologs. Among the proteome were a number of putative transporters for compounds such as sulfate, calcium, hydrogen ions, peptide/dicarboxylate, and nitrate, as well as transporters for which the substrate is not easy to predict. Analysis of the promoter activity for six genes encoding putative SM proteins showed nodule specific expression, with five showing expression only in infected cells. Localization of two proteins was confirmed using GFP-fusion experiments. The data have been deposited to the ProteomeXchange with identifier PXD001132. This proteome will provide a rich resource for the study of the legume-rhizobium symbiosis.
Collapse
Affiliation(s)
- Victoria C Clarke
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Patrick C Loughlin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Aleksandr Gavrin
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Chi Chen
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - Ella M Brear
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia
| | - David A Day
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia; §Flinders University, School of Biological Sciences, Adelaide Australia
| | - Penelope M C Smith
- From the ‡University of Sydney, School of Biological Sciences, Sydney Australia;
| |
Collapse
|
14
|
Clarke VC, Loughlin PC, Day DA, Smith PMC. Transport processes of the legume symbiosome membrane. FRONTIERS IN PLANT SCIENCE 2014; 5:699. [PMID: 25566274 PMCID: PMC4266029 DOI: 10.3389/fpls.2014.00699] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 05/19/2023]
Abstract
The symbiosome membrane (SM) is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume:rhizobia symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate, and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologs of transporters of sulfate, calcium, peptides, and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.
Collapse
Affiliation(s)
- Victoria C. Clarke
- School of Biological Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - David A. Day
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | | |
Collapse
|
15
|
Pellizzaro A, Clochard T, Cukier C, Bourdin C, Juchaux M, Montrichard F, Thany S, Raymond V, Planchet E, Limami AM, Morère-Le Paven MC. The nitrate transporter MtNPF6.8 (MtNRT1.3) transports abscisic acid and mediates nitrate regulation of primary root growth in Medicago truncatula. PLANT PHYSIOLOGY 2014; 166:2152-65. [PMID: 25367858 PMCID: PMC4256864 DOI: 10.1104/pp.114.250811] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Elongation of the primary root during postgermination of Medicago truncatula seedlings is a multigenic trait that is responsive to exogenous nitrate. A quantitative genetic approach suggested the involvement of the nitrate transporter MtNPF6.8 (for Medicago truncatula NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER Family6.8) in the inhibition of primary root elongation by high exogenous nitrate. In this study, the inhibitory effect of nitrate on primary root elongation, via inhibition of elongation of root cortical cells, was abolished in npf6.8 knockdown lines. Accordingly, we propose that MtNPF6.8 mediates nitrate inhibitory effects on primary root growth in M. truncatula. pMtNPF6.8:GUS promoter-reporter gene fusion in Agrobacterium rhizogenes-generated transgenic roots showed the expression of MtNPF6.8 in the pericycle region of primary roots and lateral roots, and in lateral root primordia and tips. MtNPF6.8 expression was insensitive to auxin and was stimulated by abscisic acid (ABA), which restored the inhibitory effect of nitrate in npf6.8 knockdown lines. It is then proposed that ABA acts downstream of MtNPF6.8 in this nitrate signaling pathway. Furthermore, MtNPF6.8 was shown to transport ABA in Xenopus spp. oocytes, suggesting an additional role of MtNPF6.8 in ABA root-to-shoot translocation. (15)NO3(-)-influx experiments showed that only the inducible component of the low-affinity transport system was affected in npf6.8 knockdown lines. This indicates that MtNPF6.8 is a major contributor to the inducible component of the low-affinity transport system. The short-term induction by nitrate of the expression of Nitrate Reductase1 (NR1) and NR2 (genes that encode two nitrate reductase isoforms) was greatly reduced in the npf6.8 knockdown lines, supporting a role of MtNPF6.8 in the primary nitrate response in M. truncatula.
Collapse
Affiliation(s)
- Anthoni Pellizzaro
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Thibault Clochard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Caroline Cukier
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Céline Bourdin
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marjorie Juchaux
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Françoise Montrichard
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Steeve Thany
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Valérie Raymond
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Elisabeth Planchet
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Anis M Limami
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| | - Marie-Christine Morère-Le Paven
- Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.), and Laboratoire Récepteurs et Canaux Ioniques Membranaires, Equipe d'Accueil 2647, Unité Sous Contrat Institut National de la Recherche Agronomique 1330 (C.B., S.T., V.R.), Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49045 Angers, France;Unité Mixte de Recherche 1345 Institut de Recherche en Horticulture et Semences, Institut National de la Recherche Agronomique, F-49071 Beaucouzé, France (A.P., T.C., C.C., F.M., E.P., A.M.L., M.-C.M.-L.P.); andImagerie Cellulaire, Structure Fédérative de Recherche 4207 Qualité et Santé du Végétal, Université d'Angers, F-49071 Beaucouzé, France (M.J.)
| |
Collapse
|
16
|
Eyles RP, Williams PH, Ohms SJ, Weiller GF, Ogilvie HA, Djordjevic MA, Imin N. microRNA profiling of root tissues and root forming explant cultures in Medicago truncatula. PLANTA 2013; 238:91-105. [PMID: 23572382 DOI: 10.1007/s00425-013-1871-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/08/2013] [Indexed: 05/18/2023]
Abstract
Plant root architecture is regulated by the initiation and modulation of cell division in regions containing pluripotent stem cells known as meristems. In roots, meristems are formed early in embryogenesis, in the case of the root apical meristem (RAM), and during organogenesis at the site of lateral root or, in legumes, nodule formation. Root meristems can also be generated in vitro from leaf explants cultures supplemented with auxin. microRNAs (miRNAs) have emerged as regulators of many key biological functions in plants including root development. To identify key miRNAs involved in root meristem formation in Medicago truncatula, we used deep sequencing to compare miRNA populations. Comparisons were made between: (1) the root tip (RT), containing the RAM and the elongation zone (EZ) tissue and (2) root forming callus (RFC) and non-root forming callus (NRFC). We identified 83 previously reported miRNAs, 24 new to M. truncatula, in 44 families. For the first time in M. truncatula, members of conserved miRNA families miR165, miR181 and miR397 were found. Bioinformatic analysis identified 38 potential novel miRNAs. Selected miRNAs and targets were validated using Taqman miRNA assays and 5' RACE. Many miRNAs were differentially expressed between tissues, particularly RFC and NRFC. Target prediction revealed a number of miRNAs to target genes previously shown to be differentially expressed between RT and EZ or RFC and NRFC and important in root development. Additionally, we predict the miRNA/target relationships for miR397 and miR160 to be conserved in M. truncatula. Amongst the predictions, were AUXIN RESPONSE FACTOR 10, targeted by miR160 and a LACCASE-like gene, targeted by miR397, both are miRNA/target pairings conserved in other species.
Collapse
Affiliation(s)
- Rodney P Eyles
- Plant Science Division, Research School of Biology, College of Medicine, Biology and Environment, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
17
|
Boursiac Y, Léran S, Corratgé-Faillie C, Gojon A, Krouk G, Lacombe B. ABA transport and transporters. TRENDS IN PLANT SCIENCE 2013; 18:325-33. [PMID: 23453706 DOI: 10.1016/j.tplants.2013.01.007] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 05/19/2023]
Abstract
Abscisic acid (ABA) metabolism, perception, and transport form a triptych allowing higher plants to use ABA as a signaling molecule. The molecular bases of ABA metabolism are now well described and, over the past few years, several ABA receptors have been discovered. Although ABA transport has long been demonstrated in planta, the first breakthroughs in identifying plasma membrane-localized ABA transporters came in 2010, with the identification of two ATP-binding cassette (ABC) proteins. More recently, two ABA transporters in the nitrate transporter 1/peptide transporter (NRT1/PTR) family have been identified. In this review, we discuss the role of these different ABA transporters and examine the scientific impact of their identification. Given that the NRT1/PTR family is involved in the transport of nitrogen (N) compounds, further work should determine whether an interaction between ABA and N signaling or nutrition occurs.
Collapse
Affiliation(s)
- Yann Boursiac
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes 'Claude Grignon', UMR CNRS/INRA/SupAgro/UM2, Place Viala, 34060 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
18
|
Chan PK, Biswas B, Gresshoff PM. Classical ethylene insensitive mutants of the Arabidopsis EIN2 orthologue lack the expected 'hypernodulation' response in Lotus japonicus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:395-408. [PMID: 23452324 DOI: 10.1111/jipb.12040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Three independent ethylene insensitive mutants were selected from an EMS- mutagenized population of Lotus japonicus MG-20 (Miyakojima). The mutants, called 'Enigma', were mutated in the LjEIN2a gene from Lotus chromosome 1, sharing significant homology with Arabidopsis EIN2 (ethylene-insensitive2). All three alleles showed classical ethylene insensitivity phenotypes (e.g., Triple Response), but lacked the increased nodulation phenotype commonly associated with ethylene insensitivity. Indeed, all showed a marginal reduction in nodule number per plant, a phenotype that is enigmatic to sickle, an ethylene-insensitive EIN2 mutant in Medicago truncatula. In contrast to wild type, but similar to an ETR1-1 ethylene ethylene-insensitive transgenic of L. japonicus, enigma mutants formed nodules in between the protoxylem poles, demonstrating the influence of ethylene on radial positioning. Suppression of nodule numbers by nitrate and colonisation by mycorrhizal fungi in the enigma-1 mutant were indistinguishable from the wild-type MG-20. However, reflecting endogenous ethylene feedback, the enigma-1 mutant released more than twice the wild-type amount of ethylene. enigma-1 had a moderate reduction in growth, greater root mass (and lateral root formation), delayed flowering and ripening, smaller pods and seeds. Expression analysis of ethylene-regulated genes, such as ETR1, NRL1 (neverripe-like 1), and EIL3 in shoots and roots of enigma-1 and MG-20 illustrated that the ethylene-insensitive mutation strongly affected transcriptional responses in the root. These mutants open the possibility that EIN2 in L. japonicus, a determinate nodulating legume, acts in a more complex fashion possibly through the presence of a duplicated copy of LjEIN2.
Collapse
Affiliation(s)
- Pick Kuen Chan
- Australian Research Council Centre of Excellence for Integrative Legume Research, The University of Queensland, St. Lucia, Brisbane QLD 4072, Australia
| | | | | |
Collapse
|
19
|
Salehin M, Huang YS, Bagchi R, Sherrier DJ, Dickstein R. Allelic differences in Medicago truncatula NIP/LATD mutants correlate with their encoded proteins' transport activities in planta. PLANT SIGNALING & BEHAVIOR 2013; 8:e22813. [PMID: 23154505 PMCID: PMC3656982 DOI: 10.4161/psb.22813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 05/18/2023]
Abstract
Medicago truncatula NIP/LATD gene, required for symbiotic nitrogen fixing nodule and root architecture development, encodes a member of the NRT1(PTR) family that demonstrates high-affinity nitrate transport in Xenopus laevis oocytes. Of three Mtnip/latd mutant proteins, one retains high-affinity nitrate transport in oocytes, while the other two are nitrate-transport defective. To further examine the mutant proteins' transport properties, the missense Mtnip/latd alleles were expressed in Arabidopsis thaliana chl1-5, resistant to the herbicide chlorate because of a deletion spanning the nitrate transporter AtNRT1.1(CHL1) gene. Mtnip-3 expression restored chlorate sensitivity in the Atchl1-5 mutant, similar to wild type MtNIP/LATD, while Mtnip-1 expression did not. The high-affinity nitrate transporter AtNRT2.1 gene was expressed in Mtnip-1 mutant roots; it did not complement, which could be caused by several factors. Together, these findings support the hypothesis that MtNIP/LATD may have another biochemical activity.
Collapse
Affiliation(s)
- Mohammad Salehin
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| | - Ying-Sheng Huang
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| | - Rammyani Bagchi
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| | - D. Janine Sherrier
- Department of Plant and Soil Science; Delaware Biotechnology Institute; Newark, DE USA
| | - Rebecca Dickstein
- Department of Biological Sciences; University of North Texas; Denton, TX USA
| |
Collapse
|
20
|
Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 2013; 8:e55090. [PMID: 23372818 PMCID: PMC3555872 DOI: 10.1371/journal.pone.0055090] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/24/2012] [Indexed: 01/05/2023] Open
Abstract
Tomato is one of the most economically and agriculturally important Solanaceous species and vegetable crops, serving as a model for examination of fruit biology and compound leaf development. Cytokinin is a plant hormone linked to the control of leaf development and is known to regulate a wide range of genes including many transcription factors. Currently there is little known of the leaf transcriptome in tomato and how it might be regulated by cytokinin. We employ high throughput mRNA sequencing technology and bioinformatic methodologies to robustly analyze cytokinin regulated tomato leaf transcriptomes. Leaf samples of two ages, 13d and 35d were treated with cytokinin or the solvent vehicle control dimethyl sulfoxide (DMSO) for 2 h or 24 h, after which RNA was extracted for sequencing. To confirm the accuracy of RNA sequencing results, we performed qPCR analysis of select transcripts identified as cytokinin regulated by the RNA sequencing approach. The resulting data provide the first hormone transcriptome analysis of leaves in tomato. Specifically we identified several previously untested tomato orthologs of cytokinin-related genes as well as numerous novel cytokinin-regulated transcripts in tomato leaves. Principal component analysis of the data indicates that length of cytokinin treatment and plant age are the major factors responsible for changes in transcripts observed in this study. Two hour cytokinin treatment showed a more robust transcript response indicated by both greater fold change of induced transcripts and the induction of twice as many cytokinin-related genes involved in signaling, metabolism, and transport in young vs. older leaves. This difference in transcriptome response in younger vs. older leaves was also found to a lesser extent with an extended (24 h) cytokinin treatment. Overall data presented here provides a solid foundation for future study of cytokinin and cytokinin regulated genes involved in compound leaf development or other developmental processes in tomato.
Collapse
|
21
|
Bagchi R, Salehin M, Adeyemo OS, Salazar C, Shulaev V, Sherrier DJ, Dickstein R. Functional assessment of the Medicago truncatula NIP/LATD protein demonstrates that it is a high-affinity nitrate transporter. PLANT PHYSIOLOGY 2012; 160:906-16. [PMID: 22858636 PMCID: PMC3461564 DOI: 10.1104/pp.112.196444] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 08/01/2012] [Indexed: 05/18/2023]
Abstract
The Medicago truncatula NIP/LATD (for Numerous Infections and Polyphenolics/Lateral root-organ Defective) gene encodes a protein found in a clade of nitrate transporters within the large NRT1(PTR) family that also encodes transporters of dipeptides and tripeptides, dicarboxylates, auxin, and abscisic acid. Of the NRT1(PTR) members known to transport nitrate, most are low-affinity transporters. Here, we show that M. truncatula nip/latd mutants are more defective in their lateral root responses to nitrate provided at low (250 μm) concentrations than at higher (5 mm) concentrations; however, nitrate uptake experiments showed no discernible differences in uptake in the mutants. Heterologous expression experiments showed that MtNIP/LATD encodes a nitrate transporter: expression in Xenopus laevis oocytes conferred upon the oocytes the ability to take up nitrate from the medium with high affinity, and expression of MtNIP/LATD in an Arabidopsis chl1(nrt1.1) mutant rescued the chlorate susceptibility phenotype. X. laevis oocytes expressing mutant Mtnip-1 and Mtlatd were unable to take up nitrate from the medium, but oocytes expressing the less severe Mtnip-3 allele were proficient in nitrate transport. M. truncatula nip/latd mutants have pleiotropic defects in nodulation and root architecture. Expression of the Arabidopsis NRT1.1 gene in mutant Mtnip-1 roots partially rescued Mtnip-1 for root architecture defects but not for nodulation defects. This suggests that the spectrum of activities inherent in AtNRT1.1 is different from that possessed by MtNIP/LATD, but it could also reflect stability differences of each protein in M. truncatula. Collectively, the data show that MtNIP/LATD is a high-affinity nitrate transporter and suggest that it could have another function.
Collapse
Affiliation(s)
| | | | - O. Sarah Adeyemo
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Carolina Salazar
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Vladimir Shulaev
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - D. Janine Sherrier
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| | - Rebecca Dickstein
- Department of Biological Sciences, University of North Texas, Denton, Texas 76203 (R.B., M.S., O.S.A., C.S., V.S., R.D.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (D.J.S.)
| |
Collapse
|
22
|
Criscuolo G, Valkov VT, Parlati A, Alves LM, Chiurazzi M. Molecular characterization of the Lotus japonicus NRT1(PTR) and NRT2 families. PLANT, CELL & ENVIRONMENT 2012; 35:1567-81. [PMID: 22458810 DOI: 10.1111/j.1365-3040.2012.02510.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nitrate is an essential element for plant growth, both as a primary nutrient in the nitrogen assimilation pathway and as an important signal for plant development. Low- and high-affinity transport systems are involved in the nitrate uptake from the soil and its distribution between different plant tissues. By an in silico search, we identified putative members of both systems in the model legume Lotus japonicus. We investigated, by a time course analysis, the transcripts abundance in root tissues of nine and four genes encoding putative low-affinity (NRT1) and high-affinity (NRT2) nitrate transporters, respectively. The genes were sub-classified as inducible, repressible and constitutive on the basis of their responses to provision of nitrate, auxin or cytokinin. Furthermore, the analysis of the pattern of expression in root and nodule tissues after Mesorhizobium loti inoculation permitted the identification of sequences significantly regulated during the symbiotic interaction. The interpretation of the global regulative networks obtained allowed to postulate roles for nitrate transporters as possible actors in the cross-talks between different signalling pathways triggered by biotic and abiotic factors.
Collapse
MESH Headings
- Anion Transport Proteins/genetics
- Anion Transport Proteins/metabolism
- Cytokinins/pharmacology
- Evolution, Molecular
- Gene Expression Regulation, Plant/drug effects
- Gene Regulatory Networks/genetics
- Genes, Plant/genetics
- Indoleacetic Acids/pharmacology
- Lotus/drug effects
- Lotus/genetics
- Lotus/microbiology
- Mesorhizobium/drug effects
- Mesorhizobium/physiology
- Multigene Family/genetics
- Nitrate Transporters
- Nitrates/pharmacology
- Phylogeny
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Root Nodules, Plant/cytology
- Root Nodules, Plant/drug effects
- Root Nodules, Plant/microbiology
- Time Factors
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
- Giuseppina Criscuolo
- Institute of Genetics and Biophysics A. Buzzati Traverso, Via P. Castellino 111, 80131, Napoli, Italy
| | | | | | | | | |
Collapse
|
23
|
Meckfessel MH, Blancaflor EB, Plunkett M, Dong Q, Dickstein R. Multiple domains in MtENOD8 protein including the signal peptide target it to the symbiosome. PLANT PHYSIOLOGY 2012; 159:299-310. [PMID: 22415512 PMCID: PMC3366718 DOI: 10.1104/pp.111.191403] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Symbiotic nitrogen fixation occurs in nodules, specialized organs on the roots of legumes. Within nodules, host plant cells are infected with rhizobia that are encapsulated by a plant-derived membrane forming a novel organelle, the symbiosome. In Medicago truncatula, the symbiosome consists of the symbiosome membrane, a single rhizobium, and the soluble space between them, called the symbiosome space. The symbiosome space is enriched with plant-derived proteins, including the M. truncatula EARLY NODULIN8 (MtENOD8) protein. Here, we present evidence from green fluorescent protein (GFP) fusion experiments that the MtENOD8 protein contains at least three symbiosome targeting domains, including its N-terminal signal peptide (SP). When ectopically expressed in nonnodulated root tissue, the MtENOD8 SP delivers GFP to the vacuole. During the course of nodulation, there is a nodule-specific redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates and subsequently to symbiosomes, with redirection of MtENOD8-SP-GFP from the vacuole to punctate intermediates preceding intracellular rhizobial infection. Experiments with M. truncatula mutants having defects in rhizobial infection and symbiosome development demonstrated that the MtNIP/LATD gene is required for redirection of the MtENOD8-SP-GFP from the vacuoles to punctate intermediates in nodules. Our evidence shows that MtENOD8 has evolved redundant targeting sequences for symbiosome targeting and that intracellular localization of ectopically expressed MtENOD8-SP-GFP is useful as a marker for monitoring the extent of development in mutant nodules.
Collapse
MESH Headings
- Amino Acid Sequence
- Blotting, Western
- Cloning, Molecular
- Green Fluorescent Proteins/chemistry
- Medicago truncatula/chemistry
- Medicago truncatula/genetics
- Medicago truncatula/microbiology
- Molecular Sequence Data
- Nitrogen Fixation
- Plant Proteins/chemistry
- Plant Root Nodulation
- Plants, Genetically Modified/chemistry
- Plants, Genetically Modified/genetics
- Plants, Genetically Modified/microbiology
- Protein Sorting Signals
- Protein Structure, Tertiary
- Protein Transport
- RNA, Plant/analysis
- RNA, Plant/chemistry
- Recombinant Fusion Proteins/chemistry
- Root Nodules, Plant/chemistry
- Root Nodules, Plant/genetics
- Root Nodules, Plant/microbiology
- Sequence Alignment
- Sinorhizobium meliloti/physiology
- Symbiosis
- Vacuoles/chemistry
Collapse
|