1
|
Park JW, Braswell WE, Kunta M. Co-Occurrence Analysis of Citrus Root Bacterial Microbiota under Citrus Greening Disease. PLANTS (BASEL, SWITZERLAND) 2023; 13:80. [PMID: 38202388 PMCID: PMC10781011 DOI: 10.3390/plants13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 01/12/2024]
Abstract
Candidatus Liberibacter asiaticus (CLas) is associated with Citrus Huanglongbing (HLB), a devastating disease in the US. Previously, we conducted a two-year-long monthly HLB survey by quantitative real-time PCR using root DNA fractions prepared from 112 field grapefruit trees grafted on sour orange rootstock. Approximately 10% of the trees remained CLas-free during the entire survey period. This study conducted 16S metagenomics using the time-series root DNA fractions, monthly prepared during twenty-four consecutive months, followed by microbial co-occurrence network analysis to investigate the microbial factors contributing to the CLas-free phenotype of the aforementioned trees. Based on the HLB status and the time when the trees were first diagnosed as CLas-positive during the survey, the samples were divided into four groups, Stage H (healthy), Stage I (early), II (mid), and III (late) samples. The 16S metagenomics data using Silva 16S database v132 revealed that HLB compromised the diversity of rhizosphere microbiota. At the phylum level, Actinobacteria and Proteobacteria were the predominant bacterial phyla, comprising >93% of total bacterial phyla, irrespective of HLB status. In addition, a temporal change in the rhizosphere microbe population was observed during a two-year-long survey, from which we confirmed that some bacterial families differently responded to HLB disease status. The clustering of the bacterial co-occurrence network data revealed the presence of a subnetwork composed of Streptomycetaceae and bacterial families with plant growth-promoting activity in Stage H and III samples. These data implicated that the Streptomycetaceae subnetwork may act as a functional unit against HLB.
Collapse
Affiliation(s)
- Jong-Won Park
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| | - W. Evan Braswell
- Insect Management and Molecular Diagnostic Laboratory, USDA APHIS PPQ S&T, Edinburg, TX 78541, USA
| | - Madhurababu Kunta
- Citrus Center, Texas A&M University-Kingsville, 312 N. International Blvd., Weslaco, TX 78599, USA
| |
Collapse
|
2
|
Ferreira-Neto JRC, de Araújo FC, de Oliveira Silva RL, de Melo NF, Pandolfi V, Frosi G, de Lima Morais DA, da Silva MD, Rivas R, Santos MG, de Tarso Aidar S, Morgante CV, Benko-Iseppon AM. Dehydration response in Stylosanthes scabra: Transcriptional, biochemical, and physiological modulations. PHYSIOLOGIA PLANTARUM 2022; 174:e13821. [PMID: 36345266 DOI: 10.1111/ppl.13821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Stylosanthes scabra, popularly known as stylo, is native to the Brazilian Caatinga semiarid region and stands out as a drought-tolerant shrub forage crop. This work provides information about the plant response during the first 48 h of water deficit, followed by a rehydration treatment. Besides root transcriptomics data, 13 physiological or biochemical parameters were scrutinized. Additionally, RNA-Seq annotated transcripts not associated with the "Viridiplantae" clade were taxonomically categorized. It was found that S. scabra quickly perceives and recovers from the oscillations of the imposed water regime. Physiologically, mechanisms that minimize evapotranspiration or protect the photosynthetic apparatus stood out. Biochemically, it was found that the root tissue invests in synthesizing compounds that can act as osmolytes (proline and sugars), emphasizing the importance of osmoregulation to water deficit acclimation. Consistently, transcriptome and qPCR analyses showed that a set of enriched biological processes with upregulated (UR) transcripts were involved in protective functions against reactive oxygen species or encoding enzymes of important metabolic pathways, which might contribute to S. scabra response to water deficit. Additionally, several UR kinases and transcription factors were identified. Finally, in an innovative approach, some naturally occurring microbial groups (such as Schizosaccharomyces, Bradyrhizobium, etc.) were identified in the S. scabra roots. This study reveals insights into the physiological, biochemical, and molecular mechanisms underlying the S. scabra response to water deficit and provides candidate genes that may be useful in developing drought-tolerant crop varieties through biotechnological applications.
Collapse
Affiliation(s)
- José Ribamar Costa Ferreira-Neto
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Flávia Czekalski de Araújo
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Roberta Lane de Oliveira Silva
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | - Valesca Pandolfi
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriella Frosi
- Départament de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | - Manassés Daniel da Silva
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Rebeca Rivas
- Laboratório de Genética Molecular, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Mauro Guida Santos
- Laboratório de Fisiologia Vegetal, Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Saulo de Tarso Aidar
- Empresa Brasileira de Pesquisa Agropecuária (SEMIÁRIDO), Petrolina, Pernambuco, Brazil
| | | | - Ana Maria Benko-Iseppon
- Laboratório de Genética e Biotecnologia Vegetal, Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
3
|
Mahnkopp-Dirks F, Radl V, Kublik S, Gschwendtner S, Schloter M, Winkelmann T. Dynamics of Bacterial Root Endophytes of Malus domestica Plants Grown in Field Soils Affected by Apple Replant Disease. Front Microbiol 2022; 13:841558. [PMID: 35401446 PMCID: PMC8993231 DOI: 10.3389/fmicb.2022.841558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/04/2023] Open
Abstract
Apple replant disease (ARD) is a worldwide problem for tree nurseries and orchards leading to reduced plant growth and fruit quality. The etiology of this complex phenomenon is poorly understood, but shifts of the bulk soil and rhizosphere microbiome seem to play an important role. Since roots are colonized by microbes from the rhizosphere, studies of the endophytic microbiome in relation to ARD are meaningful. In this study, culture-independent and culture-dependent approaches were used in order to unravel the endophytic root microbiome of apple plants 3, 7, and 12 months after planting in ARD-affected soil and ARD-unaffected control soil at two different field sites. Next to a high diversity of Pseudomonas in roots from all soils, molecular barcoding approaches revealed an increase in relative abundance of endophytic Actinobacteria over time in plants grown in ARD and control plots. Furthermore, several amplicon sequence variants (ASVs) linked to Streptomyces, which had been shown in a previous greenhouse ARD biotest to be negatively correlated to shoot length and fresh mass, were also detected in roots from both field sites. Especially in roots of apple plants from control soil, these Streptomyces ASVs increased in their relative abundance over time. The isolation of 150 bacterial strains in the culture-dependent approach revealed a high diversity of members of the genus Pseudomonas, confirming the data of the molecular barcoding approach. However, only partial overlaps were found between the two approaches, underlining the importance of combining these methods in order to better understand this complex disease and develop possible countermeasures. Overall, this study suggests a key role of Streptomyces in the etiology of ARD in the field.
Collapse
Affiliation(s)
- Felix Mahnkopp-Dirks
- Section Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hanover, Germany
| | - Viviane Radl
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Susanne Kublik
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Munich, Germany
| | - Traud Winkelmann
- Section Woody Plant and Propagation Physiology, Institute of Horticultural Production Systems, Leibniz Universität Hannover, Hanover, Germany
| |
Collapse
|
4
|
Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro. Symbiosis 2020. [DOI: 10.1007/s13199-020-00678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractTricholoma matsutake is known to be the dominant fungal species in matsutake fruitbody neighboring (shiro) soil. To understand the mechanisms behind matsutake dominance, we studied the bacterial communities in matsutake dominant shiro soil and non-shiro soil, isolated the strains of Streptomyces from matsutake mycorrhizal root tips both from shiro soil and from the Pinus densiflora seedlings cultivated in shiro soil. Further, we investigated three Streptomyces spp. for their ability to inhibit fungal growth and Pinus densiflora seedling root elongation as well as two strains for their antifungal and antioxidative properties.Our results showed that Actinobacteria was the most abundant phylum in shiro soil. However, the differences in the Actinobacterial community composition (phylum or order level) between shiro and non-shiro soils were not significant, as indicated by PERMANOVA analyses. A genus belonging to Actinobacteria, Streptomyces, was present on the matsutake mycorrhizas, although in minority. The two antifungal assays revealed that the broths of three Streptomyces spp. had either inhibitory, neutral or promoting effects on the growth of different forest soil fungi as well as on the root elongation of the seedlings. The extracts of two strains, including one isolated from the P. densiflora seedlings, inhibited the growth of either pathogenic or ectomycorrhizal fungi. The effect depended on the medium used to cultivate the strains, but not the solvent used for the extraction. Two Streptomyces spp. showed antioxidant activity in one out of three assays used, in a ferric reducing antioxidant power assay. The observed properties seem to have several functions in matsutake shiro soil and they may contribute to the protection of the shiro area for T. matsutake dominance.
Collapse
|
5
|
Newitt JT, Prudence SMM, Hutchings MI, Worsley SF. Biocontrol of Cereal Crop Diseases Using Streptomycetes. Pathogens 2019; 8:pathogens8020078. [PMID: 31200493 PMCID: PMC6630304 DOI: 10.3390/pathogens8020078] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 12/12/2022] Open
Abstract
A growing world population and an increasing demand for greater food production requires that crop losses caused by pests and diseases are dramatically reduced. Concurrently, sustainability targets mean that alternatives to chemical pesticides are becoming increasingly desirable. Bacteria in the plant root microbiome can protect their plant host against pests and pathogenic infection. In particular, Streptomyces species are well-known to produce a range of secondary metabolites that can inhibit the growth of phytopathogens. Streptomyces are abundant in soils and are also enriched in the root microbiomes of many different plant species, including those grown as economically and nutritionally valuable cereal crops. In this review we discuss the potential of Streptomyces to protect against some of the most damaging cereal crop diseases, particularly those caused by fungal pathogens. We also explore factors that may improve the efficacy of these strains as biocontrol agents in situ, as well as the possibility of exploiting plant mechanisms, such as root exudation, that enable the recruitment of microbial species from the soil to the root microbiome. We argue that a greater understanding of these mechanisms may enable the development of protective plant root microbiomes with a greater abundance of beneficial bacteria, such as Streptomyces species.
Collapse
Affiliation(s)
- Jake T Newitt
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Samuel M M Prudence
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| | - Sarah F Worsley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK.
| |
Collapse
|
6
|
A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nat Commun 2019; 10:1576. [PMID: 30952847 PMCID: PMC6450895 DOI: 10.1038/s41467-019-09472-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Ustilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP).
Collapse
|
7
|
Ceapă CD, Vázquez-Hernández M, Rodríguez-Luna SD, Cruz Vázquez AP, Jiménez Suárez V, Rodríguez-Sanoja R, Alvarez-Buylla ER, Sánchez S. Genome mining of Streptomyces scabrisporus NF3 reveals symbiotic features including genes related to plant interactions. PLoS One 2018; 13:e0192618. [PMID: 29447216 PMCID: PMC5813959 DOI: 10.1371/journal.pone.0192618] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/17/2022] Open
Abstract
Endophytic bacteria are wide-spread and associated with plant physiological benefits, yet their genomes and secondary metabolites remain largely unidentified. In this study, we explored the genome of the endophyte Streptomyces scabrisporus NF3 for discovery of potential novel molecules as well as genes and metabolites involved in host interactions. The complete genomes of seven Streptomyces and three other more distantly related bacteria were used to define the functional landscape of this unique microbe. The S. scabrisporus NF3 genome is larger than the average Streptomyces genome and not structured for an obligate endosymbiotic lifestyle; this and the fact that can grow in R2YE media implies that it could include a soil-living stage. The genome displays an enrichment of genes associated with amino acid production, protein secretion, secondary metabolite and antioxidants production and xenobiotic degradation, indicating that S. scabrisporus NF3 could contribute to the metabolic enrichment of soil microbial communities and of its hosts. Importantly, besides its metabolic advantages, the genome showed evidence for differential functional specificity and diversification of plant interaction molecules, including genes for the production of plant hormones, stress resistance molecules, chitinases, antibiotics and siderophores. Given the diversity of S. scabrisporus mechanisms for host upkeep, we propose that these strategies were necessary for its adaptation to plant hosts and to face changes in environmental conditions.
Collapse
Affiliation(s)
- Corina Diana Ceapă
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Melissa Vázquez-Hernández
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Stefany Daniela Rodríguez-Luna
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Angélica Patricia Cruz Vázquez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
- Instituto Tecnológico de Tuxtla Gutiérrez,Tuxtla, Gutiérrez, Chiapas, México
| | - Verónica Jiménez Suárez
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Romina Rodríguez-Sanoja
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Elena R. Alvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Sergio Sánchez
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
8
|
Hadj Rabia-Boukhalfa Y, Eveno Y, Karama S, Selama O, Lauga B, Duran R, Hacène H, Eparvier V. Isolation, purification and chemical characterization of a new angucyclinone compound produced by a new halotolerant Nocardiopsis sp. HR-4 strain. World J Microbiol Biotechnol 2017; 33:126. [DOI: 10.1007/s11274-017-2292-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/20/2017] [Indexed: 01/10/2023]
|
9
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
10
|
Tardif S, Yergeau É, Tremblay J, Legendre P, Whyte LG, Greer CW. The Willow Microbiome Is Influenced by Soil Petroleum-Hydrocarbon Concentration with Plant Compartment-Specific Effects. Front Microbiol 2016; 7:1363. [PMID: 27660624 PMCID: PMC5015464 DOI: 10.3389/fmicb.2016.01363] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/17/2016] [Indexed: 11/13/2022] Open
Abstract
The interaction between plants and microorganisms, which is the driving force behind the decontamination of petroleum hydrocarbon (PHC) contamination in phytoremediation technology, is poorly understood. Here, we aimed at characterizing the variations between plant compartments in the microbiome of two willow cultivars growing in contaminated soils. A field experiment was set-up at a former petrochemical plant in Canada and after two growing seasons, bulk soil, rhizosphere soil, roots, and stems samples of two willow cultivars (Salix purpurea cv. FishCreek, and Salix miyabeana cv. SX67) growing at three PHC contamination concentrations were taken. DNA was extracted and bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) regions were amplified and sequenced using an Ion Torrent Personal Genome Machine (PGM). Following multivariate statistical analyses, the level of PHC-contamination appeared as the primary factor influencing the willow microbiome with compartment-specific effects, with significant differences between the responses of bacterial, and fungal communities. Increasing PHC contamination levels resulted in shifts in the microbiome composition, favoring putative hydrocarbon degraders, and microorganisms previously reported as associated with plant health. These shifts were less drastic in the rhizosphere, root, and stem tissues as compared to bulk soil, probably because the willows provided a more controlled environment, and thus, protected microbial communities against increasing contamination levels. Insights from this study will help to devise optimal plant microbiomes for increasing the efficiency of phytoremediation technology.
Collapse
Affiliation(s)
- Stacie Tardif
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Étienne Yergeau
- Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada; Centre INRS-Institut Armand-Frappier, Institut national de la recherche scientifiqueLaval, QC, Canada
| | - Julien Tremblay
- Energy, Mining, and Environment, National Research Council Canada Montréal, QC, Canada
| | - Pierre Legendre
- Département de Sciences Biologiques, Université de Montréal Montréal, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University Sainte-Anne-de-Bellevue, QC, Canada
| | - Charles W Greer
- Department of Natural Resource Sciences, McGill UniversitySainte-Anne-de-Bellevue, QC, Canada; Energy, Mining, and Environment, National Research Council CanadaMontréal, QC, Canada
| |
Collapse
|
11
|
Bennur T, Ravi Kumar A, Zinjarde S, Javdekar V. Nocardiopsis
species: a potential source of bioactive compounds. J Appl Microbiol 2015; 120:1-16. [DOI: 10.1111/jam.12950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/16/2015] [Accepted: 07/07/2015] [Indexed: 12/12/2022]
Affiliation(s)
- T. Bennur
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - A. Ravi Kumar
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - S.S. Zinjarde
- Institute of Bioinformatics and Biotechnology; Savitribai Phule Pune University; Pune India
| | - V. Javdekar
- Department of Biotechnology; Abasaheb Garware College; Pune India
| |
Collapse
|
12
|
Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiol Res 2015; 174:33-47. [PMID: 25946327 DOI: 10.1016/j.micres.2015.03.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/23/2022]
Abstract
Members of the genus Nocardiopsis are ecologically versatile and biotechnologically important. They produce a variety of bioactive compounds such as antimicrobial agents, anticancer substances, tumor inducers, toxins and immunomodulators. They also secrete novel extracellular enzymes such as amylases, chitinases, cellulases, β-glucanases, inulinases, xylanases and proteases. Nocardiopsis species are aerobic, Gram-positive, non-acid-fast, catalase-positive actinomycetes with nocardioform substrate mycelia and their aerial mycelia bear long chains of spores. Their DNA possesses high contents of guanine and cytosine. There is a marked variation in properties of the isolates obtained from different ecological niches and their products. An important feature of several species is their halophilic or halotolerant nature. They are associated with a variety of marine and terrestrial biological forms wherein they produce antibiotics and toxins that help their hosts in evading pathogens and predators. Two Nocardiopsis species, namely, N. dassonvillei and N. synnemataformans (among the thirty nine reported ones) are opportunistic human pathogens and cause mycetoma, suppurative infections and abscesses. Nocardiopsis species are present in some plants (as endophytes or surface microflora) and their rhizospheres. Here, they are reported to produce enzymes such as α-amylases and antifungal agents that are effective in warding-off plant pathogens. They are prevalent as free-living entities in terrestrial locales, indoor locations, marine ecosystems and hypersaline habitats on account of their salt-, alkali- and desiccation-resistant behavior. In such natural locations, Nocardiopsis species mainly help in recycling organic compounds. Survival under these diverse conditions is mediated by the production of extracellular enzymes, antibiotics, surfactants, and the accumulation of compatible solutes. The accommodative genomic features of Nocardiopsis species support their existence under the diverse conditions where they prevail.
Collapse
Affiliation(s)
- Tahsin Bennur
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Ameeta Ravi Kumar
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Smita Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India.
| | - Vaishali Javdekar
- Department of Biotechnology, Abasaheb Garware College, Pune 411004, India.
| |
Collapse
|
13
|
Traxler MF, Kolter R. Natural products in soil microbe interactions and evolution. Nat Prod Rep 2015; 32:956-70. [DOI: 10.1039/c5np00013k] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Gram positive bacteria from the soil have historically been a deep source of useful natural products. This article considers how natural products may mediate microbial interactions in the soil environment.
Collapse
Affiliation(s)
- Matthew F. Traxler
- Dept. of Plant and Microbial Biology
- University of California at Berkeley
- Berkeley
- USA
| | - Roberto Kolter
- Dept. of Microbiology and Immunobiology
- Harvard Medical School
- Boston
- USA
| |
Collapse
|
14
|
Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M. Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 2014; 17:610-21. [PMID: 24628845 DOI: 10.1111/1462-2920.12452] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/01/2023]
Abstract
The gap between current average global wheat yields and that achievable through best agronomic management and crop genetics is large. This is notable in intensive wheat rotations which are widely used. Expectations are that this gap can be reduced by manipulating soil processes, especially those that involve microbial ecology. Cross-year analysis of the soil microbiome in an intensive wheat cropping system revealed that rhizosphere bacteria changed much more than the bulk soil community. Dominant factors influencing populations included binding to roots, plant age, site and planting sequence. We demonstrated evolution of bacterial communities within the field rhizosphere. Early in the season, communities tightly bound to the root were simplest. These increased in diversity with plant age and senescence. Loosely bound communities also increased in diversity from vegetative to reproductive plant stages but were more stable than those tightly bound to roots. Planting sequence and, to a lesser extent, wheat genotype also significantly affected rhizosphere bacteria. Plasticity in the rhizosphere generated from crop root system management and genetics offers promise for manipulating the soil ecology of intense cereal systems. Analyses of soil microbiomes for the purpose of developing agronomic benefit should include roots as well as soil loosely adhered to the roots, and the bulk soil.
Collapse
Affiliation(s)
- Suzanne Donn
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT, 2601, Australia
| | | | | | | | | |
Collapse
|
15
|
Kinkel LL, Schlatter DC, Bakker MG, Arenz BE. Streptomyces competition and co-evolution in relation to plant disease suppression. Res Microbiol 2012; 163:490-9. [PMID: 22922402 DOI: 10.1016/j.resmic.2012.07.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 07/04/2012] [Indexed: 01/01/2023]
Abstract
High densities of antagonistic Streptomyces are associated with plant disease suppression in many soils. Here we review use of inoculation and organic matter amendments for enriching antagonistic Streptomyces populations to reduce plant disease and note that effective and consistent disease suppression in response to management has been elusive. We argue that shifting the focus of research from short-term disease suppression to the population ecology and evolutionary biology of antagonistic Streptomyces in soil will enhance prospects for effective management. A framework is presented for considering the impacts of short- and long-term management on competitive and coevolutionary dynamics among Streptomyces populations in relation to disease suppression.
Collapse
Affiliation(s)
- Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN 55108, USA.
| | | | | | | |
Collapse
|