1
|
Płachno BJ, Kapusta M, Stolarczyk P, Feldo M, Świątek P. Cell Wall Microdomains in the External Glands of Utricularia dichotoma Traps. Int J Mol Sci 2024; 25:6089. [PMID: 38892273 PMCID: PMC11173196 DOI: 10.3390/ijms25116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The genus Utricularia (bladderworts) species are carnivorous plants that prey on invertebrates using traps with a high-speed suction mechanism. The outer trap surface is lined by dome-shaped glands responsible for secreting water in active traps. In terminal cells of these glands, the outer wall is differentiated into several layers, and even cell wall ingrowths are covered by new cell wall layers. Due to changes in the cell wall, these glands are excellent models for studying the specialization of cell walls (microdomains). The main aim of this study was to check if different cell wall layers have a different composition. Antibodies against arabinogalactan proteins (AGPs) were used, including JIM8, JIM13, JIM14, MAC207, and JIM4. The localization of the examined compounds was determined using immunohistochemistry techniques and immunogold labeling. Differences in composition were found between the primary cell wall and the cell secondary wall in terminal gland cells. The outermost layer of the cell wall of the terminal cell, which was cuticularized, was devoid of AGPs (JIM8, JIM14). In contrast, the secondary cell wall in terminal cells was rich in AGPs. AGPs localized with the JIM13, JIM8, and JIM14 epitopes occurred in wall ingrowths of pedestal cells. Our research supports the hypothesis of water secretion by the external glands.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Bioimaging Laboratory, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdansk, Poland;
| | - Piotr Stolarczyk
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54 Ave., 31-425 Cracow, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery and Angiology, Medical University of Lublin, 16 Staszica St., 20-081 Lublin, Poland;
| | - Piotr Świątek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland;
| |
Collapse
|
2
|
Płachno BJ, Kapusta M. The Localization of Cell Wall Components in the Quadrifids of Whole-Mount Immunolabeled Utricularia dichotoma Traps. Int J Mol Sci 2023; 25:56. [PMID: 38203227 PMCID: PMC10778831 DOI: 10.3390/ijms25010056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Utricularia (bladderworts) are carnivorous plants. They produce small hollow vesicles, which function as suction traps that work underwater and capture fine organisms. Inside the traps, there are numerous glandular trichomes (quadrifids), which take part in the secretion of digestive enzymes, the resorption of released nutrients, and likely the pumping out of water. Due to the extreme specialization of quadrifids, they are an interesting model for studying the cell walls. This aim of the study was to fill in the gap in the literature concerning the immunocytochemistry of quadrifids in the major cell wall polysaccharides and glycoproteins. To do this, the localization of the cell wall components in the quadrifids was performed using whole-mount immunolabeled Utricularia traps. It was observed that only parts (arms) of the terminal cells had enough discontinuous cuticle to be permeable to antibodies. There were different patterns of the cell wall components in the arms of the terminal cells of the quadrifids. The cell walls of the arms were especially rich in low-methyl-esterified homogalacturonan. Moreover, various arabinogalactan proteins also occurred. Cell walls in glandular cells of quadrifids were rich in low-methyl-esterified homogalacturonan; in contrast, in the aquatic carnivorous plant Aldrovanda vesiculosa, cell walls in the glandular cells of digestive glands were poor in low-methyl-esterified homogalacturonan. Arabinogalactan proteins were found in the cell walls of trap gland cells in all studied carnivorous plants: Utricularia, and members of Droseraceae and Drosophyllaceae.
Collapse
Affiliation(s)
- Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387 Cracow, Poland
| | - Małgorzata Kapusta
- Laboratory of Bioimaging, Faculty of Biology, University of Gdańsk, 59 Wita Stwosza St., 80-308 Gdańsk, Poland;
| |
Collapse
|
3
|
Silva SR, Miranda VFO, Michael TP, Płachno BJ, Matos RG, Adamec L, Pond SLK, Lucaci AG, Pinheiro DG, Varani AM. The phylogenomics and evolutionary dynamics of the organellar genomes in carnivorous Utricularia and Genlisea species (Lentibulariaceae). Mol Phylogenet Evol 2023; 181:107711. [PMID: 36693533 DOI: 10.1016/j.ympev.2023.107711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Utricularia and Genlisea are highly specialized carnivorous plants whose phylogenetic history has been poorly explored using phylogenomic methods. Additional sampling and genomic data are needed to advance our phylogenetic and taxonomic knowledge of this group of plants. Within a comparative framework, we present a characterization of plastome (PT) and mitochondrial (MT) genes of 26 Utricularia and six Genlisea species, with representatives of all subgenera and growth habits. All PT genomes maintain similar gene content, showing minor variation across the genes located between the PT junctions. One exception is a major variation related to different patterns in the presence and absence of ndh genes in the small single copy region, which appears to follow the phylogenetic history of the species rather than their lifestyle. All MT genomes exhibit similar gene content, with most differences related to a lineage-specific pseudogenes. We find evidence for episodic positive diversifying selection in PT and for most of the Utricularia MT genes that may be related to the current hypothesis that bladderworts' nuclear DNA is under constant ROS oxidative DNA damage and unusual DNA repair mechanisms, or even low fidelity polymerase that bypass lesions which could also be affecting the organellar genomes. Finally, both PT and MT phylogenetic trees were well resolved and highly supported, providing a congruent phylogenomic hypothesis for Utricularia and Genlisea clade given the study sampling.
Collapse
Affiliation(s)
- Saura R Silva
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Vitor F O Miranda
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland.
| | - Ramon G Matos
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Biology, Laboratory of Plant Systematics, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Lubomir Adamec
- Department of Experimental and Functional Morphology, Institute of Botany CAS, Dukelská 135, CZ-379 01 Třeboň, Czech Republic.
| | - Sergei L K Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Alexander G Lucaci
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA.
| | - Daniel G Pinheiro
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| | - Alessandro M Varani
- UNESP - São Paulo State University, School of Agricultural and Veterinarian Sciences, Department of Agricultural and Environmental Biotechnology, Campus Jaboticabal, CEP 14884-900 SP, Brazil.
| |
Collapse
|
4
|
The effect of experimentally simulated climate warming on the microbiome of carnivorous plants – A microcosm experiment. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Guedes FM, Miranda VFO, Alves M. Flora of Espírito Santo: Lentibulariaceae. RODRIGUÉSIA 2022. [DOI: 10.1590/2175-7860202273006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract The present study comprises the taxonomic treatment of the Lentibulariaceae species in Espírito Santo state, as a continuation of a series of studies focused on the Flora of Espírito Santo. Herein we present an identification key, morphological descriptions, illustrations, distribution map, list of analysed material and comments about taxonomy and distribution of the species. We confirmed the occurrence of 16 species in Espírito Santo state, of which four are new records and only three are not found in protected areas.
Collapse
|
6
|
Müller UK, Berg O, Schwaner JM, Brown MD, Li G, Voesenek CJ, van Leeuwen JL. Bladderworts, the smallest known suction feeders, generate inertia-dominated flows to capture prey. THE NEW PHYTOLOGIST 2020; 228:586-595. [PMID: 32506423 DOI: 10.1111/nph.16726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/22/2020] [Indexed: 05/02/2023]
Abstract
Aquatic bladderworts (Utricularia gibba and U. australis) capture zooplankton in mechanically triggered underwater traps. With characteristic dimensions less than 1 mm, the trapping structures are among the smallest known to capture prey by suction, a mechanism that is not effective in the creeping-flow regime where viscous forces prevent the generation of fast and energy-efficient suction flows. To understand what makes suction feeding possible on the small scale of bladderwort traps, we characterised their suction flows experimentally (using particle image velocimetry) and mathematically (using computational fluid dynamics and analytical mathematical models). We show that bladderwort traps avoid the adverse effects of creeping flow by generating strong, fast-onset suction pressures. Our findings suggest that traps use three morphological adaptations: the trap walls' fast release of elastic energy ensures strong and constant suction pressure; the trap door's fast opening ensures effectively instantaneous onset of suction; the short channel leading into the trap ensures undeveloped flow, which maintains a wide effective channel diameter. Bladderwort traps generate much stronger suction flows than larval fish with similar gape sizes because of the traps' considerably stronger suction pressures. However, bladderworts' ability to generate strong suction flows comes at considerable energetic expense.
Collapse
Affiliation(s)
- Ulrike K Müller
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Otto Berg
- Department of Chemistry, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Janneke M Schwaner
- Biological Sciences, University of Idaho, 875 Perimeter Drive MS 3051, Moscow, ID, 83844-3051, USA
| | - Matthew D Brown
- Department of Biology, California State University Fresno, 2555 E San Ramon Ave, Fresno, CA, 93740, USA
| | - Gen Li
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Showa-machi, Kanazawa-ku, Yokohama-city, Kanagawa, 3173-25, 236-0001, Japan
| | - Cees J Voesenek
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| | - Johan L van Leeuwen
- Experimental Zoology Group, Wageningen University, De Elst 1, Wageningen, 6708WD, the Netherlands
| |
Collapse
|
7
|
Sirová D, Kreidlová V, Adamec L, Vrba J. The Ability of Tetrahymena utriculariae (Ciliophora, Oligohymenophorea) to Colonize Traps of Different Species of Aquatic Carnivorous Utricularia. J Eukaryot Microbiol 2020; 67:608-611. [PMID: 32498121 DOI: 10.1111/jeu.12812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/28/2022]
Abstract
The host specificity of the recently described ciliate species Tetrahymena utriculariae was tested in a greenhouse growth experiment, which included 14 different species of aquatic Utricularia as potential host plants. We confirmed the high specificity of the interaction between U. reflexa and T. utriculariae, the former being the only tested host species able to maintain colonization for prolonged time periods. We conclude that this plant-microbe relationship is a unique and specialized form of digestive mutualism and the plant-microbe unit a suitable experimental system for future ecophysiological studies.
Collapse
Affiliation(s)
- Dagmara Sirová
- Biology Centre CAS, Institute of Hydrobiology, CZ-37005, České Budějovice, Czech Republic
| | - Veronika Kreidlová
- Faculty of Science, University of South Bohemia, CZ-37005, České Budějovice, Czech Republic
| | - Lubomír Adamec
- Institute of Botany CAS, Dukelská 135, CZ-37982, Třeboň, Czech Republic
| | - Jaroslav Vrba
- Faculty of Science, University of South Bohemia, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
8
|
Oropeza-Aburto A, Cervantes-Pérez SA, Albert VA, Herrera-Estrella L. Agrobacterium tumefaciens mediated transformation of the aquatic carnivorous plant Utricularia gibba. PLANT METHODS 2020; 16:50. [PMID: 32308728 PMCID: PMC7149871 DOI: 10.1186/s13007-020-00592-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 05/02/2023]
Abstract
BACKGROUND The genus Utricularia belongs to Lentibulariaceae, the largest family of carnivorous plants, which includes terrestrial, epiphytic and aquatic species. The development of specialized structures that evolved for carnivory is a feature of this genus that has been of great interest to biologists since Darwin's early studies. Utricularia gibba is itself an aquatic plant with sophisticated bladder traps having one of the most complex suction mechanisms for trapping prey. However, the molecular characterization of the mechanisms that regulate trap development and the biophysical processes involved in prey trapping are still largely unknown due to the lack of a simple and reproducible gene transfer system. RESULTS Here, we report the establishment of a simple, fast and reproducible protocol for genetic transformation of U. gibba based on the T-DNA of Agrobacterium tumefaciens. An in vitro selection system using Phosphinotricin as a selective agent was established for U. gibba. Plant transformation was confirmed by histochemical GUS assays and PCR and qRT-PCR analyses. We report on the expression pattern of the 35S promoter and of the promoter of a trap-specific ribonuclease gene in transgenic U. gibba plants. CONCLUSIONS The genetic transformation protocol reported here is an effective method for studying developmental biology and functional genomics of this genus of carnivorous plants and advances the utility of U. gibba as a model system to study developmental processes involved in trap formation.
Collapse
Affiliation(s)
- A. Oropeza-Aburto
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - S. A. Cervantes-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
| | - V. A. Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260 USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551 Singapore
| | - L. Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824 Irapuato, Guanajuato Mexico
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Department, Texas Tech University, Lubbock, USA
| |
Collapse
|
9
|
Abundant and diverse Tetrahymena species living in the bladder traps of aquatic carnivorous Utricularia plants. Sci Rep 2019; 9:13669. [PMID: 31541152 PMCID: PMC6754427 DOI: 10.1038/s41598-019-50123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/06/2019] [Indexed: 01/01/2023] Open
Abstract
Ciliates are unicellular eukaryotes known for their cellular complexity and wide range of natural habitats. How they adapt to their niches and what roles they play in ecology remain largely unknown. The genus Tetrahymena is among the best-studied groups of ciliates and one particular species, Tetrahymena thermophila, is a well-known laboratory model organism in cell and molecular biology, making it an excellent candidate for study in protist ecology. Here, based on cytochrome c oxidase subunit I (COX1) gene barcoding, we identify a total of 19 different putative Tetrahymena species and two closely related Glaucoma lineages isolated from distinct natural habitats, of which 13 are new species. These latter include 11 Tetrahymena species found in the bladder traps of Utricularia plants, the most species-rich and widely distributed aquatic carnivorous plant, thus revealing a previously unknown but significant symbiosis of Tetrahymena species living among the microbial community of Utricularia bladder traps. Additional species were collected using an artificial trap method we have developed. We show that diverse Tetrahymena species may live even within the same habitat and that their populations are highly dynamic, suggesting that the diversity and biomass of species worldwide is far greater than currently appreciated.
Collapse
|
10
|
Lima FR, Ferreira AJ, Menezes CG, Miranda VFO, Dourado MN, Araújo WL. Cultivated bacterial diversity associated with the carnivorous plant Utricularia breviscapa (Lentibulariaceae) from floodplains in Brazil. Braz J Microbiol 2018; 49:714-722. [PMID: 29661568 PMCID: PMC6175710 DOI: 10.1016/j.bjm.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/10/2017] [Accepted: 12/24/2017] [Indexed: 11/30/2022] Open
Abstract
Carnivorous plant species, such as Utricularia spp., capture and digest prey. This digestion can occur through the secretion of plant digestive enzymes and/or by bacterial digestive enzymes. To comprehend the physiological mechanisms of carnivorous plants, it is essential to understand the microbial diversity related to these plants. Therefore, in the present study, we isolated and classified bacteria from different organs of Utricularia breviscapa (stolons and utricles) and from different geographic locations (São Paulo and Mato Grosso). We were able to build the first bacterium collection for U. breviscapa and study the diversity of cultivable bacteria. The results show that U. breviscapa bacterial diversity varied according to the geographic isolation site (São Paulo and Mato Grosso) but not the analyzed organs (utricle and stolon). We reported that six genera were common to both sample sites (São Paulo and Mato Grosso). These genera have previously been reported to be beneficial to plants, as well as related to the bioremediation process, showing that these isolates present great biotechnological and agricultural potential. This is the first report of an Acidobacteria isolated from U. breviscapa. The role of these bacteria inside the plant must be further investigated in order to understand their population dynamics within the host.
Collapse
Affiliation(s)
- Felipe Rezende Lima
- Departmento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, 05508-900 São Paulo, SP, Brazil; Núcleo Integrado de Biotecnologia, NIB, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Centro cívico, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Almir José Ferreira
- Departmento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, 05508-900 São Paulo, SP, Brazil; Núcleo Integrado de Biotecnologia, NIB, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Centro cívico, 08780-911 Mogi das Cruzes, SP, Brazil
| | - Cristine Gobbo Menezes
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista UNESP, Via de acesso Prof. Paulo Donato Castellane s/n, Centro, 14884-900 Jaboticabal, SP, Brazil
| | - Vitor Fernandes Oliveira Miranda
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista UNESP, Via de acesso Prof. Paulo Donato Castellane s/n, Centro, 14884-900 Jaboticabal, SP, Brazil
| | - Manuella Nóbrega Dourado
- Departmento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, 05508-900 São Paulo, SP, Brazil.
| | - Welington Luiz Araújo
- Departmento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof. Lineu Prestes, 1374-Ed. Biomédicas II, Cidade Universitária, 05508-900 São Paulo, SP, Brazil; Núcleo Integrado de Biotecnologia, NIB, Universidade de Mogi das Cruzes, Av. Dr. Cândido Xavier de Almeida Souza, 200, Centro cívico, 08780-911 Mogi das Cruzes, SP, Brazil.
| |
Collapse
|
11
|
Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N, Csitári B, Vörös L, Felföldi T. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018; 94:4675209. [PMID: 29206918 DOI: 10.1093/femsec/fix164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.
Collapse
Affiliation(s)
- Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Nóra Tugyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| |
Collapse
|
12
|
Westermeier AS, Fleischmann A, Müller K, Schäferhoff B, Rubach C, Speck T, Poppinga S. Trap diversity and character evolution in carnivorous bladderworts (Utricularia, Lentibulariaceae). Sci Rep 2017; 7:12052. [PMID: 28935893 PMCID: PMC5608911 DOI: 10.1038/s41598-017-12324-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Bladderworts (Utricularia, Lentibulariaceae, Lamiales) constitute the largest genus of carnivorous plants but only aquatic species (about one fifth of the genus) have so far been thoroughly studied as to their suction trap functioning. In this study, we comparatively investigated trap biomechanics in 19 Utricularia species to examine correlations between life-forms, trapping mechanisms, and functional-morphological traits. Our investigations show the existence of two functional trap principles (passive trap in U. multifida vs. active suction traps), and - in active suction traps - three main trapdoor movement types (with several subtypes). The trapdoor movement types and their corresponding functional-morphological features most presumably represent adaptations to the respective habitat. We furthermore give insights into fluid dynamics during suction in three representatives of the main types of trapdoor movement. The results on functional morphology and trapdoor movement were mapped onto a new phylogenetic reconstruction of the genus, derived from the rapidly evolving chloroplast regions trnK, rps16 and trnQ-rps16 and a sampling of 105 Utricularia species in total. We discuss potential scenarios of trap character evolution and species radiation, highlighting possible key innovations that enable such a unique carnivorous lifestyle in different habitats.
Collapse
Affiliation(s)
- Anna Sofia Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Andreas Fleischmann
- Botanische Staatssammlung München, Menzinger Straße 67, D-80638, München, Germany
- GeoBio-Center LMU, Center of Geobiology and Biodiversity Research, Ludwig-Maximilians-University, München, Germany
| | - Kai Müller
- Westfälische Wilhelms-Universität Münster, Institut für Evolution und Biodiversität, AG Evolution und Biodiversität der Pflanzen, Hüfferstraße 1, D-48149, Münster, Germany
| | - Bastian Schäferhoff
- Westfälische Wilhelms-Universität Münster, Institut für Evolution und Biodiversität, AG Evolution und Biodiversität der Pflanzen, Hüfferstraße 1, D-48149, Münster, Germany
- PAN Institut für Endokrinologie und Reproduktionsmedizin, Zeppelinstraße 1, D-50667, Köln, Germany
| | - Carmen Rubach
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany.
| |
Collapse
|
13
|
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
14
|
Hamant O, Haswell ES. Life behind the wall: sensing mechanical cues in plants. BMC Biol 2017. [PMID: 28697754 DOI: 10.1186/s12915-017-0403-405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
There is increasing evidence that all cells sense mechanical forces in order to perform their functions. In animals, mechanotransduction has been studied during the establishment of cell polarity, fate, and division in single cells, and increasingly is studied in the context of a multicellular tissue. What about plant systems? Our goal in this review is to summarize what is known about the perception of mechanical cues in plants, and to provide a brief comparison with animals.
Collapse
Affiliation(s)
- Olivier Hamant
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France.
| | - Elizabeth S Haswell
- Department of Biology, Washington University in Saint Louis, Mailbox 1137, Saint Louis, MO, 63130, USA.
| |
Collapse
|
15
|
Poppinga S, Daber LE, Westermeier AS, Kruppert S, Horstmann M, Tollrian R, Speck T. Biomechanical analysis of prey capture in the carnivorous Southern bladderwort (Utricularia australis). Sci Rep 2017; 7:1776. [PMID: 28496168 PMCID: PMC5431978 DOI: 10.1038/s41598-017-01954-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/04/2017] [Indexed: 11/08/2022] Open
Abstract
We recorded capture events (CEs) of the daphniid Ceriodaphnia dubia by the carnivorous Southern bladderwort with suction traps (Utricularia australis). Independent to orientation and behavior during trap triggering, the animals were successfully captured within 9 ms on average and sucked in with velocities of up to 4 m/s and accelerations of up to 2800 g. Phases of very high acceleration during onsets of suction were immediately followed by phases of similarly high deceleration (max.: -1900 g) inside the bladders, leading to immobilization of the prey which then dies. We found that traps perform a 'forward strike' during suction and that almost completely air-filled traps are still able to perform suction. The trigger hairs on the trapdoors can undergo strong bending deformation, which we interpret to be a safety feature to prevent fracture. Our results highlight the elaborate nature of the Utricularia suction traps which are functionally resilient and leave prey animals virtually no chance to escape.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany.
| | - Lars Erik Daber
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
| | - Anna Sofia Westermeier
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| | - Sebastian Kruppert
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Martin Horstmann
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr-University Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Thomas Speck
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Schänzlestraße 1, D-79104, Freiburg im Breisgau, Germany
- Freiburg Centre for Interactive Materials and Bioinspired Technologies (FIT), Georges-Koehler-Allee 105, D-79110, Freiburg im Breisgau, Germany
| |
Collapse
|
16
|
Płachno BJ, Stpiczyńska M, Davies KL, Świątek P, de Miranda VFO. Floral ultrastructure of two Brazilian aquatic-epiphytic bladderworts: Utricularia cornigera Studnička and U. nelumbifolia Gardner (Lentibulariaceae). PROTOPLASMA 2017; 254:353-366. [PMID: 26945989 PMCID: PMC5216069 DOI: 10.1007/s00709-016-0956-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/22/2016] [Indexed: 05/11/2023]
Abstract
Utricularia cornigera and Utricularia nelumbifolia are giant, aquatic-epiphytic species of carnivorous bladderwort from southeastern Brazil that grow in the central 'urns' of bromeliads. Both species have large, colourful flowers. The main aim of our study is to ascertain whether the prominent floral palate of U. cornigera and U. nelumbifolia functions as an unguentarius-i.e. an organ that bears osmophores. Floral tissues of both species were investigated using light microscopy, scanning electron microscopy, transmission electron microscopy and histochemistry. Floral palates of U. cornigera and U. nelumbifolia provide clear visual signals for pollinating insects. In both species, the palate possesses diverse micro-morphology, comprising unicellular, conical to villiform papillae and multicellular, uniseriate, glandular trichomes that frequently display terminal branching. The most characteristic ultrastructural feature of these papillae was the presence of relatively large, polymorphic plastids (chromoplasts) containing many plastoglobuli. Similar plastids are known to occur in the fragrance-producing (osmophores) and oil-producing (elaiophores) tissues of several orchid species. Thus, these palate papillae may play a key role in providing the olfactory stimulus for the attraction of insect pollinators. Nectariferous trichomes were observed in the floral spurs of both species, and in U. nelumbifolia, free nectar was also recorded. The location, micro-morphology, anatomy and ultrastructure of the floral palate of the two species investigated may thus indicate that the palate functions as an unguentarius. Furthermore, the flowers of these taxa, like those of U. reniformis, have features consistent with bee pollination.
Collapse
Affiliation(s)
- Bartosz J Płachno
- Department of Plant Cytology and Embryology, Jagiellonian University in Kraków, 9 Gronostajowa St., 30-387, Kraków, Poland.
| | - Małgorzata Stpiczyńska
- Faculty of Biology, University of Warsaw, Botanic Garden Al. Ujazdowskie 4, 00-478, Warsaw, Poland
| | - Kevin L Davies
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Piotr Świątek
- Department of Animal Histology and Embryology, University of Silesia, 9 Bankowa St., 40-007, Katowice, Poland
| | - Vitor Fernandes Oliveira de Miranda
- Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista-UNESP, Câmpus Jaboticabal, São Paulo, Brazil
| |
Collapse
|
17
|
Šimura J, Spíchal L, Adamec L, Pěnčík A, Rolčík J, Novák O, Strnad M. Cytokinin, auxin and physiological polarity in the aquatic carnivorous plants Aldrovanda vesiculosa and Utricularia australis. ANNALS OF BOTANY 2016; 117:1037-44. [PMID: 27098087 PMCID: PMC4866309 DOI: 10.1093/aob/mcw020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/02/2015] [Accepted: 12/18/2015] [Indexed: 05/14/2023]
Abstract
BACKGROUND AND AIMS The typical rootless linear shoots of aquatic carnivorous plants exhibit clear, steep polarity associated with very rapid apical shoot growth. The aim of this study was to determine how auxin and cytokinin contents are related to polarity and shoot growth in such plants. METHODS The main auxin and cytokinin metabolites in separated shoot segments and turions of two carnivorous plants, Aldrovanda vesiculosa and Utricularia australis, were analysed using ultra-high-performance liquid chromatography coupled with triple quad mass spectrometry. KEY RESULTS In both species, only isoprenoid cytokinins were identified. Zeatin cytokinins predominated in the apical parts, with their concentrations decreasing basipetally, and the trans isomer predominated in A. vesiculosa whereas the cis form was more abundant in U australis. Isopentenyladenine-type cytokinins, in contrast, increased basipetally. Conjugated cytokinin metabolites, the O-glucosides, were present at high concentrations in A. vesiculosa but only in minute amounts in U. australis. N(9)-glucoside forms were detected only in U. australis, with isopentenyladenine-9-glucoside (iP9G) being most abundant. In addition to free indole-3-acetic acid (IAA), indole-3-acetamide (IAM), IAA-aspartate (IAAsp), IAA-glutamate (IAGlu) and IAA-glycine (IAGly) conjugates were identified. CONCLUSIONS Both species show common trends in auxin and cytokinin levels, the apical localization of the cytokinin biosynthesis and basipetal change in the ratio of active cytokinins to auxin, in favour of auxin. However, our detailed study of cytokinin metabolic profiles also revealed that both species developed different regulatory mechanisms of active cytokinin content; on the level of their degradation, in U. australis, or in the biosynthesis itself, in the case of A. vesiculosa Results indicate that the rapid turnover of these signalling molecules along the shoots is essential for maintaining the dynamic balance between the rapid polar growth and development of the apical parts and senescence of the older, basal parts of the shoots.
Collapse
Affiliation(s)
- Jan Šimura
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lukáš Spíchal
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Section of Plant Ecology, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Aleš Pěnčík
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|
18
|
Masi E, Ciszak M, Colzi I, Adamec L, Mancuso S. Resting electrical network activity in traps of the aquatic carnivorous plants of the genera Aldrovanda and Utricularia. Sci Rep 2016; 6:24989. [PMID: 27117956 PMCID: PMC4846995 DOI: 10.1038/srep24989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
In this study the MEA (multielectrode array) system was used to record electrical responses of intact and halved traps, and other trap-free tissues of two aquatic carnivorous plants, Aldrovanda vesiculosa and Utricularia reflexa. They exhibit rapid trap movements and their traps contain numerous glands. Spontaneous generation of spikes with quite uniform shape, propagating across the recording area, has been observed for all types of sample. In the analysis of the electrical network, higher richer synchronous activity was observed relative to other plant species and organs previously described in the literature: indeed, the time intervals between the synchronized clusters (the inter-spike intervals) create organized patterns and the propagation times vary non-linearly with the distance due to this synchronization. Interestingly, more complex electrical activity was found in traps than in trap-free organs, supporting the hypothesis that the nature of the electrical activity may reflect the anatomical and functional complexity of different organs. Finally, the electrical activity of functionally different traps of Aldrovanda (snapping traps) and Utricularia (suction traps) was compared and some differences in the features of signal propagation were found. According to these results, a possible use of the MEA system for the study of different trap closure mechanisms is proposed.
Collapse
Affiliation(s)
- Elisa Masi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Marzena Ciszak
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
- CNR, National Institute of Optics (INO), L.go E. Fermi 6, 50125 Florence, Italy
| | - Ilaria Colzi
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Lubomir Adamec
- Institute of Botany of the Czech Academy of Sciences, Section of Plant Ecology, Dukelská 135, CZ-379 82 Třeboň, Czech Republic
| | - Stefano Mancuso
- LINV, Department of Agrifood Production and Environmental Sciences (DISPAA), University of Florence, viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
19
|
Rutishauser R. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification. ANNALS OF BOTANY 2016; 117:811-32. [PMID: 26589968 PMCID: PMC4845801 DOI: 10.1093/aob/mcv172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 05/22/2023]
Abstract
BACKGROUND Various groups of flowering plants reveal profound ('saltational') changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps 'hopeful monsters') that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. SCOPE This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. CONCLUSIONS Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves - as still distinguishable in related flowering plants - are blurred ('fuzzy'). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic alterations that led to the evolution of these atypical plants. Future molecular genetic work on morphological misfits such as bladderworts and river-weeds will provide insight into developmental and evolutionary aspects of more typical vascular plants.
Collapse
Affiliation(s)
- Rolf Rutishauser
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Poppinga S, Weisskopf C, Westermeier AS, Masselter T, Speck T. Fastest predators in the plant kingdom: functional morphology and biomechanics of suction traps found in the largest genus of carnivorous plants. AOB PLANTS 2015; 8:plv140. [PMID: 26602984 PMCID: PMC4717191 DOI: 10.1093/aobpla/plv140] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/07/2015] [Indexed: 05/18/2023]
Abstract
Understanding the physics of plant movements, which describe the interplay between plant architecture, movement speed and actuation principles, is essential for the comprehension of important processes like plant morphogenesis. Recent investigations especially on rapid plant movements at the interface of biology, physics and engineering sciences highlight how such fast motions can be achieved without the presence of muscles, nerves and technical hinge analogies. The suction traps (bladders) of carnivorous bladderworts (Utricularia spp., Lentibulariaceae, Lamiales) are considered as some of the most elaborate moving structures in the plant kingdom. A complex interplay of morphological and physiological adaptations allows the traps to pump water out of their body and to store elastic energy in the deformed bladder walls. Mechanical stimulation by prey entails opening of the otherwise watertight trapdoor, followed by trap wall relaxation, sucking in of water and prey, and consecutive trapdoor closure. Suction can also occur spontaneously in non-stimulated traps. We review the current state of knowledge about the suction trap mechanism with a focus on architectonically homogeneous traps of aquatic bladderwort species from section Utricularia (the so-called 'Utricularia vulgaris trap type'). The functional morphology and biomechanics of the traps are described in detail. We discuss open questions and propose promising aspects for future studies on these sophisticated ultra-fast trapping devices.
Collapse
Affiliation(s)
- Simon Poppinga
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| | - Carmen Weisskopf
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Present address: Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Anna Sophia Westermeier
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Tom Masselter
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany
| | - Thomas Speck
- Plant Biomechanics Group, University of Freiburg, Botanic Garden, Schänzlestrasse 1, 79104 Freiburg im Breisgau, Germany Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Straße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
21
|
Sirová D, Santrůček J, Adamec L, Bárta J, Borovec J, Pech J, Owens SM, Santrůčková H, Schäufele R, Storchová H, Vrba J. Dinitrogen fixation associated with shoots of aquatic carnivorous plants: is it ecologically important? ANNALS OF BOTANY 2014; 114:125-33. [PMID: 24817095 PMCID: PMC4071093 DOI: 10.1093/aob/mcu067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 03/11/2014] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Rootless carnivorous plants of the genus Utricularia are important components of many standing waters worldwide, as well as suitable model organisms for studying plant-microbe interactions. In this study, an investigation was made of the importance of microbial dinitrogen (N2) fixation in the N acquisition of four aquatic Utricularia species and another aquatic carnivorous plant, Aldrovanda vesiculosa. METHODS 16S rRNA amplicon sequencing was used to assess the presence of micro-organisms with known ability to fix N2. Next-generation sequencing provided information on the expression of N2 fixation-associated genes. N2 fixation rates were measured following (15)N2-labelling and were used to calculate the plant assimilation rate of microbially fixed N2. KEY RESULTS Utricularia traps were confirmed as primary sites of N2 fixation, with up to 16 % of the plant-associated microbial community consisting of bacteria capable of fixing N2. Of these, rhizobia were the most abundant group. Nitrogen fixation rates increased with increasing shoot age, but never exceeded 1·3 μmol N g(-1) d. mass d(-1). Plant assimilation rates of fixed N2 were detectable and significant, but this fraction formed less than 1 % of daily plant N gain. Although trap fluid provides conditions favourable for microbial N2 fixation, levels of nif gene transcription comprised <0·01 % of the total prokaryotic transcripts. CONCLUSIONS It is hypothesized that the reason for limited N2 fixation in aquatic Utricularia, despite the large potential capacity, is the high concentration of NH4-N (2·0-4·3 mg L(-1)) in the trap fluid. Resulting from fast turnover of organic detritus, it probably inhibits N2 fixation in most of the microorganisms present. Nitrogen fixation is not expected to contribute significantly to N nutrition of aquatic carnivorous plants under their typical growth conditions; however, on an annual basis the plant-microbe system can supply nitrogen in the order of hundreds of mg m(-2) into the nutrient-limited littoral zone, where it may thus represent an important N source.
Collapse
Affiliation(s)
- Dagmara Sirová
- Department of Ecosystem Biology, Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Santrůček
- Department of Ecosystem Biology, Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Institute of Plant Molecular Biology, Biology Centre AS CR, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Lubomír Adamec
- Section of Plant Ecology, Institute of Botany AS CR, Dukelská 135, CZ-37982 Třeboň, Czech Republic
| | - Jiří Bárta
- Department of Ecosystem Biology, Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Jakub Borovec
- Institute of Hydrobiology, Biology Centre AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| | - Jiří Pech
- Institute of Applied Informatics, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Sarah M Owens
- Institute of Genomics and Systems Biology, Argonne National Laboratory, Argonne, and Computation Institute, University of Chicago, Chicago, IL, USA
| | - Hana Santrůčková
- Department of Ecosystem Biology, Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Rudi Schäufele
- Department of Grassland Study, Technical University Munich, Alte Akademie 12, Freising-Weihenstephan, Germany
| | - Helena Storchová
- Institute of Experimental Botany AS CR, Rozvojová 263, CZ-16502 Prague 6-Lysolaje, Czech Republic
| | - Jaroslav Vrba
- Department of Ecosystem Biology, Department of Experimental Plant Biology, Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic Institute of Hydrobiology, Biology Centre AS CR, Na Sádkách 7, CZ-37005 České Budějovice, Czech Republic
| |
Collapse
|
22
|
Adamec L. Foliar mineral nutrient uptake in carnivorous plants: what do we know and what should we know? FRONTIERS IN PLANT SCIENCE 2013; 4:10. [PMID: 23386858 PMCID: PMC3560283 DOI: 10.3389/fpls.2013.00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/14/2013] [Indexed: 05/09/2023]
Affiliation(s)
- Lubomír Adamec
- Department of Functional Ecology, Section of Plant Ecology, Institute of Botany of the Academy of Sciences of the Czech Republic Třeboň, Czech Republic
| |
Collapse
|
23
|
Abstract
We review recent results about the functioning of aquatic carnivorous traps from the genus Utricularia. The use of high speed cameras has helped to elucidate the mechanism at the origin of the ultra fast capture process of Utricularia, at a millisecond time scale. As water is pumped out of the trap, pressure decreases inside the trap and elastic energy is stored due to the change of shape of the trap body. This energy is suddenly released when the trap is fired: the trap door undergoes an elastical instability--buckling--which allows its fast and passive opening and closure. This mechanism is used by Utricularia both to catch preys touching its trigger hairs and to fire spontaneously at regular time intervals. The results leading to this interpretation are reviewed and discussed and suggestions for further work are briefly presented.
Collapse
|