1
|
Zeng F, Ma Z, Feng Y, Shao M, Li Y, Wang H, Yang S, Mao J, Chen B. Mechanism of the Pulvinus-Driven Leaf Movement: An Overview. Int J Mol Sci 2024; 25:4582. [PMID: 38731801 PMCID: PMC11083266 DOI: 10.3390/ijms25094582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Leaf movement is a manifestation of plant response to the changing internal and external environment, aiming to optimize plant growth and development. Leaf movement is usually driven by a specialized motor organ, the pulvinus, and this movement is associated with different changes in volume and expansion on the two sides of the pulvinus. Blue light, auxin, GA, H+-ATPase, K+, Cl-, Ca2+, actin, and aquaporin collectively influence the changes in water flux in the tissue of the extensor and flexor of the pulvinus to establish a turgor pressure difference, thereby controlling leaf movement. However, how these factors regulate the multicellular motility of the pulvinus tissues in a species remains obscure. In addition, model plants such as Medicago truncatula, Mimosa pudica, and Samanea saman have been used to study pulvinus-driven leaf movement, showing a similarity in their pulvinus movement mechanisms. In this review, we summarize past research findings from the three model plants, and using Medicago truncatula as an example, suggest that genes regulating pulvinus movement are also involved in regulating plant growth and development. We also propose a model in which the variation of ion flux and water flux are critical steps to pulvinus movement and highlight questions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (F.Z.); (Z.M.); (Y.F.); (M.S.); (Y.L.); (H.W.); (S.Y.); (J.M.)
| |
Collapse
|
2
|
Heyder K, Neinhuis C, Lautenschläger T. Morphology, anatomy and sleep movements of Ludwigia sedoides. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:18. [PMID: 37188787 DOI: 10.1007/s00114-023-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
The diurnal motion of higher plants, responding to the alternation of day and night, known as nyctinastic movements or "sleep movements", has been discussed frequently. We present the first description of the circadian rhythm of the water plant Ludwigia sedoides (Humb. & Bonpl.) H.Hara of the family Onagraceae, furthermore its morphology and anatomy. Our results indicate that the plant's movements are endogenous, although environmental factors certainly have an influence. The majority of plants with nyctinastic leaf movements have a pulvinus, as the crucial part of the plant enabling this movement. Although the basal section of the L. sedoides petiole is not swollen, the tissue functions similarly to a pulvinus. It consists of a central conducting tissue with thick-walled cells, which is surrounded by thin-walled motor cells that can undergo visible shrinking and swelling. Thus, the tissue functionally corresponds to a pulvinus. Examinations of cellular processes, like measurements of the turgor pressure in the petiole, need to be evaluated in future studies.
Collapse
Affiliation(s)
- Katharina Heyder
- Institute of Botany, Technische Universität Dresden, Dresden, Germany
| | | | | |
Collapse
|
3
|
Pérez-Llorca M, Casadesús A, Müller M, Munné-Bosch S. Leaf Orientation as Part of the Leaf Developmental Program in the Semi-Deciduous Shrub, Cistus albidus L.: Diurnal, Positional, and Photoprotective Effects During Winter. FRONTIERS IN PLANT SCIENCE 2019; 10:767. [PMID: 31275334 PMCID: PMC6593066 DOI: 10.3389/fpls.2019.00767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/27/2019] [Indexed: 05/26/2023]
Abstract
Mediterranean ecosystems harbor a very important part of Earth's biodiversity, and they are a conservation priority due to the effects of global change. Here, we examined the performance of the semi-deciduous shrub Cistus albidus under Mediterranean conditions during winter, including changes in leaf angle governed by diurnal, seasonal, and positional effects and their relationship with winter photoinhibition and photoprotection. We found marked diurnal variations in leaf angle during the day in autumn, which disappeared as the photoperiod shortened during winter due to a progressive decrease in the predawn leaf angle from November to January. During this period, auxin contents decreased, while those of melatonin increased, and the F v/F m ratio, chlorophyll, and tocopherol contents kept unaltered, thus indicating the absence of photoinhibitory damage. A marked decrease in the leaf angle toward the shoot apex occurred during winter, which was associated with slightly higher F v/F m ratios. An analysis of the inter-individual variability and sun orientation effects on leaf movements in a population growing in the Montserrat mountains revealed a very marked variability of 46.8% in the leaf angle, while F v/F m ratio showed a variation of 7.5% only. West orientation, which was associated with reduced leaf temperatures, but with no differences in the photosynthetic photon flux density, led to enhanced tocopherol contents, while leaf angle, F v/F m ratio, chlorophyll, auxin, and melatonin contents kept unaltered. It is concluded that (1) C. albidus has very effective and fine-regulated photoprotection mechanisms, including an adequate orientation of decussate leaves as part of the developmental program, (2) leaf angle is modulated on a diurnal and seasonal basis, thus contributing to prevent photoinhibition as a first line of defense, and (3) enhanced tocopherol contents help withstand combined high light with low temperature stress in C. albidus growing at high elevation.
Collapse
Affiliation(s)
- Marina Pérez-Llorca
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| | - Andrea Casadesús
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, Institut de Recerca de la Biodiversitat, University of Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Moysset L, Llambrich E, Simón E. Calcium changes in Robinia pseudoacacia pulvinar motor cells during nyctinastic closure mediated by phytochromes. PROTOPLASMA 2019; 256:615-629. [PMID: 30382423 DOI: 10.1007/s00709-018-1323-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/15/2018] [Indexed: 06/08/2023]
Abstract
Potassium pyroantimonate precipitation, transmission electron microscopy, and X-ray microanalysis were used to investigate the subcellular localization of loosely bound calcium in Robinia pseudoacacia pulvinar motor cells during phytochrome-mediated nyctinastic closure. Calcium localization was carried out in pulvini collected in white light 2 h after the beginning of the photoperiod, immediately after a red light or a far-red light pulse applied 2 h after the beginning of the photoperiod and after 15 or 25 min of darkness respectively. Calcium antimonate precipitates were found in all the pulvinar tissues from the epidermis to the vascular bundle, independent of the light treatment. At subcellular level, precipitates were found mainly in the intercellular spaces, the inner surface of the plasma membrane, cytoplasm, colloidal vacuoles, and nuclei. Red light enhanced the nyctinastic closure of leaflets and caused an asymmetric distribution of cytosolic calcium precipitates between the extensor and flexor motor cells. Both the number and area of the cytosolic calcium precipitates drastically increased in the extensor cells compared to the flexor motor cells. Red light had a rapid and transient effect on the distribution of cytosolic calcium precipitates, which occurred during or at the end of the irradiation, before leaflet closure. By contrast, the distribution of cytosolic loosely bound calcium was similar between the extensor and flexor motor cells after irradiation with far-red light. Our results demonstrate that red light causes specific calcium mobilization in pulvinar motor cells and suggest the involvement of cytoplasmic Ca2+ as a second messenger for phytochrome during nyctinastic closure.
Collapse
Affiliation(s)
- Luisa Moysset
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain.
| | - Esther Llambrich
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain
| | - Esther Simón
- Departament of Evolutive Biology, Ecology and Environmental Sciences, Section of Plant Physiology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Margalef Building, Floor 5, 08028, Barcelona, Spain
| |
Collapse
|
5
|
Rodrigues FA, Fuganti-Pagliarini R, Marcolino-Gomes J, Nakayama TJ, Molinari HBC, Lobo FP, Harmon FG, Nepomuceno AL. Daytime soybean transcriptome fluctuations during water deficit stress. BMC Genomics 2015; 16:505. [PMID: 26149272 PMCID: PMC4491896 DOI: 10.1186/s12864-015-1731-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/26/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since drought can seriously affect plant growth and development and little is known about how the oscillations of gene expression during the drought stress-acclimation response in soybean is affected, we applied Illumina technology to sequence 36 cDNA libraries synthesized from control and drought-stressed soybean plants to verify the dynamic changes in gene expression during a 24-h time course. Cycling variables were measured from the expression data to determine the putative circadian rhythm regulation of gene expression. RESULTS We identified 4866 genes differentially expressed in soybean plants in response to water deficit. Of these genes, 3715 were differentially expressed during the light period, from which approximately 9.55% were observed in both light and darkness. We found 887 genes that were either up- or down-regulated in different periods of the day. Of 54,175 predicted soybean genes, 35.52% exhibited expression oscillations in a 24 h period. This number increased to 39.23% when plants were submitted to water deficit. Major differences in gene expression were observed in the control plants from late day (ZT16) until predawn (ZT20) periods, indicating that gene expression oscillates during the course of 24 h in normal development. Under water deficit, dissimilarity increased in all time-periods, indicating that the applied stress influenced gene expression. Such differences in plants under stress were primarily observed in ZT0 (early morning) to ZT8 (late day) and also from ZT4 to ZT12. Stress-related pathways were triggered in response to water deficit primarily during midday, when more genes were up-regulated compared to early morning. Additionally, genes known to be involved in secondary metabolism and hormone signaling were also expressed in the dark period. CONCLUSIONS Gene expression networks can be dynamically shaped to acclimate plant metabolism under environmental stressful conditions. We have identified putative cycling genes that are expressed in soybean leaves under normal developmental conditions and genes whose expression oscillates under conditions of water deficit. These results suggest that time of day, as well as light and temperature oscillations that occur considerably affect the regulation of water deficit stress response in soybean plants.
Collapse
Affiliation(s)
- Fabiana Aparecida Rodrigues
- Brazilian Agricultural Research Corporation- Embrapa Soybean, Embrapa Soybean- Rod. Carlos João Strass, s/n, Londrina, 86001-970, PR, Brazil.
| | - Renata Fuganti-Pagliarini
- Brazilian Agricultural Research Corporation- Embrapa Soybean, Embrapa Soybean- Rod. Carlos João Strass, s/n, Londrina, 86001-970, PR, Brazil.
| | - Juliana Marcolino-Gomes
- Brazilian Agricultural Research Corporation- Embrapa Soybean, Embrapa Soybean- Rod. Carlos João Strass, s/n, Londrina, 86001-970, PR, Brazil.
- Department of Biology, State University of Londrina, Londrina, PR, Brazil.
| | - Thiago Jonas Nakayama
- Brazilian Agricultural Research Corporation- Embrapa Soybean, Embrapa Soybean- Rod. Carlos João Strass, s/n, Londrina, 86001-970, PR, Brazil.
- Department of Crop Science, Federal University of Viçosa, Viçosa, MG, Brazil.
| | - Hugo Bruno Correa Molinari
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy (CNPAE), Brasília, DF, Brazil.
- Embrapa LABEX US Plant Biotechnology at ARS/USDA Plant Gene Expression Center, Albany, CA, USA.
| | - Francisco Pereira Lobo
- Brazilian Agricultural Research Corporation-Embrapa Agricultural Informatics, Campinas, SP, Brazil.
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, Albany, CA, USA.
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA.
| | - Alexandre Lima Nepomuceno
- Brazilian Agricultural Research Corporation- Embrapa Soybean, Embrapa Soybean- Rod. Carlos João Strass, s/n, Londrina, 86001-970, PR, Brazil.
- Embrapa LABEX US Plant Biotechnology at ARS/USDA Plant Gene Expression Center, Albany, CA, USA.
| |
Collapse
|