1
|
Prasad A, Sedlářová M, Balukova A, Rác M, Pospíšil P. Reactive Oxygen Species as a Response to Wounding: In Vivo Imaging in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 10:1660. [PMID: 31998345 PMCID: PMC6962234 DOI: 10.3389/fpls.2019.01660] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/25/2019] [Indexed: 05/29/2023]
Abstract
Mechanical injury or wounding in plants can be attributed to abiotic or/and biotic causes. Subsequent defense responses are either local, i.e. within or in the close vicinity of affected tissue, or systemic, i.e. at distant plant organs. Stress stimuli activate a plethora of early and late reactions, from electric signals induced within seconds upon injury, oxidative burst within minutes, and slightly slower changes in hormone levels or expression of defense-related genes, to later cell wall reinforcement by polysaccharides deposition, or accumulation of proteinase inhibitors and hydrolytic enzymes. In the current study, we focused on the production of reactive oxygen species (ROS) in wounded Arabidopsis leaves. Based on fluorescence imaging, we provide experimental evidence that ROS [superoxide anion radical (O2 •-) and singlet oxygen (1O2)] are produced following wounding. As a consequence, oxidation of biomolecules is induced, predominantly of polyunsaturated fatty acid, which leads to the formation of reactive intermediate products and electronically excited species.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Anastasiia Balukova
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Marek Rác
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
2
|
Spadafora ND, Cocetta G, Ferrante A, Herbert RJ, Dimitrova S, Davoli D, Fernández M, Patterson V, Vozel T, Amarysti C, Rogers HJ, Müller CT. Short-Term Post-Harvest Stress that Affects Profiles of Volatile Organic Compounds and Gene Expression in Rocket Salad During Early Post-Harvest Senescence. PLANTS 2019; 9:plants9010004. [PMID: 31861410 PMCID: PMC7020156 DOI: 10.3390/plants9010004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 11/16/2022]
Abstract
Once harvested, leaves undergo a process of senescence which shares some features with developmental senescence. These include changes in gene expression, metabolites, and loss of photosynthetic capacity. Of particular interest in fresh produce are changes in nutrient content and the aroma, which is dependent on the profile of volatile organic compounds (VOCs). Leafy salads are subjected to multiple stresses during and shortly after harvest, including mechanical damage, storage or transport under different temperature regimes, and low light. These are thought to impact on later shelf life performance by altering the progress of post-harvest senescence. Short term stresses in the first 24 h after harvest were simulated in wild rocket (Diplotaxis tenuifolia). These included dark (ambient temperature), dark and wounding (ambient temperature), and storage at 4 °C in darkness. The effects of stresses were monitored immediately afterwards and after one week of storage at 10 °C. Expression changes in two NAC transcription factors (orthologues of ANAC059 and ANAC019), and a gene involved in isothiocyanate production (thiocyanate methyltransferase, TMT) were evident immediately after stress treatments with some expression changes persisting following storage. Vitamin C loss and microbial growth on leaves were also affected by stress treatments. VOC profiles were differentially affected by stress treatments and the storage period. Overall, short term post-harvest stresses affected multiple aspects of rocket leaf senescence during chilled storage even after a week. However, different stress combinations elicited different responses.
Collapse
Affiliation(s)
- Natasha D. Spadafora
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
- Markes International Ltd, Gwaun Elai Medi-Science Campus, Llantrisant RCT CF72 8XL, UK
| | - Giacomo Cocetta
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (G.C.); (A.F.)
| | - Antonio Ferrante
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, via Celoria 2, 20133 Milano, Italy; (G.C.); (A.F.)
| | - Robert J. Herbert
- School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK;
| | - Simone Dimitrova
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Daniela Davoli
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Marta Fernández
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Valentine Patterson
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Tinkara Vozel
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Canesia Amarysti
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
- Correspondence: ; Tel.: +44-0-2920876352
| | - Carsten T. Müller
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (N.D.S.); (S.D.); (D.D.); (M.F.); (V.P.); (T.V.); (C.A.); (C.T.M.)
| |
Collapse
|
3
|
Sng NJ, Kolaczkowski B, Ferl RJ, Paul AL. A member of the CONSTANS-Like protein family is a putative regulator of reactive oxygen species homeostasis and spaceflight physiological adaptation. AOB PLANTS 2019; 11:ply075. [PMID: 30705745 PMCID: PMC6348315 DOI: 10.1093/aobpla/ply075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
A feature of the physiological adaptation to spaceflight in Arabidopsis thaliana (Arabidopsis) is the induction of reactive oxygen species (ROS)-associated gene expression. The patterns of ROS-associated gene expression vary among Arabidopsis ecotypes, and the role of ROS signalling in spaceflight acclimation is unknown. What could differences in ROS gene regulation between ecotypes on orbit reveal about physiological adaptation to novel environments? Analyses of ecotype-dependent responses to spaceflight resulted in the elucidation of a previously uncharacterized gene (OMG1) as being ROS-associated. The OMG1 5' flanking region is an active promoter in cells where ROS activity is commonly observed, such as in pollen tubes, root hairs, and in other tissues upon wounding. qRT-PCR analyses revealed that upon wounding on Earth, OMG1 is an apparent transcriptional regulator of MYB77 and GRX480, which are associated with the ROS pathway. Fluorescence-based ROS assays show that OMG1 affects ROS production. Phylogenetic analysis of OMG1 and closely related homologs suggests that OMG1 is a distant, unrecognized member of the CONSTANS-Like protein family, a member that arose via gene duplication early in the angiosperm lineage and subsequently lost its first DNA-binding B-box1 domain. These data illustrate that members of the rapidly evolving COL protein family play a role in regulating ROS pathway functions, and their differential regulation on orbit suggests a role for ROS signalling in spaceflight physiological adaptation.
Collapse
Affiliation(s)
- Natasha J Sng
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| | - Bryan Kolaczkowski
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Robert J Ferl
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Interdisciplinary Center for Biotechnology Research (ICBR), University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
- Horticultural Science Department, University of Florida, Gainesville, FL, USA
- Corresponding author’s e-mail address:
| |
Collapse
|
4
|
Oros CL, Alves F. Leaf wound induced ultraweak photon emission is suppressed under anoxic stress: Observations of Spathiphyllum under aerobic and anaerobic conditions using novel in vivo methodology. PLoS One 2018; 13:e0198962. [PMID: 29902232 PMCID: PMC6002245 DOI: 10.1371/journal.pone.0198962] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/28/2018] [Indexed: 11/19/2022] Open
Abstract
Plants have evolved a variety of means to energetically sense and respond to abiotic and biotic environmental stress. Two typical photochemical signaling responses involve the emission of volatile organic compounds and light. The emission of certain leaf wound volatiles and light are mutually dependent upon oxygen which is subsequently required for the wound-induced lipoxygenase reactions that trigger the formation of fatty acids and hydroperoxides; ultimately leading to photon emission by chlorophyll molecules. A low noise photomultiplier with sensitivity in the visible spectrum (300–720 nm) is used to continuously measure long duration ultraweak photon emission of dark-adapting whole Spathiphyllum leaves (in vivo). Leaves were mechanically wounded after two hours of dark adaptation in aerobic and anaerobic conditions. It was found that (1) nitrogen incubation did not affect the pre-wound basal photocounts; (2) wound induced leaf biophoton emission was significantly suppressed when under anoxic stress; and (3) the aerobic wound induced emission spectra observed was > 650 nm, implicating chlorophyll as the likely emitter. Limitations of the PMT photocathode’s radiant sensitivity, however, prevented accurate analysis from 700–720 nm. Further examination of leaf wounding profile photon counts revealed that the pre-wounding basal state (aerobic and anoxic), the anoxic wounding state, and the post-wounding aerobic state statistics all approximate a Poisson distribution. It is additionally observed that aerobic wounding induces two distinct exponential decay events. These observations contribute to the body of plant wound-induced luminescence research and provide a novel methodology to measure this phenomenon in vivo.
Collapse
Affiliation(s)
- Carl L. Oros
- Information Sciences Department, Graduate School of Operational and Information Sciences, Naval Postgraduate School, Monterey, California, United States of America
- * E-mail:
| | - Fabio Alves
- Physics Department, Graduate School of Engineering and Applied Sciences, Naval Postgraduate School, Monterey, California, United States of America
| |
Collapse
|
5
|
Prasad A, Sedlářová M, Kale RS, Pospíšil P. Lipoxygenase in singlet oxygen generation as a response to wounding: in vivo imaging in Arabidopsis thaliana. Sci Rep 2017; 7:9831. [PMID: 28851974 PMCID: PMC5575249 DOI: 10.1038/s41598-017-09758-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022] Open
Abstract
Wounding, one of the most intensive stresses influencing plants ontogeny and lifespan, can be induced by herbivory as well as by physical factors. Reactive oxygen species play indispensable role both in the local and systemic defense reactions which enable "reprogramming" of metabolic pathways to set new boundaries and physiological equilibrium suitable for survival. In our current study, we provide experimental evidence on the formation of singlet oxygen (1O2) after wounding of Arabidopsis leaves. It is shown that 1O2 is formed by triplet-triplet energy transfer from triplet carbonyls to molecular oxygen. Using lipoxygenase inhibitor catechol, it is demonstrated that lipid peroxidation is initiated by lipoxygenase. Suppression of 1O2 formation in lox2 mutant which lacks chloroplast lipoxygenase indicates that lipoxygenase localized in chloroplast is predominantly responsible for 1O2 formation. Interestingly, 1O2 formation is solely restricted to chloroplasts localized at the wounding site. Data presented in this study might provide novel insight into wound-induced signaling in the local defense reaction.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Ravindra Sonajirao Kale
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| |
Collapse
|
6
|
Prasad A, Kumar A, Matsuoka R, Takahashi A, Fujii R, Sugiura Y, Kikuchi H, Aoyagi S, Aikawa T, Kondo T, Yuasa M, Pospíšil P, Kasai S. Real-time monitoring of superoxide anion radical generation in response to wounding: electrochemical study. PeerJ 2017; 5:e3050. [PMID: 28761775 PMCID: PMC5527980 DOI: 10.7717/peerj.3050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/29/2017] [Indexed: 01/13/2023] Open
Abstract
Background The growth and development of plants is deleteriously affected by various biotic and abiotic stress factors. Wounding in plants is caused by exposure to environmental stress, mechanical stress, and via herbivory. Typically, oxidative burst in response to wounding is associated with the formation of reactive oxygen species, such as the superoxide anion radical (O2•−), hydrogen peroxide (H2O2) and singlet oxygen; however, few experimental studies have provided direct evidence of their detection in plants. Detection of O2•− formation in plant tissues have been performed using various techniques including electron paramagnetic resonance spin-trap spectroscopy, epinephrine-adrenochrome acceptor methods, staining with dyes such as tetrazolium dye and nitro blue tetrazolium (NBT); however, kinetic measurements have not been performed. In the current study, we provide evidence of O2•− generation and its kinetics in the leaves of spinach (Spinacia oleracea) subjected to wounding. Methods Real-time monitoring of O2•− generation was performed using catalytic amperometry. Changes in oxidation current for O2•− was monitored using polymeric iron-porphyrin-based modified carbon electrodes (φ = 1 mm) as working electrode with Ag/AgCl as the reference electrode. Result The results obtained show continuous generation of O2•− for minutes after wounding, followed by a decline. The exogenous addition of superoxide dismutase, which is known to dismutate O2•− to H2O2, significantly suppressed the oxidation current. Conclusion Catalytic amperometric measurements were performed using polymeric iron-porphyrin based modified carbon electrode. We claim it to be a useful tool and a direct method for real-time monitoring and precise detection of O2•− in biological samples, with the potential for wide application in plant research for specific and sensitive detection of O2•−.
Collapse
Affiliation(s)
- Ankush Prasad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic.,Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan
| | - Aditya Kumar
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | | | - Akemi Takahashi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Ryo Fujii
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Yamato Sugiura
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Hiroyuki Kikuchi
- Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| | | | - Tatsuo Aikawa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Takeshi Kondo
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Makoto Yuasa
- Department of Pure and Applied Chemistry, Tokyo University of Science, Noda, Chiba, Japan
| | - Pavel Pospíšil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Shigenobu Kasai
- Biomedical Engineering Research Center, Tohoku Institute of Technology, Sendai, Japan.,Graduate Department of Environmental Information Engineering, Tohoku Institute of Technology, Sendai, Japan
| |
Collapse
|
7
|
Jajic I, Sarna T, Strzalka K. Senescence, Stress, and Reactive Oxygen Species. PLANTS (BASEL, SWITZERLAND) 2015; 4:393-411. [PMID: 27135335 PMCID: PMC4844410 DOI: 10.3390/plants4030393] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/08/2023]
Abstract
Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H₂O₂ causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H₂O₂ such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (¹O₂) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment.
Collapse
Affiliation(s)
- Ivan Jajic
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
- Malopolska Centre of Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, Krakow 30-387, Poland.
| |
Collapse
|
8
|
McDowell RE, Amsler MO, Li Q, Lancaster JR, Amsler CD. The immediate wound-induced oxidative burst of Saccharina latissima depends on light via photosynthetic electron transport. JOURNAL OF PHYCOLOGY 2015; 51:431-441. [PMID: 26986660 DOI: 10.1111/jpy.12302] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 03/24/2015] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) produced by an oxidative burst are an important component of the wound response in algae, vascular plants, and animals. In all taxa, ROS production is usually attributed solely to a defense-related enzyme like NADPH-oxidase (Nox). However, here we show that the initial, wound-induced oxidative burst of the kelp Saccharina latissima depends on light and photosynthetic electron transport. We measured oxygen evolution and ROS production at different light levels and in the presence of a photosynthetic inhibitor, and we used spin trapping and electron paramagnetic resonance as an orthogonal method. Using an in vivo chemical probe, we provide data suggesting that wound-induced ROS production in two distantly related and geographically isolated species of Antarctic macroalgae may be light dependent as well. We propose that electron transport chains are an important and as yet unaddressed component of the wound response, not just for photosynthetic organisms, but for animals via mitochondria as well. This component may have been obscured by the historic use of diphenylene iodonium, which inhibits not only Noxes but also photosynthetic and respiratory electron transport as well. Finally, we anticipate physiological and/or ecological consequences of the light dependence of macroalgal wound-induced ROS since pathogens and grazers do not disappear in the dark.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Margaret O Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Qian Li
- Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Jack R Lancaster
- Department of Anesthesiology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
- Departments of Pharmacology and Chemical Biology, Surgery, and Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15213, USA
| | - Charles D Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| |
Collapse
|
9
|
Pospíšil P, Prasad A. Formation of singlet oxygen and protection against its oxidative damage in Photosystem II under abiotic stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 137:39-48. [DOI: 10.1016/j.jphotobiol.2014.04.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 04/25/2014] [Accepted: 04/27/2014] [Indexed: 01/10/2023]
|
10
|
McDowell RE, Amsler CD, Dickinson DA, McClintock JB, Baker BJ. Reactive oxygen species and the Antarctic macroalgal wound response. JOURNAL OF PHYCOLOGY 2014; 50:71-80. [PMID: 26988009 DOI: 10.1111/jpy.12127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/04/2013] [Indexed: 06/05/2023]
Abstract
Reactive oxygen species (ROS) are commonly produced by algal, vascular plant, and animal cells involved in the innate immune response as cellular signals promoting defense and healing and/or as a direct defense against invading pathogens. The production of reactive species in macroalgae upon injury, however, is largely uncharacterized. In this study, we surveyed 13 species of macroalgae from the Western Antarctic Peninsula and show that the release of strong oxidants is common after macroalgal wounding. Most species released strong oxidants within 1 min of wounding and/or showed cellular accumulation of strong oxidants over an hour post-wounding. Exogenous catalase was used to show that hydrogen peroxide was a component of immediate oxidant release in one of five species, but was not responsible for the entire oxidative wound response as is common in vascular plants. The other component(s) of the oxidant cocktail released upon wounding are unknown. We were unable to detect protein nitration in extracts of four oxidant-producing species flash frozen 30 s after wounding, but a role for reactive nitrogen species such as peroxynitrite cannot be completely ruled out. Two species showed evidence for the production of a catalase-activated oxidant, a mechanism previously known only from the laboratory and from the synthetic drug isoniazid used to kill the human pathogen Mycobacterium tuberculosis. The rhodophyte Palmaria decipiens, which released strong oxidants after wounding, also produced strong oxidants upon grazing by a sympatric amphipod, suggesting that oxidants are involved in the response to grazing.
Collapse
Affiliation(s)
- Ruth E McDowell
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Charles D Amsler
- Department of Biology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Dale A Dickinson
- Department of Environmental Health Sciences and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - James B McClintock
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Bill J Baker
- Department of Chemistry, University of South Florida, Tampa, Florida, 33620, USA
| |
Collapse
|