1
|
Wu M, Wan Q, Dan X, Wang Y, Chen P, Chen C, Li Y, Yao X, He ML. Targeting Ser78 phosphorylation of Hsp27 achieves potent antiviral effects against enterovirus A71 infection. Emerg Microbes Infect 2024; 13:2368221. [PMID: 38932432 PMCID: PMC11212574 DOI: 10.1080/22221751.2024.2368221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.
Collapse
Affiliation(s)
- Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Qianya Wan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xuelian Dan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yiran Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Cien Chen
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Yichen Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People’s Republic of China
- CityU Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
2
|
Davila-Calderon J, Li ML, Penumutchu SR, Haddad C, Malcolm L, King J, Hargrove AE, Brewer G, Tolbert BS. Enterovirus evolution reveals the mechanism of an RNA-targeted antiviral and determinants of viral replication. SCIENCE ADVANCES 2024; 10:eadg3060. [PMID: 38363831 PMCID: PMC10871541 DOI: 10.1126/sciadv.adg3060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2024] [Indexed: 02/18/2024]
Abstract
Selective pressures on viruses provide opportunities to establish target site specificity and mechanisms of antivirals. Enterovirus (EV)-A71 with resistant mutations in the stem loop (SL) II internal ribosome entry site (IRES) (SLIIresist) were selected at low doses of the antiviral dimethylamiloride (DMA)-135. The EV-A71 mutants were resistant to DMA-135 at concentrations that inhibit replication of wild-type virus. EV-A71 IRES structures harboring resistant mutations induced efficient expression of Luciferase messenger RNA in the presence of noncytotoxic doses of DMA-135. Nuclear magnetic resonance indicates that the mutations change the structure of SLII at the binding site of DMA-135 and at the surface recognized by the host protein AU-rich element/poly(U)-binding/degradation factor 1 (AUF1). Biophysical studies of complexes formed between AUF1, DMA-135, and either SLII or SLIIresist show that DMA-135 stabilizes a ternary complex with AUF1-SLII but not AUF1-SLIIresist. This work demonstrates how viral evolution elucidates the (DMA-135)-RNA binding site specificity in cells and provides insights into the viral pathways inhibited by the antiviral.
Collapse
Affiliation(s)
| | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Linzy Malcolm
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
3
|
Abedeera SM, Davila-Calderon J, Haddad C, Henry B, King J, Penumutchu S, Tolbert BS. The Repurposing of Cellular Proteins during Enterovirus A71 Infection. Viruses 2023; 16:75. [PMID: 38257775 PMCID: PMC10821071 DOI: 10.3390/v16010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Viruses pose a great threat to people's lives. Enterovirus A71 (EV-A71) infects children and infants all over the world with no FDA-approved treatment to date. Understanding the basic mechanisms of viral processes aids in selecting more efficient drug targets and designing more effective antivirals to thwart this virus. The 5'-untranslated region (5'-UTR) of the viral RNA genome is composed of a cloverleaf structure and an internal ribosome entry site (IRES). Cellular proteins that bind to the cloverleaf structure regulate viral RNA synthesis, while those that bind to the IRES also known as IRES trans-acting factors (ITAFs) regulate viral translation. In this review, we survey the cellular proteins currently known to bind the 5'-UTR and influence viral gene expression with emphasis on comparing proteins' functions and localizations pre- and post-(EV-A71) infection. A comprehensive understanding of how the host cell's machinery is hijacked and reprogrammed by the virus to facilitate its replication is crucial for developing effective antivirals.
Collapse
Affiliation(s)
- Sudeshi M. Abedeera
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Jesse Davila-Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Barrington Henry
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Josephine King
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA; (J.D.-C.); (C.H.); (J.K.)
| | - Srinivasa Penumutchu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
| | - Blanton S. Tolbert
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.M.A.); (B.H.); (S.P.)
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Wu J, Lu J, Mao L, Xu M, Dai L, Wang Y. Targeting HNRNPA2B1 inhibits enterovirus 71 replication in SK-N-SH cells. Virus Res 2023; 336:199224. [PMID: 37716669 PMCID: PMC10511483 DOI: 10.1016/j.virusres.2023.199224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
OBJECTIVE To investigate the effect of heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1) on the replication of enterovirus 71 (EV-71) in SK-N-SH cells. METHODS The mRNA and protein expression of HNRNPA2B1 in SK-N-SH cells were detected by real-time quantitative PCR (qRT-PCR) and western blotting (WB), respectively. WB was used to detect HNRNPA2B1 protein expression in the nucleus and cytosol. The localization of HNRNPA2B1 protein in the nucleus and cytosol was detected by immunofluorescence (IF). The expression of HNRNPA2B1 was inhibited by small interfering RNA (si-HNRNPA2B1). Viral RNA, viral structural protein VP1, and viral titer were detected by qRT-PCR, WB, and viral dilution counting, respectively. RESULTS EV-71 infection significantly upregulates the expression of HNRNPA2B1 in SK-N-SH cells. EV-71 infection promotes HNRNPA2B1 nucleus-cytoplasm redistribution. Down-regulation of HNRNPA2B1 expression significantly inhibited EV-71 replication. CONCLUSION HNRNPA2B1 protein redistributed from nucleus to cytoplasm and is highly expressed in the cytoplasm during EV-71 infection. Inhibition of HNRNPA2B1 levels effectively inhibits EV-71 replication in SK-N-SH cells.
Collapse
Affiliation(s)
- Jing Wu
- Department of Laboratory Medicine, the Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu 215137, China.
| | - Jian Lu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215008, China
| | - Lingxiang Mao
- Department of Laboratory Medicine, the Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Meiqin Xu
- Department of Laboratory Medicine, the Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu 215137, China
| | - Lu Dai
- Department of Laboratory Medicine, the Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu 215137, China
| | - Yun Wang
- Department of Laboratory Medicine, the Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu 215137, China
| |
Collapse
|
5
|
Kumar A, Daripa P, Maiti S, Jain N. Interaction of hnRNPB1 with Helix-12 of hHOTAIR Reveals the Distinctive Mode of RNA Recognition That Enables the Structural Rearrangement by LCD. Biochemistry 2023; 62:2041-2054. [PMID: 37307069 DOI: 10.1021/acs.biochem.3c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The lncRNA human Hox transcript antisense intergenic RNA (hHOTAIR) regulates gene expression by recruiting chromatin modifiers. The prevailing model suggests that hHOTAIR recruits hnRNPB1 to facilitate intermolecular RNA-RNA interactions between the lncRNA HOTAIR and its target gene transcripts. This B1-mediated RNA-RNA interaction modulates the structure of hHOTAIR, attenuates its inhibitory effect on polycomb repression complex 2, and enhances its methyl transferase activity. However, the molecular details by which the nuclear hnRNPB1 protein assembles on the lncRNA HOTAIR have not yet been described. Here, we investigate the molecular interactions between hnRNPB1 and Helix-12 (hHOTAIR). We show that the low-complexity domain segment (LCD) of hnRNPB1 interacts with a strong affinity for Helix-12. Our studies revealed that unbound Helix-12 folds into a specific base-pairing pattern and contains an internal loop that, as determined by thermal melting and NMR studies, exhibits hydrogen bonding between strands and forms the recognition site for the LCD segment. In addition, mutation studies show that the secondary structure of Helix-12 makes an important contribution by acting as a landing pad for hnRNPB1. The secondary structure of Helix-12 is involved in specific interactions with different domains of hnRNPB1. Finally, we show that the LCD unwinds Helix-12 locally, indicating its importance in the hHOTAIR restructuring mechanism.
Collapse
Affiliation(s)
- Ajit Kumar
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Purba Daripa
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Souvik Maiti
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Niyati Jain
- CSIR Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
6
|
Abstract
Viruses lack the properties to replicate independently due to the limited resources encoded in their genome; therefore, they hijack the host cell machinery to replicate and survive. Picornaviruses get the prerequisite for effective protein synthesis through specific sequences known as internal ribosome entry sites (IRESs). In the past 2 decades, significant progress has been made in identifying different types of IRESs in picornaviruses. This review will discuss the past and current findings related to the five different types of IRESs and various internal ribosome entry site trans-acting factors (ITAFs) that either promote or suppress picornavirus translation and replication. Some IRESs are inefficient and thus require ITAFs. To achieve their full efficiency, they recruit various ITAFs, which enable them to translate more effectively and efficiently, except type IV IRES, which does not require any ITAFs. Although there are two kinds of ITAFs, one promotes viral IRES-dependent translation, and the second type restricts. Picornaviruses IRESs are classified into five types based on their use of sequence, ITAFs, and initiation factors. Some ITAFs regulate IRES activity by localizing to the viral replication factories in the cytoplasm. Also, some drugs, chemicals, and herbal extracts also regulate viral IRES-dependent translation and replication. Altogether, this review will elaborate on our understanding of the past and recent advancements in the IRES-dependent translation and replication of picornaviruses. IMPORTANCE The family Picornaviridae is divided into 68 genera and 158 species. The viruses belonging to this family range from public health importance, such as poliovirus, enterovirus A71, and hepatitis A virus, to animal viruses of great economic importance, such as foot-and-mouth disease virus. The genomes of picornaviruses contain 5' untranslated regions (5' UTRs), which possess crucial and highly structured stem-loops known as IRESs. IRES assemble the ribosomes and facilitate the cap-independent translation. Virus-host interaction is a hot spot for researchers, which warrants deep insight into understanding viral pathogenesis better and discovering new tools and ways for viral restriction to improve human and animal health. The cap-independent translation in the majority of picornaviruses is modulated by ITAFs, which bind to various IRES regions to initiate the translation. The discoveries of ITAFs substantially contributed to understanding viral replication behavior and enhanced our knowledge about virus-host interaction more effectively than ever before. This review discussed the various types of IRESs found in Picornaviridae, past and present discoveries regarding ITAFs, and their mechanism of action. The herbal extracts, drugs, and chemicals, which indicated their importance in controlling viruses, were also summarized. In addition, we discussed the movement of ITAFs from the nucleus to viral replication factories. We believe this review will stimulate researchers to search for more novel ITAFs, drugs, herbal extracts, and chemicals, enhancing the understanding of virus-host interaction.
Collapse
|
7
|
Eastman C, Tapprich WE. RNA Structure in the 5' Untranslated Region of Enterovirus D68 Strains with Differing Neurovirulence Phenotypes. Viruses 2023; 15:295. [PMID: 36851509 PMCID: PMC9959730 DOI: 10.3390/v15020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Enterovirus-D68 (EV-D68) is a positive-sense single-stranded RNA virus within the family Picornaviridae. EV-D68 was initially considered a respiratory virus that primarily affected children. However, in 2014, EV-D68 outbreaks occurred causing the expected increase in respiratory illness cases, but also an increase in acute flaccid myelitis cases (AFM). Sequencing of 2014 outbreak isolates revealed variations in the 5' UTR of the genome compared to the historical Fermon strain. The structure of the 5' UTR RNA contributes to enterovirus virulence, including neurovirulence in poliovirus, and could contribute to neurovirulence in contemporary EV-D68 strains. In this study, the secondary and tertiary structures of 5' UTR RNA from the Fermon strain and 2014 isolate KT347251.1 are analyzed and compared. Secondary structures were determined using SHAPE-MaP and TurboFold II and tertiary structures were predicted using 3dRNAv2.0. Comparison of RNA structures between the EV-D68 strains shows significant remodeling at the secondary and tertiary levels. Notable secondary structure changes occurred in domains II, IV and V. Shifts in the secondary structure changed the tertiary structure of the individual domains and the orientation of the domains. Our comparative structural models for EV-D68 5' UTR RNA highlight regions of the molecule that could be targeted for treatment of neurotropic enteroviruses.
Collapse
Affiliation(s)
| | - William E. Tapprich
- Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| |
Collapse
|
8
|
Chiu LY, Davila-Calderon J, Cai Z, Tolbert BS. Biophysical Analysis of Small Molecule Binding to Viral RNA Structures. Methods Mol Biol 2023; 2570:205-222. [PMID: 36156785 DOI: 10.1007/978-1-0716-2695-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
RNA molecules are essential for carrying genetic information and regulating gene expression in most organisms including human pathogenic RNA and relate retro viruses. Targeting viral RNA (vRNA) structures provide broad opportunities to develop chemical tools to probe molecular virology and to discover novel targets for therapeutic intervention. An increasing number of RNA binding small molecules are being identified, stimulating increased interests in small molecule drug discovery for RNA targets. In this chapter, we describe protocols to characterize and robustly validate vRNA-small molecule (vRNA-sm) interactions starting from vRNA sample preparation, followed by small molecule screening against vRNA targets and finally to validating the vRNA-sm interactions via NMR spectroscopy and calorimetric titrations.
Collapse
Affiliation(s)
- Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | | | - Zhengguo Cai
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Bhattarai K, Holcik M. Diverse roles of heterogeneous nuclear ribonucleoproteins in viral life cycle. FRONTIERS IN VIROLOGY 2022. [DOI: 10.3389/fviro.2022.1044652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Understanding the host-virus interactions helps to decipher the viral replication strategies and pathogenesis. Viruses have limited genetic content and rely significantly on their host cell to establish a successful infection. Viruses depend on the host for a broad spectrum of cellular RNA-binding proteins (RBPs) throughout their life cycle. One of the major RBP families is the heterogeneous nuclear ribonucleoproteins (hnRNPs) family. hnRNPs are typically localized in the nucleus, where they are forming complexes with pre-mRNAs and contribute to many aspects of nucleic acid metabolism. hnRNPs contain RNA binding motifs and frequently function as RNA chaperones involved in pre-mRNA processing, RNA splicing, and export. Many hnRNPs shuttle between the nucleus and the cytoplasm and influence cytoplasmic processes such as mRNA stability, localization, and translation. The interactions between the hnRNPs and viral components are well-known. They are critical for processing viral nucleic acids and proteins and, therefore, impact the success of the viral infection. This review discusses the molecular mechanisms by which hnRNPs interact with and regulate each stage of the viral life cycle, such as replication, splicing, translation, and assembly of virus progeny. In addition, we expand on the role of hnRNPs in the antiviral response and as potential targets for antiviral drug research and development.
Collapse
|
10
|
Feng J, Zhou J, Lin Y, Huang W. hnRNP A1 in RNA metabolism regulation and as a potential therapeutic target. Front Pharmacol 2022; 13:986409. [PMID: 36339596 PMCID: PMC9634572 DOI: 10.3389/fphar.2022.986409] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Abnormal RNA metabolism, regulated by various RNA binding proteins, can have functional consequences for multiple diseases. Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an important RNA binding protein, that regulates various RNA metabolic processes, including transcription, alternative splicing of pre-mRNA, translation, miRNA processing and mRNA stability. As a potent splicing factor, hnRNP A1 can regulate multiple splicing events, including itself, collaborating with other cooperative or antagonistical splicing factors by binding to splicing sites and regulatory elements in exons or introns. hnRNP A1 can modulate gene transcription by directly interacting with promoters or indirectly impacting Pol II activities. Moreover, by interacting with the internal ribosome entry site (IRES) or 3′-UTR of mRNAs, hnRNP A1 can affect mRNA translation. hnRNP A1 can alter the stability of mRNAs by binding to specific locations of 3′-UTR, miRNAs biogenesis and Nonsense-mediated mRNA decay (NMD) pathway. In this review, we conclude the selective sites where hnRNP A1 binds to RNA and DNA, and the co-regulatory factors that interact with hnRNP A1. Given the dysregulation of hnRNP A1 in diverse diseases, especially in cancers and neurodegeneration diseases, targeting hnRNP A1 for therapeutic treatment is extremely promising. Therefore, this review also provides the small-molecule drugs, biomedicines and novel strategies targeting hnRNP A1 for therapeutic purposes.
Collapse
|
11
|
Wang J, Sun D, Wang M, Cheng A, Zhu Y, Mao S, Ou X, Zhao X, Huang J, Gao Q, Zhang S, Yang Q, Wu Y, Zhu D, Jia R, Chen S, Liu M. Multiple functions of heterogeneous nuclear ribonucleoproteins in the positive single-stranded RNA virus life cycle. Front Immunol 2022; 13:989298. [PMID: 36119073 PMCID: PMC9478383 DOI: 10.3389/fimmu.2022.989298] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that are implicated in RNA metabolism, such as alternative splicing, mRNA stabilization and translational regulation. According to their different cellular localization, hnRNPs display multiple functions. Most hnRNPs were predominantly located in the nucleus, but some of them could redistribute to the cytoplasm during virus infection. HnRNPs consist of different domains and motifs that enable these proteins to recognize predetermined nucleotide sequences. In the virus-host interactions, hnRNPs specifically bind to viral RNA or proteins. And some of the viral protein-hnRNP interactions require the viral RNA or other host factors as the intermediate. Through various mechanisms, hnRNPs could regulate viral translation, viral genome replication, the switch of translation to replication and virion release. This review highlights the common features and the distinguish roles of hnRNPs in the life cycle of positive single-stranded RNA viruses.
Collapse
Affiliation(s)
- Jingming Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- *Correspondence: Anchun Cheng,
| | - Yukun Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
12
|
Francisco-Velilla R, Embarc-Buh A, Abellan S, Martinez-Salas E. Picornavirus translation strategies. FEBS Open Bio 2022; 12:1125-1141. [PMID: 35313388 PMCID: PMC9157412 DOI: 10.1002/2211-5463.13400] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/02/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The genome of viruses classified as picornaviruses consists of a single monocistronic positive strand RNA. The coding capacity of these RNA viruses is rather limited, and thus, they rely on the cellular machinery for their viral replication cycle. Upon the entry of the virus into susceptible cells, the viral RNA initially competes with cellular mRNAs for access to the protein synthesis machinery. Not surprisingly, picornaviruses have evolved specialized strategies that successfully allow the expression of viral gene products, which we outline in this review. The main feature of all picornavirus genomes is the presence of a heavily structured RNA element on the 5´UTR, referred to as an internal ribosome entry site (IRES) element, which directs viral protein synthesis as well and, consequently, triggers the subsequent steps required for viral replication. Here, we will summarize recent studies showing that picornavirus IRES elements consist of a modular structure, providing sites of interaction for ribosome subunits, eIFs, and a selective group of RNA‐binding proteins.
Collapse
Affiliation(s)
| | - Azman Embarc-Buh
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | - Salvador Abellan
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Madrid, Spain
| | | |
Collapse
|
13
|
Host restriction factor A3G inhibits the replication of Enterovirus D68 through competitively binding 5' UTR with PCBP1. J Virol 2021; 96:e0170821. [PMID: 34730395 DOI: 10.1128/jvi.01708-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The host restriction factor APOBEC3G (A3G) presents extensively inhibition on a variety of viruses, including retroviruses, DNA and RNA viruses. Our recent study showed that A3G inhibits enterovirus 71 (EV71) and coxsackievirus A16 (CA16) via competitively binding 5'UTR with the host protein poly(C)-binding protein 1 (PCBP1) that is required for multiple EVs replication. However, in addition to EV71 and CA16, whether A3G inhibits other EVs has not been investigated. Here, we demonstrate that A3G could inhibit EVD68 replication, which needs PCBP1 for its replication, but not CA6 that PCBP1 is dispensable for CA6 replication. Further investigation revealed that nucleic acid binding activity of A3G is required for EVD68 restriction, which is similar to the mechanism presented in EV71 restriction. Mechanistically, A3G competitively binds to the cloverleaf (1-123) and the stem-loop IV (234-446) domains of EVD68 5'UTR with PCBP1, thereby inhibiting the 5'UTR activity of EVD68, whereas A3G doesn't interact with CA6 5'UTR results in no effect on CA6 replication. Moreover, non-structural protein 2C encoded by EVD68 overcomes A3G suppression through inducing A3G degradation via the autophagy-lysosome pathway. Our finding revealed that A3G might have broad spectrum antiviral activity against multiple EVs through the general mechanism, which might provide important information for the development of anti-EVs strategy. Importance As the two major pathogens causing hand, food, and mouth disease (HFMD), EV71 and CA16 attract more attention for the discovery of pathogenesis, the involvement of cellular proteins and so on. However, other EVs such as CA6 or EVD68 constantly occurred sporadic or might spread widely in recent years worldwide. Therefore, more information related to these EVs needs to be further investigated so as to develop broad-spectrum anti-EVs inhibitor. In this study, we first reveal that PCBP1 involved in PV and EV71 virus replication, also is required for the replication of EVD68 but not CA6. Then we found that the host restriction factor A3G specifically inhibits the replication of EVD68 but not CA6 via competitively binding to the 5'UTR of EVD68 with PCBP1. Our findings broaden the knowledge related to EVs replication and the interplay between EVs and host factors.
Collapse
|
14
|
Abstract
Hand, Foot and Mouth Disease (HFMD) is usually a self-limiting, mild childhood disease that is caused mainly by Coxsackie virus A16 (CVA16) and Enterovirus A71 (EV-A71), both members of the Picornaviridae family. However, recurring HFMD outbreaks and epidemics due to EV-A71 infection in the Western Pacific region, and the propensity of EV-A71 strains to cause severe neurological complications have made this neurotropic virus a serious public health concern in afflicted countries. High mutation rate leading to viral quasispecies combined with frequent intra- and inter-typic recombination events amongst co-circulating EV-A71 strains have contributed to the great diversity and fast evolution of EV-A71 genomes, making impossible any accurate prediction of the next epidemic strain. Comparative genome sequence analyses and mutagenesis approaches have led to the identification of a number of viral determinants involved in EV-A71 fitness and virulence. These viral determinants include amino acid residues located in the structural proteins of the virus, affecting attachment to the host cell surface, receptor binding, and uncoating events. Critical residues in non-structural proteins have also been identified, including 2C, 3A, 3C proteases and the RNA-dependent RNA polymerase. Finally, mutations altering key secondary structures in the 5’ untranslated region were also found to influence EV-A71 fitness and virulence. While our current understanding of EV-A71 pathogenesis remains fragmented, these studies may help in the rational design of effective treatments and broadly protective vaccine candidates.
Collapse
Affiliation(s)
- Pei Yi Ang
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Connie Wan Hui Chong
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology&Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Immunology programme, Life Sciences Institute, Centre for Life Sciences, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
15
|
Su YS, Hwang LH, Chen CJ. Heat Shock Protein A6, a Novel HSP70, Is Induced During Enterovirus A71 Infection to Facilitate Internal Ribosomal Entry Site-Mediated Translation. Front Microbiol 2021; 12:664955. [PMID: 34025620 PMCID: PMC8137988 DOI: 10.3389/fmicb.2021.664955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Enterovirus A71 (EV-A71) is a human pathogen causing hand, foot, and mouth disease (HFMD) in children. Its infection can lead to severe neurological diseases or even death in some cases. While being produced in a large quantity during infection, viral proteins often require the assistance from cellular chaperones for proper folding. In this study, we found that heat shock protein A6 (HSPA6), whose function in viral life cycle is scarcely studied, was induced and functioned as a positive regulator for EV-A71 infection. Depletion of HSPA6 led to the reductions of EV-A71 viral proteins, viral RNA and virions as a result of the downregulation of internal ribosomal entry site (IRES)-mediated translation. Unlike other HSP70 isoforms such as HSPA1, HSPA8, and HSPA9, which regulate all phases of the EV-A71 life, HSPA6 was required for the IRES-mediated translation only. Unexpectedly, the importance of HSPA6 in the IRES activity could be observed in the absence of viral proteins, suggesting that HSPA6 facilitated IRES activity through cellular factor(s) instead of viral proteins. Intriguingly, the knockdown of HSPA6 also caused the reduction of luciferase activity driven by the IRES from coxsackievirus A16, echovirus 9, encephalomyocarditis virus, or hepatitis C virus, supporting that HSPA6 may assist the function of a cellular protein generally required for viral IRES activities.
Collapse
Affiliation(s)
- Yu-Siang Su
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Lih-Hwa Hwang
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Ju Chen
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
16
|
Wo X, Yuan Y, Xu Y, Chen Y, Wang Y, Zhao S, Lin L, Zhong X, Wang Y, Zhong Z, Zhao W. TAR DNA-Binding Protein 43 is Cleaved by the Protease 3C of Enterovirus A71. Virol Sin 2021; 36:95-103. [PMID: 32696397 PMCID: PMC7973337 DOI: 10.1007/s12250-020-00262-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022] Open
Abstract
Enterovirus A71 (EV-A71) is one of the etiological pathogens leading to hand, foot, and mouth disease (HFMD), which can cause severe neurological complications. The neuropathogenesis of EV-A71 infection is not well understood. The mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43) is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, whether TDP-43 was impacted by EV-A71 infection is unknown. This study demonstrated that TDP-43 was cleaved during EV-A71 infection. The cleavage of TDP-43 requires EV-A71 replication rather than the activated caspases due to viral infection. TDP-43 is cleaved by viral protease 3C between the residues 331Q and 332S, while mutated TDP-43 (Q331A) was not cleaved. In addition, mutated 3C which lacks the protease activity failed to induce TDP-43 cleavage. We also found that TDP-43 was translocated from the nucleus to the cytoplasm, and the mislocalization of TDP-43 was induced by viral protease 2A rather than 3C. Taken together, we demonstrated that TDP-43 was cleaved by viral protease and translocated to the cytoplasm during EV-A71 infection, implicating the possible involvement of TDP-43 in the pathogenesis of EV-A71infection.
Collapse
Affiliation(s)
- Xiaoman Wo
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yuan Yuan
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yong Xu
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Yang Chen
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yao Wang
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Shuoxuan Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China
| | - Lexun Lin
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Xiaoyan Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Yan Wang
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China
| | - Zhaohua Zhong
- Department of Microbiology, Harbin Medical University, Harbin, 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
17
|
Barrera A, Ramos H, Vera-Otarola J, Fernández-García L, Angulo J, Olguín V, Pino K, Mouland AJ, López-Lastra M. Post-translational modifications of hnRNP A1 differentially modulate retroviral IRES-mediated translation initiation. Nucleic Acids Res 2020; 48:10479-10499. [PMID: 32960212 PMCID: PMC7544202 DOI: 10.1093/nar/gkaa765] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 08/09/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
The full-length mRNAs of the human immunodeficiency virus type-1 (HIV-1), the human T-cell lymphotropic virus type-1 (HTLV-1), and the mouse mammary tumor virus (MMTV) harbor IRESs. The activity of the retroviral-IRESs requires IRES-transacting factors (ITAFs), being hnRNP A1, a known ITAF for the HIV-1 IRES. In this study, we show that hnRNP A1 is also an ITAF for the HTLV-1 and MMTV IRESs. The MMTV IRES proved to be more responsive to hnRNP A1 than either the HTLV-1 or the HIV-1 IRESs. The impact of post-translational modifications of hnRNP A1 on HIV-1, HTLV-1 and MMTV IRES activity was also assessed. Results show that the HIV-1 and HTLV-1 IRESs were equally responsive to hnRNP A1 and its phosphorylation mutants S4A/S6A, S4D/S6D and S199A/D. However, the S4D/S6D mutant stimulated the activity from the MMTV-IRES to levels significantly higher than the wild type hnRNP A1. PRMT5-induced symmetrical di-methylation of arginine residues of hnRNP A1 enabled the ITAF to stimulate the HIV-1 and HTLV-1 IRESs while reducing the stimulatory ability of the ITAF over the MMTV IRES. We conclude that retroviral IRES activity is not only dependent on the recruited ITAFs but also relies on how these proteins are modified at the post-translational level.
Collapse
Affiliation(s)
- Aldo Barrera
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Hade Ramos
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jorge Vera-Otarola
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Leandro Fernández-García
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Jenniffer Angulo
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Valeria Olguín
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Karla Pino
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| | - Andrew J Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada
| | - Marcelo López-Lastra
- Laboratorio de Virología Molecular, Instituto Milenio de Inmunología e Inmunoterapia, Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta 391, Santiago, Chile
| |
Collapse
|
18
|
Davila-Calderon J, Patwardhan NN, Chiu LY, Sugarman A, Cai Z, Penutmutchu SR, Li ML, Brewer G, Hargrove AE, Tolbert BS. IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex. Nat Commun 2020; 11:4775. [PMID: 32963221 PMCID: PMC7508794 DOI: 10.1038/s41467-020-18594-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Enterovirus 71 (EV71) poses serious threats to human health, particularly in Southeast Asia, and no drugs or vaccines are available. Previous work identified the stem loop II structure of the EV71 internal ribosomal entry site as vital to viral translation and a potential target. After screening an RNA-biased library using a peptide-displacement assay, we identify DMA-135 as a dose-dependent inhibitor of viral translation and replication with no significant toxicity in cell-based studies. Structural, biophysical, and biochemical characterization support an allosteric mechanism in which DMA-135 induces a conformational change in the RNA structure that stabilizes a ternary complex with the AUF1 protein, thus repressing translation. This mechanism is supported by pull-down experiments in cell culture. These detailed studies establish enterovirus RNA structures as promising drug targets while revealing an approach and mechanism of action that should be broadly applicable to functional RNA targeting. Human enterovirus 71 (EV71) contains an internal ribosome entry site (IRES) that promotes translation of viral RNA. Here the authors show that an antiviral small molecule DMA-135 binds to the EV71 IRES RNA, inducing conformational change and stabilizing a ternary complex to repress translation.
Collapse
Affiliation(s)
| | | | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Andrew Sugarman
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengguo Cai
- Department of Chemistry, Duke University, Durham, NC, USA
| | | | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Structures and Functions of Viral 5' Non-Coding Genomic RNA Domain-I in Group-B Enterovirus Infections. Viruses 2020; 12:v12090919. [PMID: 32839386 PMCID: PMC7552046 DOI: 10.3390/v12090919] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5′ end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5′ terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5′ terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host–cell interactions driving the development of acute or persistent EV-B infections.
Collapse
|
20
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
21
|
Functional analyses of mammalian virus 5'UTR-derived, small RNAs that regulate virus translation. Methods 2020; 183:13-20. [PMID: 32081746 DOI: 10.1016/j.ymeth.2020.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
Enterovirus A71 (EV-A711) RNA contains an internal ribosomal entry site (IRES) to direct cap-independent translation. IRES-dependent translation requires the host's translation initiation factors and IRES-associated trans-acting factors (ITAFs). We previously showed that hnRNP A1, the mRNA stability factor HuR, and the RISC subunit Argonaute 2 (Ago2) are ITAFs that associate with stem loop II (SL-II) of the IRES and promote IRES-dependent translation. By contrast, the mRNA decay factor AUF1 is a negative-acting ITAF that also binds SL-II. Moreover, the small RNA-processing enzyme Dicer produces at least four virus-derived, small RNAs (vsRNAs 1-4) from the EV-A71 5'UTR in infected cells. One of these, vsRNA1, derived from SL-II, inhibits IRES activity via an unknown mechanism. In vitro RNA-binding assays revealed that vsRNA1 can alter association of Ago2, HuR, and AUF1 with SL-II. This presents a possible mechanism by which vsRNA1 could control association of ITAFs with the IRES and modulate viral translation. Here, we describe methods for functional analyses of vsRNA1-mediated regulation of IRES activity. These methods should be applicable to other virus-derived, small RNAs as well.
Collapse
|
22
|
Kaur R, Lal SK. The multifarious roles of heterogeneous ribonucleoprotein A1 in viral infections. Rev Med Virol 2020; 30:e2097. [PMID: 31989716 PMCID: PMC7169068 DOI: 10.1002/rmv.2097] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/19/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Viruses are obligate parasites known to interact with a wide variety of host proteins at different stages of infection. Current antiviral treatments target viral proteins and may be compromised due to the emergence of drug resistant viral strains. Targeting viral-host interactions is now gaining recognition as an alternative approach against viral infections. Recent research has revealed that heterogeneous ribonucleoprotein A1, an RNA-binding protein, plays an essential functional and regulatory role in the life cycle of many viruses. In this review, we summarize the interactions between heterogeneous ribonucleoprotein A1 (hnRNPA1) and multiple viral proteins during the life cycle of RNA and DNA viruses. hnRNPA1 protein levels are modulated differently, in different viruses, which further dictates its stability, function, and intracellular localization. Multiple reports have emphasized that in Sindbis virus, enteroviruses, porcine endemic diarrhea virus, and rhinovirus infection, hnRNPA1 enhances viral replication and survival. However, in others like hepatitis C virus and human T-cell lymphotropic virus, it exerts a protective response. The involvement of hnRNPA1 in viral infections highlights its importance as a central regulator of host and viral gene expression. Understanding the nature of these interactions will increase our understanding of specific viral infections and pathogenesis and eventually aid in the development of novel and robust antiviral intervention strategies.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| | - Sunil K Lal
- Tropical Medicine and Biology Platform & School of Science, Monash University, 47500 Bandar Sunway, Selangor DE, Malaysia
| |
Collapse
|
23
|
Lai MC, Chen HH, Xu P, Wang RYL. Translation control of Enterovirus A71 gene expression. J Biomed Sci 2020; 27:22. [PMID: 31910851 PMCID: PMC6947814 DOI: 10.1186/s12929-019-0607-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Upon EV-A71 infection of a host cell, EV-A71 RNA is translated into a viral polyprotein. Although EV-A71 can use the cellular translation machinery to produce viral proteins, unlike cellular translation, which is cap-dependent, the viral RNA genome of EV-A71 does not contain a 5′ cap and the translation of EV-A71 protein is cap-independent, which is mediated by the internal ribosomal entry site (IRES) located in the 5′ UTR of EV-A71 mRNA. Like many other eukaryotic viruses, EV-A71 manipulates the host cell translation devices, using an elegant RNA-centric strategy in infected cells. During viral translation, viral RNA plays an important role in controlling the stage of protein synthesis. In addition, due to the cellular defense mechanism, viral replication is limited by down-regulating translation. EV-A71 also utilizes protein factors in the host to overcome antiviral responses or even use them to promote viral translation rather than host cell translation. In this review, we provide an introduction to the known strategies for EV-A71 to exploit cellular translation mechanisms.
Collapse
Affiliation(s)
- Ming-Chih Lai
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan.,Department of Colorectal Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan
| | - Han-Hsiang Chen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Peng Xu
- Xiangyang No.1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.
| | - Robert Y L Wang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 33302, Taiwan. .,Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan, 33305, Taiwan.
| |
Collapse
|
24
|
Holmes AC, Semler BL. Picornaviruses and RNA Metabolism: Local and Global Effects of Infection. J Virol 2019; 93:e02088-17. [PMID: 31413128 PMCID: PMC6803262 DOI: 10.1128/jvi.02088-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Due to the limiting coding capacity for members of the Picornaviridae family of positive-strand RNA viruses, their successful replication cycles require complex interactions with host cell functions. These interactions span from the down-modulation of many aspects of cellular metabolism to the hijacking of specific host functions used during viral translation, RNA replication, and other steps of infection by picornaviruses, such as human rhinovirus, coxsackievirus, poliovirus, foot-and-mouth disease virus, enterovirus D-68, and a wide range of other human and nonhuman viruses. Although picornaviruses replicate exclusively in the cytoplasm of infected cells, they have extensive interactions with host cell nuclei and the proteins and RNAs that normally reside in this compartment of the cell. This review will highlight some of the more recent studies that have revealed how picornavirus infections impact the RNA metabolism of the host cell posttranscriptionally and how they usurp and modify host RNA binding proteins as well as microRNAs to potentiate viral replication.
Collapse
Affiliation(s)
- Autumn C Holmes
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| | - Bert L Semler
- Department of Microbiology & Molecular Genetics, University of California, Irvine, California, USA
- Center for Virus Research, University of California, Irvine, California, USA
| |
Collapse
|
25
|
Li ML, Lin JY, Chen BS, Weng KF, Shih SR, Calderon JD, Tolbert BS, Brewer G. EV71 3C protease induces apoptosis by cleavage of hnRNP A1 to promote apaf-1 translation. PLoS One 2019; 14:e0221048. [PMID: 31498791 PMCID: PMC6733512 DOI: 10.1371/journal.pone.0221048] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Enterovirus 71 (EV71) induces apoptosis to promote viral particle release. Earlier work showed that EV71 utilizes its 3C protease to induce apoptosis in a caspase-3-dependent pathway, though the mechanism is unknown. However, work from Vagner, Holcik and colleagues showed that host protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds the IRES of cellular apoptotic peptidase activating factor 1 (apaf-1) mRNA to repress its translation. In this work, we show that apaf-1 expression is essential for EV71-induced apoptosis. EV71 infection or ectopic expression of 3C protease cleaves hnRNP A1, which abolishes its binding to the apaf-1 IRES. This allows IRES-dependent synthesis of apaf-1, activation of caspase-3, and apoptosis. Thus, we reveal a novel mechanism that EV71 utilizes for virus release via a 3C protease-hnRNP A1-apaf-1-caspase-3-apoptosis axis.
Collapse
Affiliation(s)
- Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| | - Jing-Yi Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Bo-Shiun Chen
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Jesse Davila Calderon
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Blanton S. Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States of America
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America
| |
Collapse
|
26
|
Nikolaev Y, Ripin N, Soste M, Picotti P, Iber D, Allain FHT. Systems NMR: single-sample quantification of RNA, proteins and metabolites for biomolecular network analysis. Nat Methods 2019; 16:743-749. [PMID: 31363225 PMCID: PMC6837886 DOI: 10.1038/s41592-019-0495-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Cellular behavior is controlled by the interplay of diverse biomolecules. Most experimental methods, however, can only monitor a single molecule class or reaction type at a time. We developed an in vitro nuclear magnetic resonance spectroscopy (NMR) approach, which permitted dynamic quantification of an entire 'heterotypic' network-simultaneously monitoring three distinct molecule classes (metabolites, proteins and RNA) and all elementary reaction types (bimolecular interactions, catalysis, unimolecular changes). Focusing on an eight-reaction co-transcriptional RNA folding network, in a single sample we recorded over 35 time points with over 170 observables each, and accurately determined five core reaction constants in multiplex. This reconstruction revealed unexpected cross-talk between the different reactions. We further observed dynamic phase-separation in a system of five distinct RNA-binding domains in the course of the RNA transcription reaction. Our Systems NMR approach provides a deeper understanding of biological network dynamics by combining the dynamic resolution of biochemical assays and the multiplexing ability of 'omics'.
Collapse
Affiliation(s)
- Yaroslav Nikolaev
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland.
| | - Nina Ripin
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland
| | - Martin Soste
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Paola Picotti
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Dagmar Iber
- Department of Biosystems Science and Engineering, ETH Zurich, Zurich, Switzerland
| | - Frédéric H-T Allain
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
27
|
Owino CO, Chu JJH. Recent advances on the role of host factors during non-poliovirus enteroviral infections. J Biomed Sci 2019; 26:47. [PMID: 31215493 PMCID: PMC6582496 DOI: 10.1186/s12929-019-0540-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023] Open
Abstract
Non-polio enteroviruses are emerging viruses known to cause outbreaks of polio-like infections in different parts of the world with several cases already reported in Asia Pacific, Europe and in United States of America. These outbreaks normally result in overstretching of health facilities as well as death in children under the age of five. Most of these infections are usually self-limiting except for the neurological complications associated with human enterovirus A 71 (EV-A71). The infection dynamics of these viruses have not been fully understood, with most inferences made from previous studies conducted with poliovirus.Non-poliovirus enteroviral infections are responsible for major outbreaks of hand, foot and mouth disease (HFMD) often associated with neurological complications and severe respiratory diseases. The myriad of disease presentations observed so far in children calls for an urgent need to fully elucidate the replication processes of these viruses. There are concerted efforts from different research groups to fully map out the role of human host factors in the replication cycle of these viral infections. Understanding the interaction between viral proteins and human host factors will unravel important insights on the lifecycle of this groups of viruses.This review provides the latest update on the interplay between human host factors/processes and non-polio enteroviruses (NPEV). We focus on the interactions involved in viral attachment, entry, internalization, uncoating, replication, virion assembly and eventual egress of the NPEV from the infected cells. We emphasize on the virus- human host interplay and highlight existing knowledge gaps that needs further studies. Understanding the NPEV-human host factors interactions will be key in the design and development of vaccines as well as antivirals against enteroviral infections. Dissecting the role of human host factors during NPEV infection cycle will provide a clear picture of how NPEVs usurp the human cellular processes to establish an efficient infection. This will be a boost to the drug and vaccine development against enteroviruses which will be key in control and eventual elimination of the viral infections.
Collapse
Affiliation(s)
- Collins Oduor Owino
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Justin Jang Hann Chu
- Department of Microbiology and Immunology, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
| |
Collapse
|
28
|
Staufen1 Protein Participates Positively in the Viral RNA Replication of Enterovirus 71. Viruses 2019; 11:v11020142. [PMID: 30744035 PMCID: PMC6409738 DOI: 10.3390/v11020142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/29/2019] [Accepted: 02/06/2019] [Indexed: 12/28/2022] Open
Abstract
The double-stranded RNA-binding protein Staufen1 (Stau1) has multiple functions during RNA virus infection. In this study, we investigated the role of Stau1 in viral translation by using a combination of enterovirus 71 (EV-A71) infection, RNA reporter transfection, and in vitro functional and biochemical assays. We demonstrated that Stau1 specifically binds to the 5′-untranslated region of EV-A71 viral RNA. The RNA-binding domain 2-3 of Stau1 is responsible for this binding ability. Subsequently, we created a Stau1 knockout cell line using the CRISPR/Cas9 approach to further characterize the functional role of Stau1’s interaction with viral RNA in the EV-A71-infected cells. Both the viral RNA accumulation and viral protein expression were downregulated in the Stau1 knockout cells compared with the wild-type naïve cells. Moreover, dysregulation of viral RNA translation was observed in the Stau1 knockout cells using ribosome fractionation assay, and a reduced RNA stability of 5′-UTR of the EV-A71 was also identified using an RNA stability assay, which indicated that Stau1 has a role in facilitating viral translation during EV-A71 infection. In conclusion, we determined the functional relevance of Stau1 in the EV-A71 infection cycle and herein describe the mechanism of Stau1 participation in viral RNA translation through its interaction with viral RNA. Our results suggest that Stau1 is an important host factor involved in viral translation and influential early in the EV-A71 replication cycle.
Collapse
|
29
|
Levengood JD, Tolbert BS. Idiosyncrasies of hnRNP A1-RNA recognition: Can binding mode influence function. Semin Cell Dev Biol 2019; 86:150-161. [PMID: 29625167 PMCID: PMC6177329 DOI: 10.1016/j.semcdb.2018.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
The heterogeneous nuclear ribonucleoproteins (hnRNPs) are a diverse family of RNA binding proteins that function in most stages of RNA metabolism. The prototypical member, hnRNP A1, is composed of three major domains; tandem N-terminal RNA Recognition Motifs (RRMs) and a C-terminal mostly intrinsically disordered region. HnRNP A1 is broadly implicated in basic cellular RNA processing events such as splicing, stability, nuclear export and translation. Due to its ubiquity and abundance, hnRNP A1 is also frequently usurped to control viral gene expression. Deregulation of the RNA metabolism functions of hnRNP A1 in neuronal cells contributes to several neurodegenerative disorders. Because of these roles in human pathologies, the study of hnRNP A1 provides opportunities for the development of novel therapeutics, with disruption of its RNA binding capabilities being the most promising target. The functional diversity of hnRNP A1 is reflected in the complex nature by which it interacts with various RNA targets. Indeed, hnRNP A1 binds both structured and unstructured RNAs with binding affinities that span several magnitudes. Available structures of hnRNP A1-RNA complexes also suggest a degree of plasticity in molecular recognition. Given the reinvigoration in hnRNP A1, the goal of this review is to use the available structural biochemical developments as a framework to interpret its wide-range of RNA functions.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
30
|
Direct and Indirect Effects on Viral Translation and RNA Replication Are Required for AUF1 Restriction of Enterovirus Infections in Human Cells. mBio 2018; 9:mBio.01669-18. [PMID: 30181254 PMCID: PMC6123441 DOI: 10.1128/mbio.01669-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Picornaviruses primarily infect the gastrointestinal or upper respiratory tracts of humans and animals and may disseminate to tissues of the central nervous system, heart, skin, liver, or pancreas. Many common human pathogens belong to the Picornaviridae family, which includes viruses known to cause paralytic poliomyelitis (poliovirus); myocarditis (coxsackievirus B3 [CVB3]); the common cold (human rhinovirus [HRV]); and hand, foot, and mouth disease (enterovirus 71 [EV71]), among other illnesses. There are no specific treatments for infection, and vaccines exist for only two picornaviruses: poliovirus and hepatitis A virus. Given the worldwide distribution and prevalence of picornaviruses, it is important to gain insight into the host mechanisms used to restrict infection. Other than proteins involved in the innate immune response, few host factors have been identified that restrict picornavirus replication. The work presented here seeks to define the mechanism of action for the host restriction factor AUF1 during infection by poliovirus and CVB3. The cellular mRNA decay protein AUF1 acts as a restriction factor during infection by picornaviruses, including poliovirus, coxsackievirus, and human rhinovirus. AUF1 relocalizes from the nucleus to the cytoplasm during infection by these viruses due to the disruption of nucleocytoplasmic trafficking by viral proteinases. Previous studies have demonstrated that AUF1 binds to poliovirus and coxsackievirus B3 (CVB3) RNA during infection, with binding shown to occur within the internal ribosome entry site (IRES) of the 5′ noncoding region (NCR) or the 3′ NCR, respectively. Binding to different sites within the viral RNA suggests that AUF1 may negatively regulate infection by these viruses using different mechanisms. The work presented here addresses the mechanism of AUF1 inhibition of the replication of poliovirus and CVB3. We demonstrate that AUF1 knockdown in human cells results in increased viral translation, RNA synthesis, and virus production. AUF1 is shown to negatively regulate translation of a poliovirus and CVB3 IRES reporter RNA during infection but not in uninfected cells. We found that this inhibitory activity is not mediated through destabilization of viral genomic RNA; however, it does require virus-induced relocalization of AUF1 from the nucleus to the cytoplasm during the early phases of infection. Our findings suggest that AUF1 restriction of poliovirus and CVB3 replication uses a common mechanism through the viral IRES, which is distinct from the canonical role that AUF1 plays in regulated mRNA decay in uninfected host cells.
Collapse
|
31
|
Human rhinovirus internal ribosome entry site element enhances transgene expression in transfected CHO-S cells. Sci Rep 2018; 8:6661. [PMID: 29703950 PMCID: PMC5923211 DOI: 10.1038/s41598-018-25049-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 01/27/2023] Open
Abstract
Chinese hamster ovary (CHO) cells are mainly used for recombinant protein production. However, the unstable transgene expression and lower transgene copy numbers are the major issues need to be resolved. Here, eleven internal ribosome entry site (IRES) elements from viral and cellular IRES were evaluated for foreign gene expression in CHO-S cells. We constructed eleven fusing plasmids containing different IRES sequences downstream of the enhanced green fluorescent protein (EGFP) gene. EGFP expression was detected by flow cytometry and the transgene copy number was evaluated by quantitative PCR. The erythropoietin (EPO) protein was also used to assess the stronger IRES. The results showed that IRES from human rhinovirus (HRV) exhibited the highest EGFP expression level under transient and stable transfections. The EGFP expression level of vector with IRES from HRV was related to the gene copy number in stably transfected CHO-S cells. Moreover, IRES from HRV induced higher expression level of EPO compared with one mutant IRES from EMCV in transfected cells. In conclusion, IRES from HRV can function as a strong IRES element for stable expression in CHO-S cells, which could potentially guide more effective foreign gene expression in CHO-S cells.
Collapse
|
32
|
Martinez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Embarek AM. Insights into Structural and Mechanistic Features of Viral IRES Elements. Front Microbiol 2018; 8:2629. [PMID: 29354113 PMCID: PMC5759354 DOI: 10.3389/fmicb.2017.02629] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 01/19/2023] Open
Abstract
Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.
Collapse
Affiliation(s)
- Encarnacion Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| | - Azman M Embarek
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
33
|
Chen SG, Leu YL, Cheng ML, Ting SC, Liu CC, Wang SD, Yang CH, Hung CY, Sakurai H, Chen KH, Ho HY. Anti-enterovirus 71 activities of Melissa officinalis extract and its biologically active constituent rosmarinic acid. Sci Rep 2017; 7:12264. [PMID: 28947773 PMCID: PMC5613005 DOI: 10.1038/s41598-017-12388-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/07/2017] [Indexed: 01/22/2023] Open
Abstract
Enterovirus 71 (EV71) infection is endemic in the Asia-Pacific region. No specific antiviral drug has been available to treat EV71 infection. Melissa officinalis (MO) is a medicinal plant with long history of usage in the European and Middle East. We investigated whether an aqueous solution of concentrated methanolic extract (MOM) possesses antiviral activity. MOM inhibited plaque formation, cytopathic effect, and viral protein synthesis in EV71-infected cells. Using spectral techniques, we identified rosmarinic acid (RA) as a biologically active constituent of MOM. RA reduced viral attachment and entry; cleavage of eukaryotic translation initiation factor 4 G (eIF4G); reactive oxygen species (ROS) generation; and translocation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) from nucleus to cytoplasm. It alleviated EV71-induced hyperphosphorylation of p38 kinase and EPS15. RA is likely to suppress ROS-mediated p38 kinase activation, and such downstream molecular events as hnRNP A1 translocation and EPS15-regulated membrane trafficking in EV71-infected cells. These findings suggest that MO and its constituent RA possess anti-EV71 activities, and may serve as a candidate drug for therapeutic and prophylactic uses against EV71 infection.
Collapse
Affiliation(s)
- Sin-Guang Chen
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
| | - Siew Chin Ting
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Shulhn-Der Wang
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Cheng-Hung Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Cheng-Yu Hung
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Hiroaki Sakurai
- Department of Cancer Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital, Chang Gung University, School of Medicine, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan.
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
34
|
Tolbert M, Morgan CE, Pollum M, Crespo-Hernández CE, Li ML, Brewer G, Tolbert BS. HnRNP A1 Alters the Structure of a Conserved Enterovirus IRES Domain to Stimulate Viral Translation. J Mol Biol 2017; 429:2841-2858. [PMID: 28625847 PMCID: PMC5610934 DOI: 10.1016/j.jmb.2017.06.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 01/25/2023]
Abstract
Enteroviruses use a type I Internal Ribosome Entry Site (IRES) structure to facilitate protein synthesis and promote genome replication. Type I IRES elements require auxiliary host proteins to organize RNA structure for 40S ribosomal subunit assembly. Heterogeneous nuclear ribonucleoprotein A1 stimulates enterovirus 71 (EV71) translation in part through specific interactions with its stem loop II (SLII) IRES domain. Here, we determined a conjoined NMR-small angle x-ray scattering structure of the EV71 SLII domain and a mutant that significantly attenuates viral replication by abrogating hnRNP A1 interactions. Native SLII adopts a locally compact structure wherein stacking interactions in a conserved 5'-AUAGC-3' bulge preorganize the adjacent helices at nearly orthogonal orientations. Mutating the bulge sequence to 5'-ACCCC-3' ablates base stacking in the loop and globally reorients the SLII structure. Biophysical titrations reveal that the 5'-AUAGC-3' bulge undergoes a conformational change to assemble a functional hnRNP A1-RNA complex. Importantly, IRES mutations that delete the bulge impair viral translation and completely inhibit replication. Thus, this work provides key details into how an EV71 IRES structure adapts to hijack a cellular protein, and it suggests that the SLII domain is a potential target for antiviral therapy.
Collapse
Affiliation(s)
- Michele Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | - Christopher E Morgan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | - Marvin Pollum
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA
| | | | - Mei-Ling Li
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854 USA
| | - Gary Brewer
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, 08854 USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, 44106-7078 USA.
| |
Collapse
|
35
|
Antiviral activities of Schizonepeta tenuifolia Briq. against enterovirus 71 in vitro and in vivo. Sci Rep 2017; 7:935. [PMID: 28428548 PMCID: PMC5430552 DOI: 10.1038/s41598-017-01110-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/23/2017] [Indexed: 12/31/2022] Open
Abstract
No effective drug is currently available for treatment of enterovirus 71 (EV71) infection. Schizonepeta tenuifolia Briq. (ST) has been used as a herbal constituent of traditional Chinese medicine. We studied whether the aqueous extract of Schizonepeta tenuifolia Briq (STE) has antiviral activity. STE inhibited replication of EV71, as evident by its ability to diminish plaque formation and cytopathic effect induced by EV71, and to inhibit the synthesis of viral RNA and protein. Moreover, daily single-dose STE treatment significantly improved the survival of EV71-infected mice, and ameliorated the symptoms. Mechanistically, STE exerts multiple effects on enteroviral infection. Treatment with STE reduced viral attachment and entry; the cleavage of eukaryotic translation initiation factor 4 G (eIF4G) by EV71 protease, 2Apro; virus-induced reactive oxygen species (ROS) formation; and relocation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) from the nucleus to the cytoplasm. It was accompanied by a decline in EV71-associated hyperphosphorylation of p38 kinase and EPS15. It is plausible that STE may inhibit ROS-induced p38 kinase activation, and subsequent hnRNP A1 relocation and EPS15-mediated membrane trafficking in infected cells. These findings suggest that STE possesses anti-EV71 activities, and may serve as health food or candidate antiviral drug for protection against EV71.
Collapse
|
36
|
Diverse Strategies Used by Picornaviruses to Escape Host RNA Decay Pathways. Viruses 2016; 8:v8120335. [PMID: 27999393 PMCID: PMC5192396 DOI: 10.3390/v8120335] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
To successfully replicate, viruses protect their genomic material from degradation by the host cell. RNA viruses must contend with numerous destabilizing host cell processes including mRNA decay pathways and viral RNA (vRNA) degradation resulting from the antiviral response. Members of the Picornaviridae family of small RNA viruses have evolved numerous diverse strategies to evade RNA decay, including incorporation of stabilizing elements into vRNA and re-purposing host stability factors. Viral proteins are deployed to disrupt and inhibit components of the decay machinery and to redirect decay machinery to the advantage of the virus. This review summarizes documented interactions of picornaviruses with cellular RNA decay pathways and processes.
Collapse
|
37
|
Viktorovskaya OV, Greco TM, Cristea IM, Thompson SR. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements. PLoS Negl Trop Dis 2016; 10:e0004921. [PMID: 27556644 PMCID: PMC4996428 DOI: 10.1371/journal.pntd.0004921] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/22/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses) replication. METHODOLOGY/PRINCIPAL FINDINGS Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated. CONCLUSIONS/SIGNIFICANCE The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps cellular proteins for efficient amplification.
Collapse
Affiliation(s)
- Olga V. Viktorovskaya
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sunnie R. Thompson
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
38
|
Li Z, Liu X, Wang S, Li J, Hou M, Liu G, Zhang W, Yu XF. Identification of a nucleotide in 5' untranslated region contributing to virus replication and virulence of Coxsackievirus A16. Sci Rep 2016; 6:20839. [PMID: 26861413 PMCID: PMC4748407 DOI: 10.1038/srep20839] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/13/2016] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A16 (CA16) and enterovirus 71 (EV71) are two main causative pathogens of hand, foot and mouth disease (HFMD). Unlike EV71, virulence determinants of CA16, particularly within 5' untranslated region (5'UTR), have not been investigated until now. Here, a series of nucleotides present in 5'UTR of lethal but not in non-lethal CA16 strains were screened by aligning nucleotide sequences of lethal circulating Changchun CA16 and the prototype G10 as well as non-lethal SHZH05 strains. A representative infectious clone based on a lethal Changchun024 sequence and infectious mutants with various nucleotide alterations in 5'UTR were constructed and further investigated by assessing virus replication in vitro and virulence in neonatal mice. Compared to the lethal infectious clone, the M2 mutant with a change from cytosine to uracil at nucleotide 104 showed weaker virulence and lower replication capacity. The predicted secondary structure of the 5'UTR of CA16 RNA showed that M2 mutant located between the cloverleaf and stem-loop II, affected interactions between the 5'UTR and the heterogeneous nuclear ribonucleoprotein K (hnRNP K) and A1 (hnRNP A1) that are important for translational activity. Thus, our research determined a virulence-associated site in the 5'UTR of CA16, providing a crucial molecular target for antiviral drug development.
Collapse
Affiliation(s)
- Zhaolong Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China.,College of Life Science, Jilin University, Changchun, Jilin Province, China
| | - Xin Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Shaohua Wang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Jingliang Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Min Hou
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Guanchen Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China.,College of Life Science, Jilin University, Changchun, Jilin Province, China
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, Changchun, Jilin Province, China
| |
Collapse
|
39
|
Ji P, Chen C, Hu Y, Zhan Z, Pan W, Li R, Li E, Ge HM, Yang G. Antiviral activity of Paulownia tomentosa against enterovirus 71 of hand, foot, and mouth disease. Biol Pharm Bull 2015; 38:1-6. [PMID: 25744451 DOI: 10.1248/bpb.b14-00357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bark, leaves, and flowers of Paulownia trees have been used in traditional Chinese medicine to treat infectious and inflammatory diseases. We investigated the antiviral effects of Paulownia tomentosa flowers, an herbal medicine used in some provinces of P. R. China for the treatment of skin rashes and blisters. Dried flowers of P. tomentosa were extracted with methanol and tested for antiviral activity against enterovirus 71 (EV71) and coxsackievirus A16 (CAV16), the predominant etiologic agents of hand, foot, and mouth disease in P. R. China. The extract inhibited EV71 infection, although no effect was detected against CAV16 infection. Bioactivity-guided fractionation was performed to identify apigenin as an active component of the flowers. The EC50 value for apigenin to block EV71 infection was 11.0 µM, with a selectivity index of approximately 9.3. Although it is a common dietary flavonoid, only apigenin, and not similar compounds like naringenin and quercetin, were active against EV71 infection. As an RNA virus, the genome of EV71 has an internal ribosome entry site that interacts with heterogeneous nuclear ribonucleoproteins (hnRNPs) and regulates viral translation. Cross-linking followed by immunoprecipitation and reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that EV71 RNA was associated with hnRNPs A1 and A2. Apigenin treatment disrupted this association, indicating that apigenin suppressed EV71 replication through a novel mechanism by targeting the trans-acting factors. This study therefore validates the effects of Paulownia against EV71 infection. It also yielded mechanistic insights on apigenin as an active compound for the antiviral activity of P. tomentosa against EV71 infection.
Collapse
Affiliation(s)
- Ping Ji
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University; 72 Guangzhou Road, Nanjing 210008, People’s Republic of China; Nanjing Children's Hospital Affiliated with Nanjing Medical University; Nanjing, People’s Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Morgan CE, Meagher JL, Levengood JD, Delproposto J, Rollins C, Stuckey JA, Tolbert BS. The First Crystal Structure of the UP1 Domain of hnRNP A1 Bound to RNA Reveals a New Look for an Old RNA Binding Protein. J Mol Biol 2015; 427:3241-3257. [PMID: 26003924 PMCID: PMC4586317 DOI: 10.1016/j.jmb.2015.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/29/2015] [Accepted: 05/15/2015] [Indexed: 01/01/2023]
Abstract
The heterogeneous nuclear ribonucleoprotein (hnRNP) A1 protein is a multifunctional RNA binding protein implicated in a wide range of biological functions. Mechanisms and putative hnRNP A1-RNA interactions have been inferred primarily from the crystal structure of its UP1 domain bound to ssDNA. RNA stem loops represent an important class of known hnRNP A1 targets, yet little is known about the structural basis of hnRNP A1-RNA recognition. Here, we report the first high-resolution structure (1.92Å) of UP1 bound to a 5'-AGU-3' trinucleotide that resembles sequence elements of several native hnRNP A1-RNA stem loop targets. UP1 interacts specifically with the AG dinucleotide sequence via a "nucleobase pocket" formed by the β-sheet surface of RRM1 and the inter-RRM linker; RRM2 does not contact the RNA. The inter-RRM linker forms the lid of the nucleobase pocket and we show using structure-guided mutagenesis that the conserved salt-bridge interactions (R75:D155 and R88:D157) on the α-helical side of the RNA binding surface stabilize the linker in a geometry poised to bind RNA. We further investigated the structural basis of UP1 binding HIViSL3(ESS3) by determining a structural model of the complex scored by small-angle X-ray scattering. UP1 docks on the apical loop of SL3(ESS3) using its RRM1 domain and inter-RRM linker only. The biophysical implications of the structural model were tested by measuring kinetic binding parameters, where mutations introduced within the apical loop reduce binding affinities by slowing down the rate of complex formation. Collectively, the data presented here provide the first insights into hnRNP A1-RNA interactions.
Collapse
Affiliation(s)
- Christopher E Morgan
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jennifer L Meagher
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey D Levengood
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - James Delproposto
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carrie Rollins
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
41
|
Hexokinase 2 controls cellular stress response through localization of an RNA-binding protein. Cell Death Dis 2015; 6:e1837. [PMID: 26247723 PMCID: PMC4558502 DOI: 10.1038/cddis.2015.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/26/2015] [Accepted: 06/30/2015] [Indexed: 01/15/2023]
Abstract
Subcellular localization of RNA-binding proteins is a key determinant of their ability to control RNA metabolism and cellular stress response. Using an RNAi-based kinome-wide screen, we identified hexokinase 2 (HK2) as a regulator of the cytoplasmic accumulation of hnRNP A1 in response to hypertonic stress and human rhinovirus infection (HRV). We show that inhibition of HK2 expression or pharmacological inhibition of HK2 activity blocks the cytoplasmic accumulation of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), restores expression of B-cell lymphoma-extra large (Bcl-xL), and protects cells against hypertonic stress-induced apoptosis. Reduction of HK2 protein levels by knockdown results in decreased HRV replication, a delay in HRV-induced cell death, and a reduced number of infected cells, all of which can be rescued by forced expression of a cytoplasm-restricted hnRNP A1. Our data elucidate a novel role for HK2 in cellular stress response and viral infection that could be exploited for therapeutic intervention.
Collapse
|
42
|
Brunetti JE, Scolaro LA, Castilla V. The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication. Virus Res 2015; 203:84-91. [DOI: 10.1016/j.virusres.2015.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 02/05/2023]
|
43
|
Martínez-Salas E, Francisco-Velilla R, Fernandez-Chamorro J, Lozano G, Diaz-Toledano R. Picornavirus IRES elements: RNA structure and host protein interactions. Virus Res 2015; 206:62-73. [PMID: 25617758 DOI: 10.1016/j.virusres.2015.01.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/26/2023]
Abstract
Internal ribosome entry site (IRES) elements were discovered in picornaviruses. These elements are cis-acting RNA sequences that adopt diverse three-dimensional structures and recruit the translation machinery using a 5' end-independent mechanism assisted by a subset of translation initiation factors and various RNA binding proteins termed IRES transacting factors (ITAFs). Many of these factors suffer important modifications during infection including cleavage by picornavirus proteases, changes in the phosphorylation level and/or redistribution of the protein from the nuclear to the cytoplasm compartment. Picornavirus IRES are amongst the most potent elements described so far. However, given their large diversity and complexity, the mechanistic basis of its mode of action is not yet fully understood. This review is focused to describe recent advances on the studies of RNA structure and RNA-protein interactions modulating picornavirus IRES activity.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain.
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Gloria Lozano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| | - Rosa Diaz-Toledano
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas - Universidad Autónoma de Madrid, Nicolas Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
44
|
Apigenin inhibits enterovirus-71 infection by disrupting viral RNA association with trans-acting factors. PLoS One 2014; 9:e110429. [PMID: 25330384 PMCID: PMC4199717 DOI: 10.1371/journal.pone.0110429] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/14/2014] [Indexed: 12/21/2022] Open
Abstract
Flavonoids are widely distributed natural products with broad biological activities. Apigenin is a dietary flavonoid that has recently been demonstrated to interact with heterogeneous nuclear ribonucleoproteins (hnRNPs) and interferes with their RNA editing activity. We investigated whether apigenin possessed antiviral activity against enterovirus-71 (EV71) infection since EV71 infection requires of hnRNP proteins. We found that apigenin selectively blocks EV71 infection by disrupting viral RNA association with hnRNP A1 and A2 proteins. The estimated EC50 value for apigenin to block EV71 infection was determined at 10.3 µM, while the CC50 was estimated at 79.0 µM. The anti-EV71 activity was selective since no activity was detected against several DNA and RNA viruses. Although flavonoids in general share similar structural features, apigenin and kaempferol were among tested compounds with significant activity against EV71 infection. hnRNP proteins function as trans-acting factors regulating EV71 translation. We found that apigenin treatment did not affect EV71-induced nucleocytoplasmic redistribution of hnRNP A1 and A2 proteins. Instead, it prevented EV71 RNA association with hnRNP A1 and A2 proteins. Accordingly, suppression of hnRNP A1 and A2 expression markedly reduced EV71 infection. As a positive sense, single strand RNA virus, EV71 has a type I internal ribosome entry site (IRES) that cooperates with host factors and regulates EV71 translation. The effect of apigenin on EV71 infection was further demonstrated using a bicistronic vector that has the expression of a GFP protein under the control of EV71 5′-UTR. We found that apigenin treatment selectively suppressed the expression of GFP, but not a control gene. In addition to identification of apigenin as an antiviral agent against EV71 infection, this study also exemplifies the significance in antiviral agent discovery by targeting host factors essential for viral replication.
Collapse
|
45
|
Lin JY, Li ML, Brewer G. mRNA decay factor AUF1 binds the internal ribosomal entry site of enterovirus 71 and inhibits virus replication. PLoS One 2014; 9:e103827. [PMID: 25077793 PMCID: PMC4117571 DOI: 10.1371/journal.pone.0103827] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/07/2014] [Indexed: 02/05/2023] Open
Abstract
AU-rich element binding factor 1 (AUF1) has a role in the replication cycles of different viruses. Here we demonstrate that AUF1 binds the internal ribosome entry site (IRES) of enterovirus 71 (EV71) and negatively regulates IRES-dependent translation. During EV71 infection, AUF1 accumulates in the cytoplasm where viral replication occurs, whereas AUF1 localizes predominantly in the nucleus in mock-infected cells. AUF1 knockdown in infected cells increases IRES activity and synthesis of viral proteins. Taken together, the results suggest that AUF1 interacts with the EV71 IRES to negatively regulate viral translation and replication.
Collapse
Affiliation(s)
- Jing-Yi Lin
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Mei-Ling Li
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Gary Brewer
- Department of Biochemistry & Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| |
Collapse
|
46
|
Viral subversion of the nuclear pore complex. Viruses 2013; 5:2019-42. [PMID: 23959328 PMCID: PMC3761240 DOI: 10.3390/v5082019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/08/2013] [Indexed: 12/17/2022] Open
Abstract
The nuclear pore complex (NPC) acts as a selective barrier between the nucleus and the cytoplasm and is responsible for mediating communication by regulating the transport of RNA and proteins. Numerous viral pathogens have evolved different mechanisms to hijack the NPC in order to regulate trafficking of viral proteins, genomes and even capsids into and out of the nucleus thus promoting virus replication. The present review examines the different strategies and the specific nucleoporins utilized during viral infections as a means of promoting their life cycle and inhibiting host viral defenses.
Collapse
|