1
|
Hayward B, Kumari D, Santra S, van Karnebeek CDM, van Kuilenburg ABP, Usdin K. All three MutL complexes are required for repeat expansion in a human stem cell model of CAG-repeat expansion mediated glutaminase deficiency. Sci Rep 2024; 14:13772. [PMID: 38877099 PMCID: PMC11178883 DOI: 10.1038/s41598-024-64480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~ 120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLβ, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.
Collapse
Affiliation(s)
- Bruce Hayward
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daman Kumari
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham, B15 2TG, UK
| | - Clara D M van Karnebeek
- Emma Center for Personalized Medicine, Departments of Pediatrics and Human Genetics, Amsterdam Gastro-Enterology Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- United for Metabolic Diseases, Amsterdam, The Netherlands
| | - André B P van Kuilenburg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen Usdin
- Section On Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Hayward B, Kumari D, Santra S, van Karnebeek CD, van Kuilenburg AB, Usdin K. All three MutL complexes are required for repeat expansion in a human stem cell model of CAG-repeat expansion mediated glutaminase deficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.26.573357. [PMID: 38260514 PMCID: PMC10802475 DOI: 10.1101/2023.12.26.573357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The Repeat Expansion Diseases (REDs) arise from the expansion of a disease-specific short tandem repeat (STR). Different REDs differ with respect to the repeat involved, the cells that are most expansion prone and the extent of expansion. Furthermore, whether these diseases share a common expansion mechanism is unclear. To date, expansion has only been studied in a limited number of REDs. Here we report the first studies of the expansion mechanism in induced pluripotent stem cells derived from a patient with a form of the glutaminase deficiency disorder known as Global Developmental Delay, Progressive Ataxia, And Elevated Glutamine (GDPAG; OMIM# 618412) caused by the expansion of a CAG-STR in the 5' UTR of the glutaminase (GLS) gene. We show that alleles with as few as ~120 repeats show detectable expansions in culture despite relatively low levels of R-loops formed at this locus. Additionally, using a CRISPR-Cas9 knockout approach we show that PMS2 and MLH3, the constituents of MutLα and MutLγ, the 2 mammalian MutL complexes known to be involved in mismatch repair (MMR), are essential for expansion. Furthermore, PMS1, a component of a less well understood MutL complex, MutLβ, is also important, if not essential, for repeat expansion in these cells. Our results provide insights into the factors important for expansion and lend weight to the idea that, despite some differences, the same mechanism is responsible for expansion in many, if not all, REDs.
Collapse
Affiliation(s)
- Bruce Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Saikat Santra
- Birmingham Women's and Children's NHS Foundation Trust, Birmingham B15 2TG, United Kingdom
| | - Clara D.M. van Karnebeek
- Amsterdam UMC location University of Amsterdam, Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastroenterology Endocrinology Metabolism, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
- United for Metabolic Diseases, The Netherlands
| | - André B.P. van Kuilenburg
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Westover KR, Jin P, Yao B. Bridging the gap: R-loop mediated genomic instability and its implications in neurological diseases. Epigenomics 2024; 16:589-608. [PMID: 38530068 PMCID: PMC11160457 DOI: 10.2217/epi-2023-0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
R-loops, intricate three-stranded structures formed by RNA-DNA hybrids and an exposed non-template DNA strand, are fundamental to various biological phenomena. They carry out essential and contrasting functions within cellular mechanisms, underlining their critical role in maintaining cellular homeostasis. The specific cellular context that dictates R-loop formation determines their function, particularly emphasizing the necessity for their meticulous genomic regulation. Notably, the aberrant formation or misregulation of R-loops is implicated in numerous neurological disorders. This review focuses on the complex interactions between R-loops and double-strand DNA breaks, exploring how R-loop dysregulation potentially contributes to the pathogenesis of various brain disorders, which could provide novel insights into the molecular mechanisms underpinning neurological disease progression and identify potential therapeutic targets by highlighting these aspects.
Collapse
Affiliation(s)
- Katherine R Westover
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University, School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Krasilnikova MM, Humphries CL, Shinsky EM. Friedreich's ataxia: new insights. Emerg Top Life Sci 2023; 7:313-323. [PMID: 37698160 DOI: 10.1042/etls20230017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Friedreich ataxia (FRDA) is an inherited disease that is typically caused by GAA repeat expansion within the first intron of the FXN gene coding for frataxin. This results in the frataxin deficiency that affects mostly muscle, nervous, and cardiovascular systems with progressive worsening of the symptoms over the years. This review summarizes recent progress that was achieved in understanding of molecular mechanism of the disease over the last few years and latest treatment strategies focused on overcoming the frataxin deficiency.
Collapse
Affiliation(s)
- Maria M Krasilnikova
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Casey L Humphries
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| | - Emily M Shinsky
- Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, U.S.A
| |
Collapse
|
5
|
Gambelli A, Ferrando A, Boncristiani C, Schoeftner S. Regulation and function of R-loops at repetitive elements. Biochimie 2023; 214:141-155. [PMID: 37619810 DOI: 10.1016/j.biochi.2023.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/13/2023] [Accepted: 08/19/2023] [Indexed: 08/26/2023]
Abstract
R-loops are atypical, three-stranded nucleic acid structures that contain a stretch of RNA:DNA hybrids and an unpaired, single stranded DNA loop. R-loops are physiological relevant and can act as regulators of gene expression, chromatin structure, DNA damage repair and DNA replication. However, unscheduled and persistent R-loops are mutagenic and can mediate replication-transcription conflicts, leading to DNA damage and genome instability if left unchecked. Detailed transcriptome analysis unveiled that 85% of the human genome, including repetitive regions, hold transcriptional activity. This anticipates that R-loops management plays a central role for the regulation and integrity of genomes. This function is expected to have a particular relevance for repetitive sequences that make up to 75% of the human genome. Here, we review the impact of R-loops on the function and stability of repetitive regions such as centromeres, telomeres, rDNA arrays, transposable elements and triplet repeat expansions and discuss their relevance for associated pathological conditions.
Collapse
Affiliation(s)
- Alice Gambelli
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Alessandro Ferrando
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Chiara Boncristiani
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy
| | - Stefan Schoeftner
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Via E. Weiss 2, 34127, Trieste, Italy.
| |
Collapse
|
6
|
Thongthip S, Carlson A, Crossley MP, Schwer B. Relationships between genome-wide R-loop distribution and classes of recurrent DNA breaks in neural stem/progenitor cells. Sci Rep 2022; 12:13373. [PMID: 35927309 PMCID: PMC9352722 DOI: 10.1038/s41598-022-17452-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Recent studies revealed classes of recurrent DNA double-strand breaks (DSBs) in neural stem/progenitor cells, including transcription-associated, promoter-proximal breaks and recurrent DSB clusters in late-replicating, long neural genes that may give rise to somatic brain mosaicism. The mechanistic factors promoting these different classes of DSBs in neural stem/progenitor cells are not understood. Here, we elucidated the genome-wide landscape of RNA:DNA hybrid structures called “R-loops” in primary neural stem/progenitor cells undergoing aphidicolin-induced, mild replication stress to assess the potential contribution of R-loops to the different, recurrent classes of DNA break “hotspots”. We find that R-loops in neural stem/progenitor cells undergoing mild replication stress are present primarily in early-replicating, transcribed regions and in genes with promoter GC skew that are associated with cell lineage-specific processes. Surprisingly, most long, neural genes that form recurrent DSB clusters do not show R-loop formation under conditions of mild replication stress. Our findings are consistent with a role of R-loop-associated processes in promoter-proximal DNA break formation in highly transcribed, early replicating regions but suggest that R-loops do not drive replication stress-induced, recurrent DSB cluster formation in most long, neural genes.
Collapse
Affiliation(s)
- Supawat Thongthip
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Annika Carlson
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA.,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA.,Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Magdalena P Crossley
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bjoern Schwer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA. .,Bakar Aging Research Institute, University of California, San Francisco, CA, USA. .,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, USA. .,Weill Institute for Neuroscience, University of California, San Francisco, CA, USA. .,Department of Neurological Surgery, University of California, San Francisco, CA, USA.
| |
Collapse
|
7
|
Liang J, Cui Z, Wu C, Yu Y, Tian R, Xie H, Jin Z, Fan W, Xie W, Huang Z, Xu W, Zhu J, You Z, Guo X, Qiu X, Ye J, Lang B, Li M, Tan S, Hu Z. DeepEBV: A deep learning model to predict Epstein-Barr virus (EBV) integration sites. Bioinformatics 2021; 37:3405-3411. [PMID: 34009299 DOI: 10.1093/bioinformatics/btab388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Epstein-Barr virus (EBV) is one of the most prevalent DNA oncogenic viruses. The integration of EBV into the host genome has been reported to play an important role in cancer development. The preference of EBV integration showed strong dependence on the local genomic environment, which enables the prediction of EBV integration sites. RESULTS An attention-based deep learning model, DeepEBV, was developed to predict EBV integration sites by learning local genomic features automatically. First, DeepEBV was trained and tested using the data from the dsVIS database. The results showed that DeepEBV with EBV integration sequences plus Repeat peaks and 2 fold data augmentation performed the best on the training dataset. Furthermore, the performance of the model was validated in an independent dataset. In addition, the motifs of DNA-binding proteins could influence the selection preference of viral insertional mutagenesis. Furthermore, the results showed that DeepEBV can predict EBV integration hotspot genes accurately. In summary, DeepEBV is a robust, accurate and explainable deep learning model, providing novel insights into EBV integration preferences and mechanisms. AVAILABILITY DeepEBV is available as open-source software and can be downloaded from https://github.com/JiuxingLiang/DeepEBV.gitSupplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jiuxing Liang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Zifeng Cui
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Canbiao Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Yao Yu
- Department of Urology, The First Medical Center of Chinese PLA General Hospital, Beijing 100853 China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Rui Tian
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hongxian Xie
- STech Company Bio-X Lab, Zhuhai 519000, Guangdong, China
| | - Zhuang Jin
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Weiwen Fan
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Weiling Xie
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhaoyue Huang
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Wei Xu
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Jingjing Zhu
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zeshan You
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Xiaofang Guo
- Department of Medical Oncology of the Eastern Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510700, China
| | - Xiaofan Qiu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China
| | - Jiahao Ye
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou 510631, China.,School of Computer Science, South China Normal University, Guangzhou 510631, China
| | - Bin Lang
- School of Health Sciences and Sports, Macao Polytechnic Institute, China
| | - Mengyuan Li
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Songwei Tan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Hu
- Department of Gynaecological oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Department of Obstetrics and Gynaecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| |
Collapse
|
8
|
Balzano E, Pelliccia F, Giunta S. Genome (in)stability at tandem repeats. Semin Cell Dev Biol 2020; 113:97-112. [PMID: 33109442 DOI: 10.1016/j.semcdb.2020.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/26/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
Repeat sequences account for over half of the human genome and represent a significant source of variation that underlies physiological and pathological states. Yet, their study has been hindered due to limitations in short-reads sequencing technology and difficulties in assembly. A important category of repetitive DNA in the human genome is comprised of tandem repeats (TRs), where repetitive units are arranged in a head-to-tail pattern. Compared to other regions of the genome, TRs carry between 10 and 10,000 fold higher mutation rate. There are several mutagenic mechanisms that can give rise to this propensity toward instability, but their precise contribution remains speculative. Given the high degree of homology between these sequences and their arrangement in tandem, once damaged, TRs have an intrinsic propensity to undergo aberrant recombination with non-allelic exchange and generate harmful rearrangements that may undermine the stability of the entire genome. The dynamic mutagenesis at TRs has been found to underlie individual polymorphism associated with neurodegenerative and neuromuscular disorders, as well as complex genetic diseases like cancer and diabetes. Here, we review our current understanding of the surveillance and repair mechanisms operating within these regions, and we describe how alterations in these protective processes can readily trigger mutational signatures found at TRs, ultimately resulting in the pathological correlation between TRs instability and human diseases. Finally, we provide a viewpoint to counter the detrimental effects that TRs pose in light of their selection and conservation, as important drivers of human evolution.
Collapse
Affiliation(s)
- Elisa Balzano
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Franca Pelliccia
- Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy
| | - Simona Giunta
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, 00185 Roma, Italy.
| |
Collapse
|
9
|
Katahira J, Senokuchi K, Hieda M. Human THO maintains the stability of repetitive DNA. Genes Cells 2020; 25:334-342. [PMID: 32065701 DOI: 10.1111/gtc.12760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/31/2023]
Abstract
The evolutionarily conserved multiprotein complex THO/TREX is required for pre-mRNA processing, mRNA export and the maintenance of genome stability. In this study, we analyzed the genome-wide distribution of human THOC7, a component of human THO, by chromatin immunoprecipitation sequencing. The analysis revealed that human THOC7 occupies repetitive sequences, which include microsatellite repeats in genic and intergenic regions and telomeric repeats. The majority of the THOC7 ChIP peaks overlapped with those of the elongating form of RNA polymerase II and R-loops, indicating that THOC7 accumulates in transcriptionally active repeat regions. Knocking down THOC5, an RNA-binding component of human THO, by siRNA induced the accumulation of γH2AX in the repeat regions. We also observed an aberration in the telomeres in the THOC5-depleted condition. These results suggest that human THO restrains the transcription-associated instability of repeat regions in the human genome.
Collapse
Affiliation(s)
- Jun Katahira
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Kohei Senokuchi
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Sciences, Osaka Prefecture University, Izumisano, Japan
| | - Miki Hieda
- Graduate School of Health Sciences, Ehime Prefectural University of Health Sciences, Iyo-gun, Japan
| |
Collapse
|
10
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
11
|
Neil AJ, Liang MU, Khristich AN, Shah KA, Mirkin SM. RNA-DNA hybrids promote the expansion of Friedreich's ataxia (GAA)n repeats via break-induced replication. Nucleic Acids Res 2019; 46:3487-3497. [PMID: 29447396 PMCID: PMC5909440 DOI: 10.1093/nar/gky099] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/05/2018] [Indexed: 12/21/2022] Open
Abstract
Expansion of simple DNA repeats is responsible for numerous hereditary diseases in humans. The role of DNA replication, repair and transcription in the expansion process has been well documented. Here we analyzed, in a yeast experimental system, the role of RNA–DNA hybrids in genetic instability of long (GAA)n repeats, which cause Friedreich’s ataxia. Knocking out both yeast RNase H enzymes, which counteract the formation of RNA–DNA hybrids, increased (GAA)n repeat expansion and contraction rates when the repetitive sequence was transcribed. Unexpectedly, we observed a similar increase in repeat instability in RNase H-deficient cells when we either changed the direction of transcription-replication collisions, or flipped the repeat sequence such that the (UUC)n run occurred in the transcript. The increase in repeat expansions in RNase H-deficient strains was dependent on Rad52 and Pol32 proteins, suggesting that break-induced replication (BIR) is responsible for this effect. We conclude that expansions of (GAA)n repeats are induced by the formation of RNA–DNA hybrids that trigger BIR. Since this stimulation is independent of which strand of the repeat (homopurine or homopyrimidine) is in the RNA transcript, we hypothesize that triplex H-DNA structures stabilized by an RNA–DNA hybrid (H-loops), rather than conventional R-loops, could be responsible.
Collapse
Affiliation(s)
- Alexander J Neil
- Department of Biology, Tufts University, Medford, MA 02155, USA.,Genetics Program, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Miranda U Liang
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | | | - Kartik A Shah
- Department of Biology, Tufts University, Medford, MA 02155, USA
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
12
|
Abstract
R loops are transient three-stranded nucleic acid structures that form physiologically during transcription when a nascent RNA transcript hybridizes with the DNA template strand, leaving a single strand of displaced nontemplate DNA. However, aberrant persistence of R-loops can cause DNA damage by inducing genomic instability. Indeed, evidence has emerged that R-loops might represent a key element in the pathogenesis of human diseases, including cancer, neurodegeneration, and motor neuron disorders. Mutations in genes directly involved in R-loop biology, such as SETX (senataxin), or unstable DNA expansion eliciting R-loop generation, such as C9ORF72 HRE, can cause DNA damage and ultimately result in motor neuron cell death. In this review, we discuss current advancements in this field with a specific focus on motor neuron diseases associated with deregulation of R-loop structures. These mechanisms can represent novel therapeutic targets for these devastating, incurable diseases.
Collapse
|
13
|
Richard P, Manley JL. R Loops and Links to Human Disease. J Mol Biol 2016; 429:3168-3180. [PMID: 27600412 DOI: 10.1016/j.jmb.2016.08.031] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 12/13/2022]
Abstract
Aberrant R-loop structures are increasingly being realized as an important contributor to human disease. R loops, which are mainly co-transcriptional, abundant RNA/DNA hybrids, form naturally and can indeed be beneficial for transcription regulation at certain loci. However, their unwanted persistence elsewhere or in particular situations can lead to DNA double-strand breaks, chromosome rearrangements, and hypermutation, which are all sources of genomic instability. Mutations in genes involved in R-loop resolution or mutations leading to R-loop formation at specific genes affect the normal physiology of the cell. We discuss here the examples of diseases for which a link with R loops has been described, as well as how disease-causing mutations might participate in the development and/or progression of diseases that include repeat-associated conditions, other neurological disorders, and cancers.
Collapse
Affiliation(s)
- Patricia Richard
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Shimada MK, Sanbonmatsu R, Yamaguchi-Kabata Y, Yamasaki C, Suzuki Y, Chakraborty R, Gojobori T, Imanishi T. Selection pressure on human STR loci and its relevance in repeat expansion disease. Mol Genet Genomics 2016; 291:1851-69. [PMID: 27290643 DOI: 10.1007/s00438-016-1219-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Accepted: 05/21/2016] [Indexed: 12/30/2022]
Abstract
Short Tandem Repeats (STRs) comprise repeats of one to several base pairs. Because of the high mutability due to strand slippage during DNA synthesis, rapid evolutionary change in the number of repeating units directly shapes the range of repeat-number variation according to selection pressure. However, the remaining questions include: Why are STRs causing repeat expansion diseases maintained in the human population; and why are these limited to neurodegenerative diseases? By evaluating the genome-wide selection pressure on STRs using the database we constructed, we identified two different patterns of relationship in repeat-number polymorphisms between DNA and amino-acid sequences, although both patterns are evolutionary consequences of avoiding the formation of harmful long STRs. First, a mixture of degenerate codons is represented in poly-proline (poly-P) repeats. Second, long poly-glutamine (poly-Q) repeats are favored at the protein level; however, at the DNA level, STRs encoding long poly-Qs are frequently divided by synonymous SNPs. Furthermore, significant enrichments of apoptosis and neurodevelopment were biological processes found specifically in genes encoding poly-Qs with repeat polymorphism. This suggests the existence of a specific molecular function for polymorphic and/or long poly-Q stretches. Given that the poly-Qs causing expansion diseases were longer than other poly-Qs, even in healthy subjects, our results indicate that the evolutionary benefits of long and/or polymorphic poly-Q stretches outweigh the risks of long CAG repeats predisposing to pathological hyper-expansions. Molecular pathways in neurodevelopment requiring long and polymorphic poly-Q stretches may provide a clue to understanding why poly-Q expansion diseases are limited to neurodegenerative diseases.
Collapse
Affiliation(s)
- Makoto K Shimada
- Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan. .,National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan. .,Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan.
| | - Ryoko Sanbonmatsu
- Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yumi Yamaguchi-Kabata
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, 980-8573, Japan
| | - Chisato Yamasaki
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Japan Biological Informatics Consortium, 10F TIME24 Building, 2-4-32 Aomi, Koto-ku, Tokyo, 135-8073, Japan
| | - Yoshiyuki Suzuki
- Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8501, Japan
| | - Ranajit Chakraborty
- Health Science Center, University of North Texas, 3500 Camp Bowie Blvd., Fort Worth, TX, 76107, USA
| | - Takashi Gojobori
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Computational Bioscience Research Center, King Abdullah University of Science and Technology, Ibn Al-Haytham Building (West), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Tadashi Imanishi
- National Institute of Advanced Industrial Science and Technology, 2-3-26 Aomi Koto-ku, Tokyo, 135-0064, Japan.,Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
15
|
Bacolla A, Tainer JA, Vasquez KM, Cooper DN. Translocation and deletion breakpoints in cancer genomes are associated with potential non-B DNA-forming sequences. Nucleic Acids Res 2016; 44:5673-88. [PMID: 27084947 PMCID: PMC4937311 DOI: 10.1093/nar/gkw261] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Gross chromosomal rearrangements (including translocations, deletions, insertions and duplications) are a hallmark of cancer genomes and often create oncogenic fusion genes. An obligate step in the generation of such gross rearrangements is the formation of DNA double-strand breaks (DSBs). Since the genomic distribution of rearrangement breakpoints is non-random, intrinsic cellular factors may predispose certain genomic regions to breakage. Notably, certain DNA sequences with the potential to fold into secondary structures [potential non-B DNA structures (PONDS); e.g. triplexes, quadruplexes, hairpin/cruciforms, Z-DNA and single-stranded looped-out structures with implications in DNA replication and transcription] can stimulate the formation of DNA DSBs. Here, we tested the postulate that these DNA sequences might be found at, or in close proximity to, rearrangement breakpoints. By analyzing the distribution of PONDS-forming sequences within ±500 bases of 19 947 translocation and 46 365 sequence-characterized deletion breakpoints in cancer genomes, we find significant association between PONDS-forming repeats and cancer breakpoints. Specifically, (AT)n, (GAA)n and (GAAA)n constitute the most frequent repeats at translocation breakpoints, whereas A-tracts occur preferentially at deletion breakpoints. Translocation breakpoints near PONDS-forming repeats also recur in different individuals and patient tumor samples. Hence, PONDS-forming sequences represent an intrinsic risk factor for genomic rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Albino Bacolla
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave., Houston, TX 77030, USA
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
16
|
Li Y, Lu Y, Polak U, Lin K, Shen J, Farmer J, Seyer L, Bhalla AD, Rozwadowska N, Lynch DR, Butler JS, Napierala M. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum Mol Genet 2015; 24:6932-43. [PMID: 26401053 PMCID: PMC4654050 DOI: 10.1093/hmg/ddv397] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/21/2015] [Indexed: 11/13/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe neurodegenerative disease caused by homozygous expansion of the guanine-adenine-adenine (GAA) repeats in intron 1 of the FXN gene leading to transcriptional repression of frataxin expression. Post-translational histone modifications that typify heterochromatin are enriched in the vicinity of the repeats, whereas active chromatin marks in this region are underrepresented in FRDA samples. Yet, the immediate effect of the expanded repeats on transcription progression through FXN and their long-range effect on the surrounding genomic context are two critical questions that remain unanswered in the molecular pathogenesis of FRDA. To address these questions, we conducted next-generation RNA sequencing of a large cohort of FRDA and control primary fibroblasts. This comprehensive analysis revealed that the GAA-induced silencing effect does not influence expression of neighboring genes upstream or downstream of FXN. Furthermore, no long-range silencing effects were detected across a large portion of chromosome 9. Additionally, results of chromatin immunoprecipitation studies confirmed that histone modifications associated with repressed transcription are confined to the FXN locus. Finally, deep sequencing of FXN pre-mRNA molecules revealed a pronounced defect in the transcription elongation rate in FRDA cells when compared with controls. These results indicate that approaches aimed to reactivate frataxin expression should simultaneously address deficits in transcription initiation and elongation at the FXN locus.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Urszula Polak
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA, Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, Poznan 60-806, Poland
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park, Smithville, TX 78957, USA
| | - Jennifer Farmer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Lauren Seyer
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Angela D Bhalla
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA
| | - Natalia Rozwadowska
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Institute of Human Genetics, Polish Academy of Science, Strzeszynska 32, Poznan 60-479, Poland
| | - David R Lynch
- Division of Neurology and Pediatrics, Children's Hospital of Philadelphia, Abramson Research Center Room 502, Philadelphia, PA 19104, USA
| | - Jill Sergesketter Butler
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA,
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, UAB Stem Cell Institute, University of Alabama at Birmingham, 1825 University Blvd., Birmingham, AL 35294, USA, Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan 61-704, Poland and
| |
Collapse
|
17
|
Abstract
Approximately 40 human diseases are associated with expansion of repeat sequences. These expansions can reside within coding or non-coding parts of the genes, affecting the host gene function. The presence of such expansions results in the production of toxic RNA and/or protein or causes transcriptional repression and silencing of the host gene. Although the molecular mechanisms of expansion diseases are not well understood, mounting evidence suggests that transcription through expanded repeats plays an essential role in disease pathology. The presence of an expansion can affect RNA polymerase transcription, leading to dysregulation of transcription-associated processes, such as RNA splicing, formation of RNA/DNA hybrids (R-loops), production of antisense, short non-coding and bidirectional RNA transcripts. In the present review, we summarize current advances in this field and discuss possible roles of transcriptional defects in disease pathology.
Collapse
|
18
|
Krasilnikova MM. Complexes between two GAA Repeats within DNA introduced into Cos-1 cells. Mob Genet Elements 2014; 2:267-271. [PMID: 23481169 PMCID: PMC3575420 DOI: 10.4161/mge.23194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We have recently shown that GAA repeats severely impede replication elongation during the first replication cycle of transfected DNA wherein the chromatin is still at the formation stage.1 Here we extend this study by showing that two GAA repeats located within the same plasmid in the direct orientation can form complexes upon transient transfection of mammalian Cos-1 cells. However, these complexes do not form in DNA that went through several replication rounds in mammalian cells. We suggest that formation of such complexes in mammalian genomes can contribute to genomic instability.
Collapse
|
19
|
Abstract
R-loops are cellular structures composed of an RNA/DNA hybrid, which is formed when the RNA hybridises to a complementary DNA strand and a displaced single-stranded DNA. R-loops have been detected in various organisms from bacteria to mammals and play crucial roles in regulating gene expression, DNA and histone modifications, immunoglobulin class switch recombination, DNA replication, and genome stability. Recent evidence suggests that R-loops are also involved in molecular mechanisms of neurological diseases and cancer. In addition, mutations in factors implicated in R-loop biology, such as RNase H and SETX (senataxin), lead to devastating human neurodegenerative disorders, highlighting the importance of correctly regulating the level of R-loops in human cells. In this review we summarise current advances in this field, with a particular focus on diseases associated with dysregulation of R-loop structures. We also discuss potential therapeutic approaches for such diseases and highlight future research directions.
Collapse
Affiliation(s)
- Matthias Groh
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 2014; 28:1384-96. [PMID: 24990962 PMCID: PMC4083084 DOI: 10.1101/gad.242990.114] [Citation(s) in RCA: 403] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. These structures form naturally during transcription even though their persistent formation can have deleterious effects on genome integrity. Interestingly, an increasing number of studies also suggest that R loops function as potential gene expression regulators. Here, Skourti-Stathaki and Proudfoot review the most recent findings about R loops, highlighting their opposite roles in cellular fitness. R loops are three-stranded nucleic acid structures that comprise nascent RNA hybridized with the DNA template, leaving the nontemplate DNA single-stranded. R loops form naturally during transcription even though their persistent formation can be a risky outcome with deleterious effects on genome integrity. On the other hand, over the last few years, an increasingly strong case has been built for R loops as potential regulators of gene expression. Therefore, understanding their function and regulation under these opposite situations is essential to fully characterize the mechanisms that control genome integrity and gene expression. Here we review recent findings about these interesting structures that highlight their opposite roles in cellular fitness.
Collapse
Affiliation(s)
| | - Nicholas J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
21
|
Adihe Lokanga R, Zhao XN, Entezam A, Usdin K. X inactivation plays a major role in the gender bias in somatic expansion in a mouse model of the fragile X-related disorders: implications for the mechanism of repeat expansion. Hum Mol Genet 2014; 23:4985-94. [PMID: 24858908 DOI: 10.1093/hmg/ddu213] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Fragile X-related disorders are X-linked disorders resulting from the inheritance of FMR1 alleles with >54 CGG/CCG repeats in their 5' UTR. The repeats expand both somatically and on intergenerational transmission and increased repeat numbers are associated with increased risk of disease and increased risk of further expansion. The mechanism responsible for expansion is unknown. Here, we show in a knockin mouse model of these disorders that somatic expansion is much less common in females than in males. We show that this is due in large part to the fact that expansions occur only when the repeat is on the active X chromosome. However, even when this is taken into account, expansions in females are still less common than expected. This additional gender effect is not due to a protective effect of estrogen, a deleterious effect of testosterone or to differences in the expression of the Fmr1 gene or a variety of X-linked and autosomal DNA repair genes. However, our data do suggest that a higher level of expression of genes that protect against oxidative damage in females may contribute to their lower levels of expansion. Whatever the basis, our data suggest that the risk for somatic expansion may be lower in women than it is in men. This could help explain the reduced penetrance of some aspects of disease pathology in women. The fact that expansion only occurs when the Fmr1 allele is on the active X chromosome has important implications for the mechanism of repeat expansion.
Collapse
Affiliation(s)
- Rachel Adihe Lokanga
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA and Department of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | - Xiao-Nan Zhao
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Ali Entezam
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA and
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA and
| |
Collapse
|
22
|
Loomis EW, Sanz LA, Chédin F, Hagerman PJ. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 2014; 10:e1004294. [PMID: 24743386 PMCID: PMC3990486 DOI: 10.1371/journal.pgen.1004294] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 02/21/2014] [Indexed: 11/24/2022] Open
Abstract
Expansion of a trinucleotide (CGG) repeat element within the 5′ untranslated region (5′UTR) of the human FMR1 gene is responsible for a number of heritable disorders operating through distinct pathogenic mechanisms: gene silencing for fragile X syndrome (>200 CGG) and RNA toxic gain-of-function for FXTAS (∼55–200 CGG). Existing models have focused almost exclusively on post-transcriptional mechanisms, but co-transcriptional processes could also contribute to the molecular dysfunction of FMR1. We have observed that transcription through the GC-rich FMR1 5′UTR region favors R-loop formation, with the nascent (G-rich) RNA forming a stable RNA:DNA hybrid with the template DNA strand, thereby displacing the non-template DNA strand. Using DNA:RNA (hybrid) immunoprecipitation (DRIP) of genomic DNA from cultured human dermal fibroblasts with both normal (∼30 CGG repeats) and premutation (55<CGG<200 repeats) alleles, we provide evidence for FMR1 R-loop formation in human genomic DNA. Using a doxycycline (DOX)-inducible episomal system in which both the CGG-repeat and transcription frequency can be varied, we further show that R-loop formation increases with higher expression levels. Finally, non-denaturing bisulfite mapping of the displaced single-stranded DNA confirmed R-loop formation at the endogenous FMR1 locus and further indicated that R-loops formed over CGG repeats may be prone to structural complexities, including hairpin formation, not commonly associated with other R-loops. These observations introduce a new molecular feature of the FMR1 gene that is directly affected by CGG-repeat expansion and is likely to be involved in the associated cellular dysfunction. Expansion of a CGG-repeat element within the human FMR1 gene is responsible for multiple human diseases, including fragile X syndrome and fragile X-associated tremor/ataxia syndrome (FXTAS). These diseases occur in separate ranges of repeat length and are characterized by profoundly different molecular mechanisms. Fragile X syndrome results from FMR1 gene silencing, whereas FXTAS is associated with an increase in transcription and toxicity of the CGG-repeat-containing mRNA. This study introduces a previously unknown molecular feature of the FMR1 locus, namely the co-transcriptional formation of three-stranded R-loop structures upon re-annealing of the nascent FMR1 transcript to the template DNA strand. R-loops are involved in the normal function of human CpG island promoters in that they contribute to protecting these sequences from DNA methylation. However, excessive R-loop formation can lead to activation of the DNA damage response and result in genomic instability. We used antibody recognition and chemical single-stranded DNA footprinting to show that R-loops form at the FMR1 locus with increasing frequency and greater structural complexity as the CGG-repeat length increases. This discovery provides a missing piece of both the complex FMR1 molecular puzzle and the diseases resulting from CGG-repeat expansion.
Collapse
Affiliation(s)
- Erick W. Loomis
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
| | - Lionel A. Sanz
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, California, United States of America
- The Genome Center, University of California, Davis, Davis, California, United States of America
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Davis, California, United States of America
- MIND Institute, University of California, Davis, Health System, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Mohan A, Goodwin M, Swanson MS. RNA-protein interactions in unstable microsatellite diseases. Brain Res 2014; 1584:3-14. [PMID: 24709120 DOI: 10.1016/j.brainres.2014.03.039] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/25/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022]
Abstract
A novel RNA-mediated disease mechanism has emerged from studies on dominantly inherited neurological disorders caused by unstable microsatellite expansions in non-coding regions of the genome. These non-coding tandem repeat expansions trigger the production of unusual RNAs that gain a toxic function, which involves the formation of RNA repeat structures that interact with, and alter the activities of, various factors required for normal RNA processing as well as additional cellular functions. In this review, we explore the deleterious effects of toxic RNA expression and discuss the various model systems currently available for studying RNA gain-of-function in neurologic diseases. Common themes, including bidirectional transcription and repeat-associated non-ATG (RAN) translation, have recently emerged from expansion disease studies. These and other discoveries have highlighted the need for further investigations designed to provide the additional mechanistic insights essential for future therapeutic development.
Collapse
Affiliation(s)
- Apoorva Mohan
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Marianne Goodwin
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Cancer Genetics Research Complex, 2033 Mowry Road, Gainesville, FL 32610-3610, USA.
| |
Collapse
|
24
|
Cao MD, Tasker E, Willadsen K, Imelfort M, Vishwanathan S, Sureshkumar S, Balasubramanian S, Bodén M. Inferring short tandem repeat variation from paired-end short reads. Nucleic Acids Res 2013; 42:e16. [PMID: 24353318 PMCID: PMC3919575 DOI: 10.1093/nar/gkt1313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The advances of high-throughput sequencing offer an unprecedented opportunity to study genetic variation. This is challenged by the difficulty of resolving variant calls in repetitive DNA regions. We present a Bayesian method to estimate repeat-length variation from paired-end sequence read data. The method makes variant calls based on deviations in sequence fragment sizes, allowing the analysis of repeats at lengths of relevance to a range of phenotypes. We demonstrate the method’s ability to detect and quantify changes in repeat lengths from short read genomic sequence data across genotypes. We use the method to estimate repeat variation among 12 strains of Arabidopsis thaliana and demonstrate experimentally that our method compares favourably against existing methods. Using this method, we have identified all repeats across the genome, which are likely to be polymorphic. In addition, our predicted polymorphic repeats also included the only known repeat expansion in A. thaliana, suggesting an ability to discover potential unstable repeats.
Collapse
Affiliation(s)
- Minh Duc Cao
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, St Lucia QLD 4072, Australia, Clayton School of Information Technology, Monash University, Clayton, VIC 3800, Australia, School of Biological Sciences, Monash University, Melbourne, Australia and Advanced Water Management Centre, The University of Queensland, Queensland, Australia
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yandim C, Natisvili T, Festenstein R. Gene regulation and epigenetics in Friedreich's ataxia. J Neurochem 2013; 126 Suppl 1:21-42. [PMID: 23859339 DOI: 10.1111/jnc.12254] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 02/05/2013] [Accepted: 03/06/2013] [Indexed: 12/20/2022]
Abstract
This is an exciting time in the study of Friedreich's ataxia. Over the last 10 years much progress has been made in uncovering the mechanisms, whereby the Frataxin gene is silenced by (GAA)n repeat expansions and several of the findings are now ripe for testing in the clinic. The discovery that the Frataxin gene is heterochromatinised and that this can be antagonised in vivo has led to the tantalizing possibility that the disease might be amenable to a more radical therapeutic approach involving epigenetic modifiers. Here, we set out to review progress in the understanding of the fundamental mechanisms whereby genes are regulated at this level and how these findings have been applied to achieve a deeper understanding of the dysregulation that occurs as the primary genetic lesion in Friedreich's ataxia.
Collapse
Affiliation(s)
- Cihangir Yandim
- Gene Control Mechanisms and Disease, Department of Medicine and MRC Clinical Sciences Centre, Imperial College London, London, UK
| | | | | |
Collapse
|
26
|
Oliveira PH, da Silva CL, Cabral JMS. An appraisal of human mitochondrial DNA instability: new insights into the role of non-canonical DNA structures and sequence motifs. PLoS One 2013; 8:e59907. [PMID: 23555828 PMCID: PMC3612095 DOI: 10.1371/journal.pone.0059907] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/20/2013] [Indexed: 01/29/2023] Open
Abstract
Mitochondrial DNA (mtDNA) deletion mutations are frequently observed in aged postmitotic tissues and are the cause of a wide range of human disorders. Presently, the molecular bases underlying mtDNA deletion formation remain a matter of intense debate, and it is commonly accepted that several mechanisms contribute to the spectra of mutations in the mitochondrial genome. In this work we performed an extensive screening of human mtDNA deletions and evaluated the association between breakpoint density and presence of non-canonical DNA elements and over-represented sequence motifs. Our observations support the involvement of helix-distorting intrinsically curved regions and long G-tetrads in eliciting instability events. In addition, higher breakpoint densities were consistently observed within GC-skewed regions and in the close vicinity of the degenerate sequence motif YMMYMNNMMHM. A parallelism is also established with hot spot motifs previously identified in the nuclear genome, as well as with the minimal binding site for the mitochondrial transcription termination factor mTERF. This study extends the current knowledge on the mechanisms driving mitochondrial rearrangements and opens up exciting avenues for further research.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Lisbon, Portugal.
| | | | | |
Collapse
|
27
|
Polak U, McIvor E, Dent SY, Wells RD, Napierala M. Expanded complexity of unstable repeat diseases. Biofactors 2013; 39:164-75. [PMID: 23233240 PMCID: PMC4648362 DOI: 10.1002/biof.1060] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 11/05/2022]
Abstract
Unstable repeat diseases (URDs) share a common mutational phenomenon of changes in the copy number of short, tandemly repeated DNA sequences. More than 20 human neurological diseases are caused by instability, predominantly, expansion of microsatellite sequences. Changes in the repeat size initiate a cascade of pathological processes, frequently characteristic of a unique disease or a small subgroup of the URDs. Understanding of both the mechanism of repeat instability and molecular consequences of the repeat expansions is critical to developing successful therapies for these diseases. Recent technological breakthroughs in whole genome, transcriptome and proteome analyses will almost certainly lead to new discoveries regarding the mechanisms of repeat instability, the pathogenesis of URDs, and will facilitate development of novel therapeutic approaches. The aim of this review is to give a general overview of unstable repeats diseases, highlight the complexities of these diseases, and feature the emerging discoveries in the field.
Collapse
Affiliation(s)
- Urszula Polak
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
- Poznan University of Medical Sciences, Department of Cell Biology, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Elizabeth McIvor
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Sharon Y.R. Dent
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
| | - Robert D. Wells
- Institute of Biosciences and Technology, assing the University Health Science Center, Center for Genome Research, 2121 West Holcombe Boulevard, Houston, TX 77030, USA
| | - Marek Napierala
- University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, Center for Cancer Epigenetics, Science Park, Smithville, Texas 78957, USA
- Correspondence should be addressed to: Dr. Marek Napierala, University of Texas MD Anderson Cancer Center, Department of Molecular Carcinogenesis, SRD 1.134, 1808 Park Road 1C, Smithville, TX 78957, tel. 512-237-6690,
| |
Collapse
|
28
|
Katsanis SH, Wagner JK. Characterization of the standard and recommended CODIS markers. J Forensic Sci 2013; 58 Suppl 1:S169-72. [PMID: 22925064 PMCID: PMC8591976 DOI: 10.1111/j.1556-4029.2012.02253.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 06/18/2012] [Accepted: 06/30/2012] [Indexed: 10/28/2022]
Abstract
As U.S. courts grapple with constitutional challenges to DNA identification applications, judges are resting legal decisions on the fingerprint analogy, questioning whether the information from a DNA profile could, in light of scientific advances, reveal biomedically relevant information. While CODIS loci were selected largely because they lack phenotypic associations, how this criterion was assessed is unclear. To clarify their phenotypic relevance, we describe the standard and recommended CODIS markers within the context of what is known currently about the genome. We characterize the genomic regions and phenotypic associations of the 24 standard and suggested CODIS markers. None of the markers are within exons, although 12 are intragenic. No CODIS genotypes are associated with known phenotypes. This study provides clarification of the genomic significance of the key identification markers and supports--independent of the forensic scientific community--that the CODIS profiles provide identification but not sensitive or biomedically relevant information.
Collapse
Affiliation(s)
- Sara H Katsanis
- Genome Ethics, Law & Policy, Duke Institute for Genome Sciences & Policy, Duke University, 304 Research Drive, Box 90141, Durham, NC 27708, USA.
| | | |
Collapse
|
29
|
Arana ME, Kerns RT, Wharey L, Gerrish KE, Bushel PR, Kunkel TA. Transcriptional responses to loss of RNase H2 in Saccharomyces cerevisiae. DNA Repair (Amst) 2012; 11:933-41. [PMID: 23079308 DOI: 10.1016/j.dnarep.2012.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 01/27/2023]
Abstract
We report here the transcriptional responses in Saccharomyces cerevisiae to deletion of the RNH201 gene encoding the catalytic subunit of RNase H2. Deleting RNH201 alters RNA expression of 349 genes by ≥1.5-fold (q-value <0.01), of which 123 are upregulated and 226 are downregulated. Differentially expressed genes (DEGs) include those involved in stress responses and genome maintenance, consistent with a role for RNase H2 in removing ribonucleotides incorporated into DNA during replication. Upregulated genes include several that encode subunits of RNA polymerases I and III, and genes involved in ribosomal RNA processing, ribosomal biogenesis and tRNA modification and processing, supporting a role for RNase H2 in resolving R-loops formed during transcription of rRNA and tRNA genes. A role in R-loop resolution is further suggested by a higher average GC-content proximal to the transcription start site of downregulated as compared to upregulated genes. Several DEGs are involved in telomere maintenance, supporting a role for RNase H2 in resolving RNA-DNA hybrids formed at telomeres. A large number of DEGs encode nucleases, helicases and genes involved in response to dsRNA viruses, observations that could be relevant to the nucleic acid species that elicit an innate immune response in RNase H2-defective humans.
Collapse
Affiliation(s)
- Mercedes E Arana
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | |
Collapse
|
30
|
Lokanga RA, Entezam A, Kumari D, Yudkin D, Qin M, Smith CB, Usdin K. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum Mutat 2012; 34:157-66. [PMID: 22887750 DOI: 10.1002/humu.22177] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 07/17/2012] [Indexed: 11/10/2022]
Abstract
Repeat expansion diseases result from expansion of a specific tandem repeat. The three fragile X-related disorders (FXDs) arise from germline expansions of a CGG•CCG repeat tract in the 5' UTR (untranslated region) of the fragile X mental retardation 1 (FMR1) gene. We show here that in addition to germline expansion, expansion also occurs in the somatic cells of both mice and humans carriers of premutation alleles. Expansion in mice primarily affects brain, testis, and liver with very little expansion in heart or blood. Our data would be consistent with a simple two-factor model for the organ specificity. Somatic expansion in humans may contribute to the mosaicism often seen in individuals with one of the FXDs. Because expansion risk and disease severity are related to repeat number, somatic expansion may exacerbate disease severity and contribute to the age-related increased risk of expansion seen on paternal transmission in humans. As little somatic expansion occurs in murine lymphocytes, our data also raise the possibility that there may be discordance in humans between repeat numbers measured in blood and that present in brain. This could explain, at least in part, the variable penetrance seen in some of these disorders.
Collapse
Affiliation(s)
- Rachel Adihe Lokanga
- Section on Gene Structure and Disease, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892–0830, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Zhang Y, Shishkin AA, Nishida Y, Marcinkowski-Desmond D, Saini N, Volkov KV, Mirkin SM, Lobachev KS. Genome-wide screen identifies pathways that govern GAA/TTC repeat fragility and expansions in dividing and nondividing yeast cells. Mol Cell 2012; 48:254-65. [PMID: 22959270 DOI: 10.1016/j.molcel.2012.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 07/06/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
Abstract
Triplex structure-forming GAA/TTC repeats pose a dual threat to the eukaryotic genome integrity. Their potential to expand can lead to gene inactivation, the cause of Friedreich's ataxia disease in humans. In model systems, long GAA/TTC tracts also act as chromosomal fragile sites that can trigger gross chromosomal rearrangements. The mechanisms that regulate the metabolism of GAA/TTC repeats are poorly understood. We have developed an experimental system in the yeast Saccharomyces cerevisiae that allows us to systematically identify genes crucial for maintaining the repeat stability. Two major groups of mutants defective in DNA replication or transcription initiation are found to be prone to fragility and large-scale expansions. We demonstrate that problems imposed by the repeats during DNA replication in actively dividing cells and during transcription initiation in nondividing cells can culminate in genome instability. We propose that similar mechanisms can mediate detrimental metabolism of GAA/TTC tracts in human cells.
Collapse
Affiliation(s)
- Yu Zhang
- School of Biology and Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
MOTIVATION While there are numerous programs that can predict RNA or DNA secondary structures, a program that predicts RNA/DNA hetero-dimers is still missing. The lack of easy to use tools for predicting their structure may be in part responsible for the small number of reports of biologically relevant RNA/DNA hetero-dimers. RESULTS We present here an extension to the widely used ViennaRNA Package (Lorenz et al., 2011) for the prediction of the structure of RNA/DNA hetero-dimers. AVAILABILITY http://www.tbi.univie.ac.at/~ronny/RNA/vrna2.html CONTACT ronny@tbi.univie.ac.at, berni@bioinf.uni-leipzig.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ronny Lorenz
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
33
|
Nakamori M, Gourdon G, Thornton CA. Stabilization of expanded (CTG)•(CAG) repeats by antisense oligonucleotides. Mol Ther 2011; 19:2222-7. [PMID: 21971425 PMCID: PMC3242663 DOI: 10.1038/mt.2011.191] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 08/16/2011] [Indexed: 01/02/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the gene DMPK. The expansion is highly unstable in somatic cells, a feature that may contribute to disease progression. The RNA expressed from the mutant allele exerts a toxic gain of function, due to the presence of an expanded CUG repeat (CUG(exp)). This RNA dominant mechanism is amenable to therapeutic intervention with antisense oligonucleotides (ASOs). For example, CAG-repeat ASOs that bind CUG(exp) RNA are beneficial in DM1 models by altering the protein interactions or metabolism of the toxic RNA. Because CUG(exp) RNA has been shown to aggravate instability of expanded CTG repeats, we studied whether CAG-repeat ASOs may also affect this aspect of DM1. In human cells the instability of (CTG)(800) was suppressed by addition of CAG-repeat ASOs to the culture media. In mice that carry a DMPK transgene the somatic instability of (CTG)(800) was suppressed by direct injection of CAG-repeat ASOs into muscle tissue. These results raise the possibility that early intervention with ASOs to reduce RNA or protein toxicity may have the additional benefit of stabilizing CTG:CAG repeats at subpathogenic lengths.
Collapse
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | |
Collapse
|
34
|
Wongsurawat T, Jenjaroenpun P, Kwoh CK, Kuznetsov V. Quantitative model of R-loop forming structures reveals a novel level of RNA-DNA interactome complexity. Nucleic Acids Res 2011; 40:e16. [PMID: 22121227 PMCID: PMC3258121 DOI: 10.1093/nar/gkr1075] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
R-loop is the structure co-transcriptionally formed between nascent RNA transcript and DNA template, leaving the non-transcribed DNA strand unpaired. This structure can be involved in the hyper-mutation and dsDNA breaks in mammalian immunoglobulin (Ig) genes, oncogenes and neurodegenerative disease related genes. R-loops have not been studied at the genome scale yet. To identify the R-loops, we developed a computational algorithm and mapped R-loop forming sequences (RLFS) onto 66,803 sequences defined by UCSC as 'known' genes. We found that ∼59% of these transcribed sequences contain at least one RLFS. We created R-loopDB (http://rloop.bii.a-star.edu.sg/), the database that collects all RLFS identified within over half of the human genes and links to the UCSC Genome Browser for information integration and visualisation across a variety of bioinformatics sources. We found that many oncogenes and tumour suppressors (e.g. Tp53, BRCA1, BRCA2, Kras and Ptprd) and neurodegenerative diseases related genes (e.g. ATM, Park2, Ptprd and GLDC) could be prone to significant R-loop formation. Our findings suggest that R-loops provide a novel level of RNA-DNA interactome complexity, playing key roles in gene expression controls, mutagenesis, recombination process, chromosomal rearrangement, alternative splicing, DNA-editing and epigenetic modifications. RLFSs could be used as a novel source of prospective therapeutic targets.
Collapse
Affiliation(s)
- Thidathip Wongsurawat
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Singapore 138671
| | | | | | | |
Collapse
|
35
|
Hubert L, Lin Y, Dion V, Wilson JH. Xpa deficiency reduces CAG trinucleotide repeat instability in neuronal tissues in a mouse model of SCA1. Hum Mol Genet 2011; 20:4822-30. [PMID: 21926083 DOI: 10.1093/hmg/ddr421] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Expansion of trinucleotide repeats (TNRs) is responsible for a number of human neurodegenerative disorders. The molecular mechanisms that underlie TNR instability in humans are not clear. Based on results from model systems, several mechanisms for instability have been proposed, all of which focus on the ability of TNRs to form alternative structures during normal DNA transactions, including replication, DNA repair and transcription. These abnormal structures are thought to trigger changes in TNR length. We have previously shown that transcription-induced TNR instability in cultured human cells depends on several genes known to be involved in transcription-coupled nucleotide excision repair (NER). We hypothesized that NER normally functions to destabilize expanded TNRs. To test this hypothesis, we bred an Xpa null allele, which eliminates NER, into the TNR mouse model for spinocerebellar ataxia type 1 (SCA1), which carries an expanded CAG repeat tract at the endogenous mouse Sca1 locus. We find that Xpa deficiency does not substantially affect TNR instability in either the male or female germline; however, it dramatically reduces CAG repeat instability in neuronal tissues-striatum, hippocampus and cerebral cortex-but does not alter CAG instability in kidney or liver. The tissue-specific effect of Xpa deficiency represents a novel finding; it suggests that tissue-to-tissue variation in CAG repeat instability arises, in part, by different underlying mechanisms. These results validate our original findings in cultured human cells and suggest that transcription may induce NER-dependent TNR instability in neuronal tissues in humans.
Collapse
Affiliation(s)
- Leroy Hubert
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
36
|
Salinas-Rios V, Belotserkovskii BP, Hanawalt PC. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability. Nucleic Acids Res 2011; 39:7444-54. [PMID: 21666257 PMCID: PMC3177194 DOI: 10.1093/nar/gkr429] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The abnormal number of repeats found in triplet repeat diseases arises from 'repeat instability', in which the repetitive section of DNA is subject to a change in copy number. Recent studies implicate transcription in a mechanism for repeat instability proposed to involve RNA polymerase II (RNAPII) arrest caused by a CTG slip-out, triggering transcription-coupled repair (TCR), futile cycles of which may lead to repeat expansion or contraction. In the present study, we use defined DNA constructs to directly test whether the structures formed by CAG and CTG repeat slip-outs can cause transcription arrest in vitro. We found that a slip-out of (CAG)(20) or (CTG)(20) repeats on either strand causes RNAPII arrest in HeLa cell nuclear extracts. Perfect hairpins and loops on either strand also cause RNAPII arrest. These findings are consistent with a transcription-induced repeat instability model in which transcription arrest in mammalian cells may initiate a 'gratuitous' TCR event leading to a change in repeat copy number. An understanding of the underlying mechanism of repeat instability could lead to intervention to slow down expansion and delay the onset of many neurodegenerative diseases in which triplet repeat expansion is implicated.
Collapse
|
37
|
Lin Y, Wilson JH. Transcription-induced DNA toxicity at trinucleotide repeats: double bubble is trouble. Cell Cycle 2011; 10:611-8. [PMID: 21293182 DOI: 10.4161/cc.10.4.14729] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Trinucleotide repeats (TNR) are a blessing and a curse. In coding regions, where they are enriched, short repeats offer the potential for continuous, rapid length variation with linked incremental changes in the activity of the encoded protein, a valuable source of variation for evolution. But at the upper end of these benign and beneficial lengths, trinucleotide repeats become very unstable, with a dangerous bias toward continual expansion, which can lead to neurological diseases in humans. The mechanisms of expansion are varied and the links to disease are complex. Where they have been delineated, however, they have often revealed unexpected, fundamental aspects of the underlying cell biology. Nowhere is this more apparent than in recent studies, which indicate that expanded CAG repeats can form toxic sites in the genome, which can, upon interaction with normal components of DNA metabolism, trigger cell death. Here we discuss the phenomenon of TNR-induced DNA toxicity, with special emphasis on the role of transcription. Transcription-induced DNA toxicity may have profound biological consequences, with particular relevance to repeat-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Yunfu Lin
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX USA.
| | | |
Collapse
|