1
|
Toft K, Honoré ML, Ripley NE, Nielsen MK, Fromm B, Mardahl M, Nielsen LN, Nejsum P, Thamsborg SM, Cirera S, Pihl TH. The microRNAome of Strongylus vulgaris larvae and their excretory/secretory products with identification of parasite-derived microRNAs in horse arterial tissue. Int J Parasitol 2025; 55:45-58. [PMID: 39510492 DOI: 10.1016/j.ijpara.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/26/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
The equine bloodworm, Strongylus vulgaris, is a highly pathogenic parasite causing potentially fatal vascular and intestinal damage. Parasites express and release microRNAs (miRNAs) for internal regulation and to modulate host immunity. The complete set of miRNAs expressed by S. vulgaris (the S. vulgaris miRNAome) remains unannotated and the aim of this study was to annotate the miRNAome of L4 and L5 stages of S. vulgaris, and to examine differences in miRNA abundance between larval stages and sexes. Furthermore, we aimed to determine if miRNAs were detectable in excretory/secretory products (ESPs) from larvae and in arterial tissue from their predilection site, the cranial mesenteric artery (CMA). Larvae were collected from naturally infected foals, and categorized by sex and stage. A subset of larvae was snap-frozen, while those remaining were incubated and the (ESPs) collected. Arterial tissue samples were collected from the CMA. Small RNA sequencing, followed by a custom bioinformatic pipeline, was used for annotation. We identified 142 S. vulgaris miRNAs in larvae and 136 in ESPs. Significant differences in miRNA abundance were observed between larvae and ESPs, and between L5 females (L5Fs) and L5 males (L5Ms), L4s and L5Fs, and L4s and L5Ms. No differences were found between L4s and L5s overall. In ESPs, several miRNAs were differentially abundant across all groups. Validation through quantitative real-time PCR (qPCR) detected selected miRNAs and their differential abundance in larvae and ESPs. One parasite-derived miRNA was detected in some of the horse arterial tissue samples but at very low levels. This study provided the first annotation of the S. vulgaris miRNAome. Most of the annotated larval miRNAs were also detectable in ESPs, and differences in miRNA abundance between sexes were found for larvae, and between sexes and stages for ESPs. Parasite-derived miRNAs were, however, not consistently detectable in the surrounding host arterial tissue.
Collapse
Affiliation(s)
- Katrine Toft
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Louise Honoré
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nichol E Ripley
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Martin K Nielsen
- M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Lise N Nielsen
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Stig Milan Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susanna Cirera
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Holberg Pihl
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Duan Y, Segev T, Veksler-Lublinsky I, Ambros V, Srivastava M. Identification and developmental profiling of microRNAs in the acoel worm Hofstenia miamia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.01.626237. [PMID: 39677803 PMCID: PMC11642771 DOI: 10.1101/2024.12.01.626237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The acoel worm Hofstenia miamia (H. miamia) has recently emerged as a model organism for studying whole-body regeneration and embryonic development. Previous studies suggest that post-transcriptional mechanisms likely play important roles in whole-body regeneration. Here, we establish a resource for studying H. miamia microRNA-mediated gene regulation, a major aspect of post-transcriptional control in animals. Using small RNA-sequencing samples spanning key developmental stages, we annotated H. miamia microRNAs. Our analysis uncovered a total of 1,050 microRNA loci, including 479 high-confidence loci based on structural and read abundance criteria. Comparison of microRNA seed sequences with those in other bilaterian species revealed that H. miamia encodes the majority of known conserved bilaterian microRNA families and that several microRNA families previously reported only in protostomes or deuterostomes likely have ancient bilaterian origins. We profiled the expression dynamics of the H. miamia miRNAs across embryonic and post-embryonic development. We observed that the let-7 and mir-125 microRNAs are unconventionally enriched at early embryonic stages. To generate hypotheses for miRNA function, we annotated the 3' UTRs of H. miamia protein-coding genes and performed miRNA target site predictions. Focusing on genes that are known to function in the wound response, posterior patterning, and neural differentiation in H. miamia , we found that these processes may be under substantial miRNA regulation. Notably, we found that miRNAs in MIR-7 and MIR-9 families which have target sites in the posterior genes fz-1 , wnt-3 , and sp5 are indeed expressed in the anterior of the animal, consistent with a repressive effect on their corresponding target genes. Our annotation offers candidate miRNAs for further functional investigation, providing a resource for future studies of post-transcriptional control during development and regeneration.
Collapse
|
3
|
Truong VA, Chang YH, Dang TQ, Tu Y, Tu J, Chang CW, Chang YH, Liu GS, Hu YC. Programmable editing of primary MicroRNA switches stem cell differentiation and improves tissue regeneration. Nat Commun 2024; 15:8358. [PMID: 39333549 PMCID: PMC11436717 DOI: 10.1038/s41467-024-52707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Programmable RNA editing is harnessed for modifying mRNA. Besides mRNA, miRNA also regulates numerous biological activities, but current RNA editors have yet to be exploited for miRNA manipulation. To engineer primary miRNA (pri-miRNA), the miRNA precursor, we present a customizable editor REPRESS (RNA Editing of Pri-miRNA for Efficient Suppression of miRNA) and characterize critical parameters. The optimized REPRESS is distinct from other mRNA editing tools in design rationale, hence enabling editing of pri-miRNAs that are not editable by other RNA editing systems. We edit various pri-miRNAs in different cells including adipose-derived stem cells (ASCs), hence attenuating mature miRNA levels without disturbing host gene expression. We further develop an improved REPRESS (iREPRESS) that enhances and prolongs pri-miR-21 editing for at least 10 days, with minimal perturbation of transcriptome and miRNAome. iREPRESS reprograms ASCs differentiation, promotes in vitro cartilage formation and augments calvarial bone regeneration in rats, thus implicating its potentials for engineering miRNA and applications such as stem cell reprogramming and tissue regeneration.
Collapse
Affiliation(s)
- Vu Anh Truong
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Han Chang
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Linkou, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Thuc Quyen Dang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi Tu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Jui Tu
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan
| | - Chin-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Yi-Hao Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Yu-Chen Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan.
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
4
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
5
|
Spella M, Bochalis E, Athanasopoulou K, Chroni A, Dereki I, Ntaliarda G, Makariti I, Psarias G, Constantinou C, Chondrou V, Sgourou A. "Crosstalk between non-coding RNAs and transcription factor LRF in non-small cell lung cancer". Noncoding RNA Res 2024; 9:759-771. [PMID: 38577020 PMCID: PMC10990748 DOI: 10.1016/j.ncrna.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/23/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Epigenetic approaches in direct correlation with assessment of critical genetic mutations in non-small cell lung cancer (NSCLC) are currently very intensive, as the epigenetic components underlying NSCLC development and progression have attained high recognition. In this level of research, established human NSCLC cell lines as well as experimental animals are widely used to detect novel biomarkers and pharmacological targets to treat NSCLC. The epigenetic background holds a great potential for the identification of epi-biomarkers for treatment response however, it is highly complex and requires precise definition as these phenomena are variable between NSCLC subtypes and systems origin. We engaged an in-depth characterization of non-coding (nc)RNAs prevalent in human KRAS-mutant NSCLC cell lines A549 and H460 and mouse KRAS-mutant NSCLC tissue by Next Generation Sequencing (NGS) and quantitative Real Time PCRs (qPCRs). Also, the transcription factor (TF) LRF, a known epigenetic silencer, was examined as a modulator of non-coding RNAs expression. Finally, interacting networks underlying epigenetic variations in NSCLC subtypes were created. Data derived from our study highlights the divergent epigenetic profiles of NSCLC of human and mouse origin, as well as the significant contribution of 12qf1: 109,709,060-109,747,960 mouse chromosomal region to micro-RNA upregulated species. Furthermore, the novel epigenetic miR-148b-3p/lncPVT1/ZBTB7A axis was identified, which differentiates human cell line of lung adenocarcinoma from large cell lung carcinoma, two characteristic NSCLC subtypes. The detailed recording of epigenetic events in NSCLC and combinational studies including networking between ncRNAs and TFs validate the identification of significant epigenetic features, prevailing in NSCLC subtypes and among experimental models. Our results enrich knowledge in the field and empower research on the epigenetic prognostic biomarkers of the disease progression, NSCLC subtypes discrimination and advancement to patient-tailored treatments.
Collapse
Affiliation(s)
- Magda Spella
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Eleftherios Bochalis
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyri Chroni
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Irene Dereki
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Giannoula Ntaliarda
- Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece
| | - Ifigeneia Makariti
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Georgios Psarias
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Caterina Constantinou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, 26335 Patras, Greece
| |
Collapse
|
6
|
Zhang J, Yang L, Sun Y, Zhang L, Wang Y, Liu M, Li X, Liang Y, Zhao H, Liu Z, Qiu Z, Zhang T, Xie J. Up-regulation of miR-10a-5p expression inhibits the proliferation and differentiation of neural stem cells by targeting Chl1. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1483-1497. [PMID: 38841745 PMCID: PMC11532229 DOI: 10.3724/abbs.2024078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/07/2024] [Indexed: 06/07/2024] Open
Abstract
Neural tube defects (NTDs) are characterized by the failure of neural tube closure during embryogenesis and are considered the most common and severe central nervous system anomalies during early development. Recent microRNA (miRNA) expression profiling studies have revealed that the dysregulation of several miRNAs plays an important role in retinoic acid (RA)-induced NTDs. However, the molecular functions of these miRNAs in NTDs remain largely unidentified. Here, we show that miR-10a-5p is significantly upregulated in RA-induced NTDs and results in reduced cell growth due to cell cycle arrest and dysregulation of cell differentiation. Moreover, the cell adhesion molecule L1-like ( Chl1) is identified as a direct target of miR-10a-5p in neural stem cells (NSCs) in vitro, and its expression is reduced in RA-induced NTDs. siRNA-mediated knockdown of intracellular Chl1 affects cell proliferation and differentiation similar to those of miR-10a-5p overexpression, which further leads to the inhibition of the expressions of downstream ERK1/2 MAPK signaling pathway proteins. These cellular responses are abrogated by either increased expression of the direct target of miR-10a-5p ( Chl1) or an ERK agonist such as honokiol. Overall, our study demonstrates that miR-10a-5p plays a major role in the process of NSC growth and differentiation by directly targeting Chl1, which in turn induces the downregulation of the ERK1/2 cascade, suggesting that miR-10a-5p and Chl1 are critical for NTD formation in the development of embryos.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Lihong Yang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuqing Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Li Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yufei Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Ming Liu
- of Cell Biology and GeneticsSchool of Basic Medical ScienceShanxi Medical UniversityTaiyuan030001China
| | - Xiujuan Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Yuxiang Liang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Hong Zhao
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and NutriomicsCapital Institute of PediatricsBeijing100020China
| | - Jun Xie
- Department of Biochemistry and Molecular BiologySchool of Basic Medical ScienceShanxi Key Laboratory of Birth Defect and Cell RegenerationMOE Key Laboratory of Coal Environmental Pathogenicity and PreventionShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
7
|
Setiawan L, Setiabudy R, Kresno SB, Sutandyo N, Syahruddin E, Jovianti F, Nadliroh S, Mubarika S, Setiabudy R, Siregar NC. Circulating miR-10b, soluble urokinase-type plasminogen activator receptor, and plasminogen activator inhibitor-1 as predictors of non-small cell lung cancer progression and treatment response. Cancer Biomark 2024; 39:137-153. [PMID: 38073374 PMCID: PMC11002724 DOI: 10.3233/cbm-220222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/31/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Despite advances in lung cancer treatment, most lung cancers are diagnosed at an advanced stage. Expression of microRNA10b (miR-10b) and fibrinolytic activity, as reflected by soluble urokinase-type plasminogen activator receptor (suPAR) and plasminogen activator inhibitor 1 (PAI-1), are promising biomarker candidates. OBJECTIVE To assess the expression of miR-10b, and serum levels of suPAR and PAI-1 in advanced stage non-small cell lung cancer (NSCLC) patients, and their correlation with progression, treatment response and prognosis. METHODS The present prospective cohort and survival study was conducted at Dharmais National Cancer Hospital and included advanced stage NSCLC patients diagnosed between March 2015 and September 2016. Expression of miR-10b was quantified using qRT-PCR. Levels of suPAR and PAI-1 were assayed using ELISA. Treatment response was evaluated using the RECIST 1.1 criteria. Patients were followed up until death or at least 1 year after treatment. RESULTS Among the 40 patients enrolled, 25 completed at least four cycles of chemotherapy and 15 patients died during treatment. Absolute miR-10b expression ⩾ 592,145 copies/μL or miR-10b fold change ⩾ 0.066 were protective for progressive disease and poor treatment response, whereas suPAR levels ⩾ 4,237 pg/mL was a risk factor for progressive disease and poor response. PAI-1 levels > 4.6 ng/mL was a protective factor for poor response. Multivariate analysis revealed suPAR as an independent risk factor for progression (ORadj, 13.265; 95% confidence intervals (CI), 2.26577.701; P= 0.006) and poor response (ORadj, 15.609; 95% CI, 2.221-109.704; P= 0.006), whereas PAI-1 was an independent protective factor of poor response (ORadj, 0.127; 95% CI, 0.019-0.843; P= 0.033). CONCLUSIONS Since miR-10b cannot be used as an independent risk factor for NSCLC progression and treatment response, we developed a model to predict progression using suPAR levels and treatment response using suPAR and PAI-1 levels. Further studies are needed to validate this model.
Collapse
Affiliation(s)
- Lyana Setiawan
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Rahajuningsih Setiabudy
- Department of Clinical Pathology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Siti Boedina Kresno
- Department of Clinical Pathology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Noorwati Sutandyo
- Department of Hematology and Medical Oncology, Dharmais National Cancer Center, Jakarta, Indonesia
| | - Elisna Syahruddin
- Department of Pulmonology, Faculty of Medicine, University of Indonesia/Persahabatan General Hospital, Jakarta, Indonesia
| | | | | | - Sofia Mubarika
- Department of Histology, Faculty of Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Rianto Setiabudy
- Department of Pharmacology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Nurjati C. Siregar
- Department of Anatomical Pathology, Faculty of Medicine, University of Indonesia/Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
8
|
Verleih M, Visnovska T, Nguinkal JA, Rebl A, Goldammer T, Andreassen R. The Discovery and Characterization of Conserved and Novel miRNAs in the Different Developmental Stages and Organs of Pikeperch ( Sander lucioperca). Int J Mol Sci 2023; 25:189. [PMID: 38203361 PMCID: PMC10778745 DOI: 10.3390/ijms25010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Micro RNAs (miRNAs) are short non-coding RNAs that act as post-transcriptional gene expression regulators. Genes regulated in vertebrates include those affecting growth and development or stress and immune response. Pikeperch (Sander lucioperca) is a species that is increasingly being considered for farming in recirculation aquaculture systems. We characterized the pikeperch miRNA repertoire to increase the knowledge of the genomic mechanisms affecting performance and health traits by applying small RNA sequencing to different developmental stages and organs. There were 234 conserved and 8 novel miRNA genes belonging to 104 families. A total of 375 unique mature miRNAs were processed from these genes. Many mature miRNAs showed high relative abundances or were significantly more expressed at early developmental stages, like the miR-10 and miR-430 family, let-7, the miRNA clusters 106-25-93, and 17-19-92. Several miRNAs associated with immune responses (e.g., slu-mir-731-5p, slu-mir-2188-5p, and slu-mir-8159-5p) were enriched in the spleen. The mature miRNAs slu-mir-203a-3p and slu-mir-205-5p were enriched in gills. These miRNAs are similarly abundant in many vertebrates, indicating that they have shared regulatory functions. There was also a significantly increased expression of the disease-associated miR-462/miR-731 cluster in response to hypoxia stress. This first pikeperch miRNAome reference resource paves the way for future functional studies to identify miRNA-associated variations that can be utilized in marker-assisted breeding programs.
Collapse
Affiliation(s)
- Marieke Verleih
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tina Visnovska
- Bioinformatics Core Facility, Oslo University Hospital, 0424 Oslo, Norway
| | - Julien A. Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany;
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
| | - Tom Goldammer
- Institute of Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany; (M.V.); (A.R.)
- Faculty of Agriculture and Environmental Sciences, University of Rostock, 18059 Rostock, Germany
| | - Rune Andreassen
- Department of Life Sciences and Health, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway;
| |
Collapse
|
9
|
Babadag S, Çelebi-Saltik B. A cellular regulator of the niche: telocyte. Tissue Barriers 2023; 11:2131955. [PMID: 36218299 PMCID: PMC10606812 DOI: 10.1080/21688370.2022.2131955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 10/17/2022] Open
Abstract
Interstitial cells are present in the environment of stem cells in order to increase stem cell proliferation and differentiation and they are important to increase the efficiency of their transplantation. Telocytes (TCs) play an important role both in the preservation of tissue organ integrity and in the pathophysiology of many diseases, especially cancer. They make homo- or heterocellular contacts to form the structure of 3D network through their telopodes and deliver signaling molecules via a juxtacrine and/or paracrine association by budding shed vesicles into the vascular, nervous and endocrine systems. During this interaction, along with organelles, mRNA, microRNA, long non-coding RNA, and genomic DNA are transferred. This review article not only specifies the properties of TCs and their roles in the tissue organ microenvironment but also gives information about the factors that play a role in the transport of epigenetic information by TCs.
Collapse
Affiliation(s)
- Sena Babadag
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Sihhiye, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Sihhiye, Turkey
| |
Collapse
|
10
|
Mierzejewski B, Grabowska I, Michalska Z, Zdunczyk K, Zareba F, Irhashava A, Chrzaszcz M, Patrycy M, Streminska W, Janczyk-Ilach K, Koblowska M, Iwanicka-Nowicka R, Gromadka A, Kowalski K, Ciemerych MA, Brzoska E. SDF-1 and NOTCH signaling in myogenic cell differentiation: the role of miRNA10a, 425, and 5100. Stem Cell Res Ther 2023; 14:204. [PMID: 37582765 PMCID: PMC10426160 DOI: 10.1186/s13287-023-03429-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 07/25/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Skeletal muscle regeneration is a complex process regulated by many cytokines and growth factors. Among the important signaling pathways regulating the myogenic cell identity are these involving SDF-1 and NOTCH. SDF-1 participates in cell mobilization and acts as an important chemoattractant. NOTCH, on the other hand, controls cell activation and myogenic determination of satellite cells. Knowledge about the interaction between SDF-1 and NOTCH signaling is limited. METHODS We analyzed two populations of myogenic cells isolated from mouse skeletal muscle, that is, myoblasts derived from satellite cells (SCs) and muscle interstitial progenitor cells (MIPCs). First, microRNA level changes in response to SDF-1 treatment were analyzed with next-generation sequencing (NGS). Second, myogenic cells, i.e., SC-derived myoblasts and MIPCs were transfected with miRNA mimics, selected on the basis of NGS results, or their inhibitors. Transcriptional changes, as well as proliferation, migration, and differentiation abilities of SC-derived myoblasts and MIPCs, were analyzed in vitro. Naive myogenic potential was assessed in vivo, using subcutaneous engrafts and analysis of cell contribution to regeneration of the skeletal muscles. RESULTS SDF-1 treatment led to down-regulation of miR10a, miR151, miR425, and miR5100 in myoblasts. Interestingly, miR10a, miR425, and miR5100 regulated the expression of factors involved in the NOTCH signaling pathway, including Dll1, Jag2, and NICD. Furthermore, miR10a, miR425, and miR5100 down-regulated the expression of factors involved in cell migration: Acta1, MMP12, and FAK, myogenic differentiation: Pax7, Myf5, Myod, Mef2c, Myog, Musk, and Myh3. However, these changes did not significantly affect myogenic cell migration or fusion either in vitro or in vivo, except when miR425 was overexpressed, or miR5100 inhibitor was used. These two molecules increased the fusion of MIPCs and myoblasts, respectively. Furthermore, miR425-transfected MIPC transplantation into injured skeletal muscle resulted in more efficient regeneration, compared to control cell transplantation. However, skeletal muscles that were injected with miR10a transfected myoblasts regenerated less efficiently. CONCLUSIONS SDF-1 down-regulates miR10a, miR425, and miR5100, what could affect NOTCH signaling, differentiation of myogenic cells, and their participation in skeletal muscle regeneration.
Collapse
Affiliation(s)
- Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Iwona Grabowska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Zuzanna Michalska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Kamila Zdunczyk
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Franciszek Zareba
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Aliksandra Irhashava
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Chrzaszcz
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Magdalena Patrycy
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Wladyslawa Streminska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Katarzyna Janczyk-Ilach
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Marta Koblowska
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Roksana Iwanicka-Nowicka
- Laboratory of Systems Biology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
- Laboratory of Microarray Analysis, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Agnieszka Gromadka
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Kamil Kowalski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Maria Anna Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland
| | - Edyta Brzoska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096, Warsaw, Poland.
| |
Collapse
|
11
|
Kim T, Croce CM. MicroRNA: trends in clinical trials of cancer diagnosis and therapy strategies. Exp Mol Med 2023; 55:1314-1321. [PMID: 37430087 PMCID: PMC10394030 DOI: 10.1038/s12276-023-01050-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/12/2023] Open
Abstract
As a type of short noncoding RNAs, microRNA (miRNA) undoubtedly plays a crucial role in cancer development. Since the discovery of the identity and clinical functions of miRNAs, over the past few decades, the roles of miRNAs in cancer have been actively investigated. Numerous pieces of evidence indicate that miRNAs are pivotal factors in most types of cancer. Recent cancer research focused on miRNAs has identified and characterized a large cohort of miRNAs commonly dysregulated in cancer or exclusively dysregulated in specific types of cancer. These studies have suggested the potential of miRNAs as biomarkers in the diagnosis and prognostication of cancer. Moreover, many of these miRNAs have oncogenic or tumor-suppressive functions. MiRNAs have been the focus of research given their potential clinical applications as therapeutic targets. Currently, various oncology clinical trials using miRNAs in screening, diagnosis, and drug testing are underway. Although clinical trials studying miRNAs in various diseases have been reviewed before, there have been fewer clinical trials related to miRNAs in cancer. Furthermore, updated results of recent preclinical studies and clinical trials of miRNA biomarkers and drugs in cancer are needed. Therefore, this review aims to provide up-to-date information on miRNAs as biomarkers and cancer drugs in clinical trials.
Collapse
Affiliation(s)
- Taewan Kim
- Department of Anatomy, Histology & Developmental Biology, International Cancer Center, School of Medicine, Shenzhen University, Shenzhen, China.
| | - Carlo M Croce
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Malvia S, Chintamani C, Sarin R, Dubey US, Saxena S, Bagadi SAR. ABERRANT EXPRESSION OF COL14A1, CELRS3, and CTHRC1 IN BREAST CANCER СELLS. Exp Oncol 2023; 45:28-43. [PMID: 37417284 DOI: 10.15407/exp-oncology.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Collagens, which are the major components of the extracellular matrix involved in the regulation of tumor microenvironment, could be differentially expressed in breast cancer (BC) with different transcriptome profiling. AIM To analyze the transcript level expression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, COL14A1, CTHRC1, and CELRS3 genes and the clinical relevance of their differential expression in BC. MATERIALS AND METHODS The transcript level expression of the genes was analyzed using the quantitative real-time PCR (qPCR) in tumor tissue of 60 BC patients. RESULTS Overexpression of COL1A1, COL5A1, COL10A1, COL11A1, COL12A1, CTHRC, and CELRS3 anddown-regulated expression of COL14A1 were observed. COL14A1 down-regulation was associated with aggressive, basal, and Her-2/neu BC subtypes (p = 0.031). Overexpression of CELSR3 was found to be associated with the older age of the patients (> 55 years, p = 0.049). Further analysis with the TCGA BC data set has shown a concordance in the differential expression of the above genes. Furthermore, overexpression of CTHRC1 was associated with poor overall survival (OS), particularly with poor prognosis (p = 0.00042) for the luminal BC subtype. On the other hand, CELSR3 overexpression was associated with mucinous tumors and poor prognosis in post-menopausal women. In silicotarget prediction identified several BC-associated miRNAs and members of miR-154, -515, and -10 families to perform a likely regulatory role in the above ECM genes. CONCLUSION The present study shows that the expression of COL14A1 and CTHRC1 may serve as potential biological markers for the detection of basal BC and the prognosis of survival for patients with the luminal subtype of BC.
Collapse
Affiliation(s)
- Shreshtha Malvia
- Tumor Biology Division, ICMR-National Institute of Pathology, New Delhi, 110029, India
| | | | - Ramesh Sarin
- Department of Surgery, Indraprastha Apollo Hospital, New Delhi, 110076, India
| | - Uma S Dubey
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, Rajasthan, 333031
| | - Sunita Saxena
- Consultant, Department of Health Research, New Delhi, 110001 & Ex-Director National Institute of Pathology-ICMR Safdarjang Hospital Campus
| | | |
Collapse
|
13
|
Radhakrishna U, Nath SK, Uppala LV, Veerappa A, Forray A, Muvvala SB, Metpally RP, Crist RC, Berrettini WH, Mausi LM, Vishweswaraiah S, Bahado-Singh RO. Placental microRNA methylome signatures may serve as biomarkers and therapeutic targets for prenatally opioid-exposed infants with neonatal opioid withdrawal syndrome. Front Genet 2023; 14:1215472. [PMID: 37434949 PMCID: PMC10332887 DOI: 10.3389/fgene.2023.1215472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction: The neonate exposed to opioids in utero faces a constellation of withdrawal symptoms postpartum commonly called neonatal opioid withdrawal syndrome (NOWS). The incidence of NOWS has increased in recent years due to the opioid epidemic. MicroRNAs (miRNAs) are small non-coding RNA molecules that play a crucial role in gene regulation. Epigenetic variations in microRNAs (miRNAs) and their impact on addiction-related processes is a rapidly evolving area of research. Methods: The Illumina Infinium Methylation EPIC BeadChip was used to analyze DNA methylation levels of miRNA-encoding genes in 96 human placental tissues to identify miRNA gene methylation profiles as-sociated with NOWS: 32 from mothers whose prenatally opioid-exposed infants required pharmacologic management for NOWS, 32 from mothers whose prenatally opioid-exposed infants did not require treat-ment for NOWS, and 32 unexposed controls. Results: The study identified 46 significantly differentially methylated (FDR p-value ≤ 0.05) CpGs associated with 47 unique miRNAs, with a receiver operating characteristic (ROC) area under the curve (AUC) ≥0.75 including 28 hypomethylated and 18 hypermethylated CpGs as potentially associated with NOWS. These dysregulated microRNA methylation patterns may be a contributing factor to NOWS pathogenesis. Conclusion: This is the first study to analyze miRNA methylation profiles in NOWS infants and illustrates the unique role miRNAs might have in diagnosing and treating the disease. Furthermore, these data may provide a step toward feasible precision medicine for NOWS babies as well.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Lavanya V. Uppala
- College of Information Science and Technology, Peter Kiewit Institute, The University of Nebraska at Omaha, Omaha, NE, United States
| | - Avinash Veerappa
- Department of Genetics, Cell Biology and Anatomy College of Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Srinivas B. Muvvala
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Raghu P. Metpally
- Department of Molecular and Functional Genomics, Danville, PA, United States
| | - Richard C. Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Wade H. Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Geisinger Clinic, Danville, PA, United States
| | - Lori M. Mausi
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| | - Ray O. Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, United States
| |
Collapse
|
14
|
Murashov AK, Pak ES, Mar J, O’Brien K, Fisher-Wellman K, Bhat KM. Paternal Western diet causes transgenerational increase in food consumption in Drosophila with parallel alterations in the offspring brain proteome and microRNAs. FASEB J 2023; 37:e22966. [PMID: 37227156 PMCID: PMC10234493 DOI: 10.1096/fj.202300239rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023]
Abstract
Several lines of evidence indicate that ancestral diet might play an important role in determining offspring's metabolic traits. However, it is not yet clear whether ancestral diet can affect offspring's food choices and feeding behavior. In the current study, taking advantage of Drosophila model system, we demonstrate that paternal Western diet (WD) increases offspring food consumption up to the fourth generation. Paternal WD also induced alterations in F1 offspring brain proteome. Using enrichment analyses of pathways for upregulated and downregulated proteins, we found that upregulated proteins had significant enrichments in terms related to translation and translation factors, whereas downregulated proteins displayed enrichments in small molecule metabolic processes, TCA cycles, and electron transport chain (ETC). Using MIENTURNET miRNA prediction tool, dme-miR-10-3p was identified as the top conserved miRNA predicted to target proteins regulated by ancestral diet. RNAi-based knockdown of miR-10 in the brain significantly increased food consumption, implicating miR-10 as a potential factor in programming feeding behavior. Together, these findings suggest that ancestral nutrition may influence offspring feeding behavior through alterations in miRNAs.
Collapse
Affiliation(s)
- Alexander K. Murashov
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Elena S. Pak
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jordan Mar
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| | - Kevin O’Brien
- Department of Biostatistics, College of Allied Health Sciences, East Carolina University, Greenville, NC
| | - Kelsey Fisher-Wellman
- Department of Physiology & East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Krishna M. Bhat
- Department of Molecular Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
15
|
Li Q, Liu X, Du Y, Zhang X, Xiang P, Chen G, Ling W, Wang D. Protocatechuic acid boosts continual efferocytosis in macrophages by derepressing KLF4 to transcriptionally activate MerTK. Sci Signal 2023; 16:eabn1372. [PMID: 37220181 DOI: 10.1126/scisignal.abn1372] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Macrophages clear apoptotic cells through a process called continual efferocytosis. We found that protocatechuic acid (PCA), a polyphenolic compound abundant in fruits and vegetables, increased the continual efferocytic capacity of macrophages and inhibited the progression of advanced atherosclerosis. PCA reduced the intracellular amounts of microRNA-10b (miR-10b) by promoting its secretion in extracellular vesicles, which led to an increase in the abundance of the miR-10b target Krüppel-like factor 4 (KLF4). In turn, KLF4 transcriptionally induced the gene encoding Mer proto-oncogene tyrosine kinase (MerTK), an efferocytic receptor for the recognition of apoptotic cells, resulting in increased continual efferocytic capacity. However, in naive macrophages, the PCA-induced secretion of miR-10b did not affect KLF4 and MerTK protein abundance or efferocytic capacity. In mice, oral administration of PCA increased continual efferocytosis in macrophages residing in the peritoneal cavities, thymi, and advanced atherosclerotic plaques through the miR-10b-KLF4-MerTK pathway. In addition, pharmacological inhibition of miR-10b with antagomiR-10b also increased the efferocytic capacity of efferocytic but not naive macrophages in vitro and in vivo. Together, these data describe a pathway that promotes continual efferocytosis in macrophages through miR-10b secretion and a KLF4-dependent increase in MerTK abundance, which can be activated by dietary PCA and which has implications for understanding the regulation of continual efferocytosis in macrophages.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xiuping Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Xu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Panyin Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou 510080, China
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China
| |
Collapse
|
16
|
Brazane M, Dimitrova DG, Pigeon J, Paolantoni C, Ye T, Marchand V, Da Silva B, Schaefer E, Angelova MT, Stark Z, Delatycki M, Dudding-Byth T, Gecz J, Plaçais PY, Teysset L, Préat T, Piton A, Hassan BA, Roignant JY, Motorin Y, Carré C. The ribose methylation enzyme FTSJ1 has a conserved role in neuron morphology and learning performance. Life Sci Alliance 2023; 6:e202201877. [PMID: 36720500 PMCID: PMC9889914 DOI: 10.26508/lsa.202201877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 02/02/2023] Open
Abstract
FTSJ1 is a conserved human 2'-O-methyltransferase (Nm-MTase) that modifies several tRNAs at position 32 and the wobble position 34 in the anticodon loop. Its loss of function has been linked to X-linked intellectual disability (XLID), and more recently to cancers. However, the molecular mechanisms underlying these pathologies are currently unclear. Here, we report a novel FTSJ1 pathogenic variant from an X-linked intellectual disability patient. Using blood cells derived from this patient and other affected individuals carrying FTSJ1 mutations, we performed an unbiased and comprehensive RiboMethSeq analysis to map the ribose methylation on all human tRNAs and identify novel targets. In addition, we performed a transcriptome analysis in these cells and found that several genes previously associated with intellectual disability and cancers were deregulated. We also found changes in the miRNA population that suggest potential cross-regulation of some miRNAs with these key mRNA targets. Finally, we show that differentiation of FTSJ1-depleted human neural progenitor cells into neurons displays long and thin spine neurites compared with control cells. These defects are also observed in Drosophila and are associated with long-term memory deficits. Altogether, our study adds insight into FTSJ1 pathologies in humans and flies by the identification of novel FTSJ1 targets and the defect in neuron morphology.
Collapse
Affiliation(s)
- Mira Brazane
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Dilyana G Dimitrova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Julien Pigeon
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tao Ye
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Virginie Marchand
- Université de Lorraine, CNRS, INSERM, EpiRNASeq Core Facility, UMS2008/US40 IBSLor,Nancy, France
| | - Bruno Da Silva
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Elise Schaefer
- Service de Génétique Médicale, Hôpitaux Universitaires de Strasbourg, Institut de Génétique Médicale d'Alsace, Strasbourg, France
| | - Margarita T Angelova
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | | | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide; South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Teysset
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| | - Thomas Préat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Amélie Piton
- Institute of Genetics and Molecular and Cellular Biology, Strasbourg University, CNRS UMR7104, INSERM U1258, Illkirch, France
| | - Bassem A Hassan
- Paris Brain Institute-Institut du Cerveau (ICM), Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yuri Motorin
- Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Clément Carré
- Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, Centre National de la Recherche Scientifique, Laboratoire de Biologie du Développement - Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
17
|
da Cruz RS, Dominguez O, Chen E, Gonsiewski AK, Nasir A, Cruz MI, Zou X, Galli S, Makambi K, McCoy M, Schmidt MO, Jin L, Peran I, de Assis S. Environmentally Induced Sperm RNAs Transmit Cancer Susceptibility to Offspring in a Mouse Model. RESEARCH SQUARE 2023:rs.3.rs-2507391. [PMID: 36798383 PMCID: PMC9934767 DOI: 10.21203/rs.3.rs-2507391/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
DNA sequence accounts for the majority of disease heritability, including cancer. Yet, not all familial cancer cases can be explained by genetic factors. It is becoming clear that environmentally induced epigenetic inheritance occurs and that the progeny's traits can be shaped by parental environmental experiences. In humans, epidemiological studies have implicated environmental toxicants, such as the pesticide DDT, in intergenerational cancer development, including breast and childhood tumors. Here, we show that the female progeny of males exposed to DDT in the pre-conception period have higher susceptibility to developing aggressive tumors in mouse models of breast cancer. Sperm of DDT-exposed males exhibited distinct patterns of small non-coding RNAs, with an increase in miRNAs and a specific surge in miRNA-10b levels. Remarkably, embryonic injection of the entire sperm RNA load of DDT-exposed males, or synthetic miRNA-10b, recapitulated the tumor phenotypes observed in DDT offspring. Mechanistically, miR-10b injection altered the transcriptional profile in early embryos with enrichment of genes associated with cell differentiation, tissue and immune system development. In adult DDT-derived progeny, transcriptional and protein analysis of mammary tumors revealed alterations in stromal and in immune system compartments. Our findings reveal a causal role for sperm RNAs in environmentally induced inheritance of cancer predisposition and, if confirmed in humans, this could help partially explain some of the "missing heritability" of breast, and other, malignancies.
Collapse
Affiliation(s)
- Raquel Santana da Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Odalys Dominguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Elaine Chen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Alexandra K Gonsiewski
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Apsra Nasir
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - M Idalia Cruz
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Xiaojun Zou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Susana Galli
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Kepher Makambi
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Biostatistics, Bioinformatics, & Biomathematics, Georgetown University, Washington, DC, USA
| | - Matthew McCoy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Marcel O Schmidt
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Lu Jin
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sonia de Assis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
18
|
Gao S, Liu S, Wei W, Qi Y, Meng F. Advances in targeting of miR‑10‑associated lncRNAs/circRNAs for the management of cancer (Review). Oncol Lett 2023; 25:89. [PMID: 36817057 PMCID: PMC9931999 DOI: 10.3892/ol.2023.13675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
With advancements in sequencing technologies, an increasing number of aberrantly expressed long-non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have been identified in various types of cancer. lncRNAs and circRNAs are now well-established tumor-influencing factors in cancer, driving not only tumor proliferation and invasion, but also cancer progression, drug resistance and metastatic recurrence. The majority of lncRNAs and circRNAs influence cancer progression by targeting microRNAs (miRNAs/miRs). miR-10a and miR-10b, key members of the miR-10 family, have been shown to play important regulatory roles in cell proliferation, differentiation to cancer progression, and development. Manual evaluation and grouping according to different types of competing endogenous RNA and tumor was performed. The review outlined the current state of knowledge on the regulation of miR-10 family-related lncRNAs and circRNAs. The involvement of lncRNAs and circRNAs in the biogenesis, maturation and function of malignant tumors through the miR-10 family, and the key gene targets and signaling cascades that lncRNAs and circRNAs regulate through the miR-10 family were summarized. Based on the findings of this review, it can be hypothesized that lncRNAs and circRNAs targeting the miR-10 family may serve as diagnostic/prognostic markers and/or therapeutic targets for the management of cancer.
Collapse
Affiliation(s)
- Shengyu Gao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Shuang Liu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Weiwei Wei
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Yanxiu Qi
- Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Fanshi Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China,Correspondence to: Professor Fanshi Meng, Department of General Surgery I, The First Affiliated Hospital of Jiamusi University, 348 Dexiang Street, Jiamusi, Heilongjiang 154002, P.R. China, E-mail:
| |
Collapse
|
19
|
Recent Updates on the Role of the MicroRNA-10 Family in Gynecological Malignancies. JOURNAL OF ONCOLOGY 2022; 2022:1544648. [PMID: 36578791 PMCID: PMC9792234 DOI: 10.1155/2022/1544648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/21/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
The ever-increasing morbidity associated with gynecological malignancies constantly endangers the physical and psychological health of women. Since a long time, there has been an urgent need for a deeper understanding of the tumorigenesis and the development of gynecological cancer to identify new molecular markers for early diagnosis and metastatic disease prognosis and for the development of therapeutic targets. MicroRNAs are crucial cellular regulators. The microRNA-10 (miR-10) family has been found to play an integral role in the evolution of numerous cancer types. A comprehensive understanding of current studies on miR-10 could provide better insights into future research and clinical applications in related fields. This article reviews the latest research on the role of the miR-10 family in gynecological malignancies and the relevant molecular mechanism, mainly focusing on endometrial, cervical, and ovarian cancers.
Collapse
|
20
|
The Role of microRNAs in Inflammation. Int J Mol Sci 2022; 23:ijms232415479. [PMID: 36555120 PMCID: PMC9779565 DOI: 10.3390/ijms232415479] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation is a biological response of the immune system to various insults, such as pathogens, toxic compounds, damaged cells, and radiation. The complex network of pro- and anti-inflammatory factors and their direction towards inflammation often leads to the development and progression of various inflammation-associated diseases. The role of small non-coding RNAs (small ncRNAs) in inflammation has gained much attention in the past two decades for their regulation of inflammatory gene expression at multiple levels and their potential to serve as biomarkers and therapeutic targets in various diseases. One group of small ncRNAs, microRNAs (miRNAs), has become a key regulator in various inflammatory disease conditions. Their fine-tuning of target gene regulation often turns out to be an important factor in controlling aberrant inflammatory reactions in the system. This review summarizes the biogenesis of miRNA and the mechanisms of miRNA-mediated gene regulation. The review also briefly discusses various pro- and anti-inflammatory miRNAs, their targets and functions, and provides a detailed discussion on the role of miR-10a in inflammation.
Collapse
|
21
|
Yaghobi R, Afshari A, Roozbeh J. Host and viral
RNA
dysregulation during
BK
polyomavirus
infection in kidney transplant recipients. WIRES RNA 2022:e1769. [DOI: 10.1002/wrna.1769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Ramin Yaghobi
- Shiraz Transplant Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Jamshid Roozbeh
- Shiraz Nephro‐Urology Research Center Shiraz University of Medical Sciences Shiraz Iran
| |
Collapse
|
22
|
Castro-Mondragon JA, Aure M, Lingjærde O, Langerød A, Martens JWM, Børresen-Dale AL, Kristensen V, Mathelier A. Cis-regulatory mutations associate with transcriptional and post-transcriptional deregulation of gene regulatory programs in cancers. Nucleic Acids Res 2022; 50:12131-12148. [PMID: 36477895 PMCID: PMC9757053 DOI: 10.1093/nar/gkac1143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Most cancer alterations occur in the noncoding portion of the human genome, where regulatory regions control gene expression. The discovery of noncoding mutations altering the cells' regulatory programs has been limited to few examples with high recurrence or high functional impact. Here, we show that transcription factor binding sites (TFBSs) have similar mutation loads to those in protein-coding exons. By combining cancer somatic mutations in TFBSs and expression data for protein-coding and miRNA genes, we evaluate the combined effects of transcriptional and post-transcriptional alterations on the regulatory programs in cancers. The analysis of seven TCGA cohorts culminates with the identification of protein-coding and miRNA genes linked to mutations at TFBSs that are associated with a cascading trans-effect deregulation on the cells' regulatory programs. Our analyses of cis-regulatory mutations associated with miRNAs recurrently predict 12 mature miRNAs (derived from 7 precursors) associated with the deregulation of their target gene networks. The predictions are enriched for cancer-associated protein-coding and miRNA genes and highlight cis-regulatory mutations associated with the dysregulation of key pathways associated with carcinogenesis. By combining transcriptional and post-transcriptional regulation of gene expression, our method predicts cis-regulatory mutations related to the dysregulation of key gene regulatory networks in cancer patients.
Collapse
Affiliation(s)
- Jaime A Castro-Mondragon
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Miriam Ragle Aure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Gaustadalléen 23 B, N-0373 Oslo, Norway
- KG Jebsen Centre for B-cell malignancies, Institute for Clinical Medicine, University of Oslo, Ullernchausseen 70, N-0372 Oslo, Norway
| | - Anita Langerød
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - John W M Martens
- Erasmus MC Cancer Institute and Cancer Genomics Netherlands, University Medical Center Rotterdam, Department of Medical Oncology, 3015GD Rotterdam, The Netherlands
| | - Anne-Lise Børresen-Dale
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Vessela N Kristensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Arshinchi Bonab R, Asfa S, Kontou P, Karakülah G, Pavlopoulou A. Identification of neoplasm-specific signatures of miRNA interactions by employing a systems biology approach. PeerJ 2022; 10:e14149. [PMID: 36213495 PMCID: PMC9536303 DOI: 10.7717/peerj.14149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/07/2022] [Indexed: 01/21/2023] Open
Abstract
MicroRNAs represent major regulatory components of the disease epigenome and they constitute powerful biomarkers for the accurate diagnosis and prognosis of various diseases, including cancers. The advent of high-throughput technologies facilitated the generation of a vast amount of miRNA-cancer association data. Computational approaches have been utilized widely to effectively analyze and interpret these data towards the identification of miRNA signatures for diverse types of cancers. Herein, a novel computational workflow was applied to discover core sets of miRNA interactions for the major groups of neoplastic diseases by employing network-based methods. To this end, miRNA-cancer association data from four comprehensive publicly available resources were utilized for constructing miRNA-centered networks for each major group of neoplasms. The corresponding miRNA-miRNA interactions were inferred based on shared functionally related target genes. The topological attributes of the generated networks were investigated in order to detect clusters of highly interconnected miRNAs that form core modules in each network. Those modules that exhibited the highest degree of mutual exclusivity were selected from each graph. In this way, neoplasm-specific miRNA modules were identified that could represent potential signatures for the corresponding diseases.
Collapse
Affiliation(s)
- Reza Arshinchi Bonab
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Seyedehsadaf Asfa
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Panagiota Kontou
- Department of Mathematics, University of Thessaly, Lamia, Greece
| | - Gökhan Karakülah
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Athanasia Pavlopoulou
- Izmir International Biomedicine and Genome Institute, Dokuz Eylül University, Izmir, Turkey,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
24
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
25
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
26
|
Alonso-González C, González-Abalde C, Menéndez-Menéndez J, González-González A, Álvarez-García V, González-Cabeza A, Martínez-Campa C, Cos S. Melatonin Modulation of Radiation-Induced Molecular Changes in MCF-7 Human Breast Cancer Cells. Biomedicines 2022; 10:biomedicines10051088. [PMID: 35625825 PMCID: PMC9138876 DOI: 10.3390/biomedicines10051088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Radiation therapy is an important component of cancer treatment scheduled for cancer patients, although it can cause numerous deleterious effects. The use of adjuvant molecules aims to limit the damage in normal surrounding tissues and enhance the effects of radiation therapy, either killing tumor cells or slowing down their growth. Melatonin, an indoleamine released by the pineal gland, behaves as a radiosensitizer in breast cancer, since it enhances the therapeutic effects of ionizing radiation and mitigates side effects on normal cells. However, the molecular mechanisms through which melatonin modulates the molecular changes triggered by radiotherapy remain mostly unknown. Here, we report that melatonin potentiated the anti-proliferative effect of radiation in MCF-7 cells. Treatment with ionizing radiation induced changes in the expression of many genes. Out of a total of 25 genes altered by radiation, melatonin potentiated changes in 13 of them, whereas the effect was reverted in another 10 cases. Among them, melatonin elevated the levels of PTEN and NME1, and decreased the levels of SNAI2, ERBB2, AKT, SERPINE1, SFN, PLAU, ATM and N3RC1. We also analyzed the expression of several microRNAs and found that melatonin enhanced the effect of radiation on the levels of miR-20a, miR-19a, miR-93, miR-20b and miR-29a. Rather surprisingly, radiation induced miR-17, miR-141 and miR-15a but melatonin treatment prior to radiation counteracted this stimulatory effect. Radiation alone enhanced the expression of the cancer suppressor miR-34a, and melatonin strongly stimulated this effect. Melatonin further enhanced the radiation-mediated inhibition of Akt. Finally, in an in vivo assay, melatonin restrained new vascularization in combination with ionizing radiation. Our results confirm that melatonin blocks many of the undesirable effects of ionizing radiation in MCF-7 cells and enhances changes that lead to optimized treatment results. This article highlights the effectiveness of melatonin as both a radiosensitizer and a radioprotector in breast cancer. Melatonin is an effective adjuvant molecule to radiotherapy, promoting anti-cancer therapeutic effects in cancer treatment. Melatonin modulates molecular pathways altered by radiation, and its use in clinic might lead to improved therapeutic outcomes by enhancing the sensitivity of cancerous cells to radiation and, in general, reversing their resistance toward currently applied therapeutic modalities.
Collapse
Affiliation(s)
- Carolina Alonso-González
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Cristina González-Abalde
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Javier Menéndez-Menéndez
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-González
- Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria and Instituto de Investigación Biomédica de Málaga (IBIMA)-CIMES-UMA, 29010 Málaga, Spain;
| | - Virginia Álvarez-García
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| | - Alicia González-Cabeza
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Carlos Martínez-Campa
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
- Correspondence: (A.G.-C.); (C.M.-C.); Tel.: +34-942-201965 (A.G.-C.); +34-942-201963 (C.M.-C.)
| | - Samuel Cos
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria and Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain; (C.A.-G.); (C.G.-A.); (J.M.-M.); (V.Á.-G.); (S.C.)
| |
Collapse
|
27
|
Shippy TD, Hosmani PS, Flores-Gonzalez M, Mueller LA, Hunter WB, Brown SJ, D’Elia T, Saha S. Annotation of Hox cluster and Hox cofactor genes in the Asian citrus psyllid, Diaphorina citri, reveals novel features. GIGABYTE 2022; 2022:gigabyte49. [PMID: 36824511 PMCID: PMC9933525 DOI: 10.46471/gigabyte.49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/06/2022] [Indexed: 11/09/2022] Open
Abstract
Hox genes and their cofactors are essential developmental genes specifying regional identity in animals. Hox genes have a conserved arrangement in clusters in the same order in which they specify identity along the anterior-posterior axis. A few insect species have breaks in the cluster, but these are exceptions. We annotated the 10 Hox genes of the Asian citrus psyllid Diaphorina citri, and found a split in its Hox cluster between the Deformed and Sex combs reduced genes - the first time a break at this position has been observed in an insect Hox cluster. We also annotated D. citri orthologs of the Hox cofactor genes homothorax, PKNOX and extradenticle and found an additional copy of extradenticle in D. citri that appears to be a retrogene. Expression data and sequence conservation suggest that the extradenticle retrogene may have retained the original extradenticle function and allowed divergence of the parental extradenticle gene.
Collapse
Affiliation(s)
- Teresa D. Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | - Wayne B. Hunter
- USDA-ARS, U.S. Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
28
|
Malaab M, Renaud L, Takamura N, Zimmerman KD, da Silveira WA, Ramos PS, Haddad S, Peters-Golden M, Penke LR, Wolf BJ, Hardiman G, Langefeld CD, Medsger TA, Feghali-Bostwick CA. Antifibrotic factor KLF4 is repressed by the miR-10/TFAP2A/TBX5 axis in dermal fibroblasts: insights from twins discordant for systemic sclerosis. Ann Rheum Dis 2022; 81:268-277. [PMID: 34750102 PMCID: PMC8758541 DOI: 10.1136/annrheumdis-2021-221050] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is a complex disease of unknown aetiology in which inflammation and fibrosis lead to multiple organ damage. There is currently no effective therapy that can halt the progression of fibrosis or reverse it, thus studies that provide novel insights into disease pathogenesis and identify novel potential therapeutic targets are critically needed. METHODS We used global gene expression and genome-wide DNA methylation analyses of dermal fibroblasts (dFBs) from a unique cohort of twins discordant for SSc to identify molecular features of this pathology. We validated the findings using in vitro, ex vivo and in vivo models. RESULTS Our results revealed distinct differentially expressed and methylated genes, including several transcription factors involved in stem cell differentiation and developmental programmes (KLF4, TBX5, TFAP2A and homeobox genes) and the microRNAs miR-10a and miR-10b which target several of these deregulated genes. We show that KLF4 expression is reduced in SSc dFBs and its expression is repressed by TBX5 and TFAP2A. We also show that KLF4 is antifibrotic, and its conditional knockout in fibroblasts promotes a fibrotic phenotype. CONCLUSIONS Our data support a role for epigenetic dysregulation in mediating SSc susceptibility in dFBs, illustrating the intricate interplay between CpG methylation, miRNAs and transcription factors in SSc pathogenesis, and highlighting the potential for future use of epigenetic modifiers as therapies.
Collapse
Affiliation(s)
- Maya Malaab
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kip D. Zimmerman
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK
| | - Paula S. Ramos
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Marc Peters-Golden
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Loka R. Penke
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bethany J. Wolf
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, Northern Ireland, UK,Department of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Carl D. Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA,Center for Public Health Genomics, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Thomas A. Medsger
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Carol A. Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA,Corresponding author: Dr. Carol A. Feghali-Bostwick, Division of Rheumatology & Immunology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, MSC637, Charleston, SC 29425.
| |
Collapse
|
29
|
El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ, Krichevsky AM. A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer 2022; 21:17. [PMID: 35033060 PMCID: PMC8760648 DOI: 10.1186/s12943-022-01494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA's poorly investigated and largely unconventional properties hamper the clinical translation. METHODS We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. RESULTS We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. CONCLUSIONS We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Mahalakshmi Ramadas
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA.
| |
Collapse
|
30
|
Hussen BM, Abdullah ST, Rasul MF, Salihi A, Ghafouri-Fard S, Hidayat HJ, Taheri M. MicroRNAs: Important Players in Breast Cancer Angiogenesis and Therapeutic Targets. Front Mol Biosci 2021; 8:764025. [PMID: 34778378 PMCID: PMC8582349 DOI: 10.3389/fmolb.2021.764025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
The high incidence of breast cancer (BC) is linked to metastasis, facilitated by tumor angiogenesis. MicroRNAs (miRNAs or miRs) are small non-coding RNA molecules that have an essential role in gene expression and are significantly linked to the tumor development and angiogenesis process in different types of cancer, including BC. There's increasing evidence showed that various miRNAs play a significant role in disease processes; specifically, they are observed and over-expressed in a wide range of diseases linked to the angiogenesis process. However, more studies are required to reach the best findings and identify the link among miRNA expression, angiogenic pathways, and immune response-related genes to find new therapeutic targets. Here, we summarized the recent updates on miRNA signatures and their cellular targets in the development of breast tumor angiogenetic and discussed the strategies associated with miRNA-based therapeutic targets as anti-angiogenic response.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Erbil, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| |
Collapse
|
31
|
Alcohol induced impairment/abnormalities in brain: Role of MicroRNAs. Neurotoxicology 2021; 87:11-23. [PMID: 34478768 DOI: 10.1016/j.neuro.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/12/2021] [Accepted: 08/28/2021] [Indexed: 12/21/2022]
Abstract
Alcohol is a highly toxic substance and has teratogenic properties that can lead to a wide range of developmental disorders. Excessive use of alcohol can change the structural and functional aspects of developed brain and other organs. Which can further lead to significant health, social and economic implications in many countries of the world. Convincing evidence support the involvement of microRNAs (miRNAs) as important post-transcriptional regulators of gene expression in neurodevelopment and maintenance. They also show differential expression following an injury. MiRNAs are the special class of small non coding RNAs that can modify the gene by targeting the mRNA and fine tune the development of cells to organs. Numerous pieces of evidences have shown the relationship between miRNA, alcohol and brain damage. These studies also show how miRNA controls different cellular mechanisms involved in the development of alcohol use disorder. With the increasing number of research studies, the roles of miRNAs following alcohol-induced injury could help researchers to recognize alternative therapeutic methods to treat/cure alcohol-induced brain damage. The present review summarizes the available data and brings together the important miRNAs, that play a crucial role in alcohol-induced brain damage, which will help in better understanding complex mechanisms. Identifying these miRNAs will not only expand the current knowledge but can lead to the identification of better targets for the development of novel therapeutic interventions.
Collapse
|
32
|
Liu F, Shi Y, Liu Z, Li Z, Xu W. The emerging role of miR-10 family in gastric cancer. Cell Cycle 2021; 20:1468-1476. [PMID: 34229543 PMCID: PMC8354661 DOI: 10.1080/15384101.2021.1949840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Evidence has demonstrated that miRNAs play an irreplaceable role in tumorigenesis and progression of a broad range of cancers, including gastric cancer. Among these miRNAs, miR-10a and miR-10b have been identified to critically participate in gastric carcinogenesis and malignant progression. In this review, we briefly describe the role of miR-10a and miR-10b in gastric cancer, especially in the regulation of cell proliferation, apoptosis, cell cycle, migration, invasion and metastasis, drug resistance, and cancer stem cells. Furthermore, we highlight several compounds that target the miR-10 family and exhibit antitumor activity in cancer cells. Moreover, we conclude that targeting the miR-10 family might be a promising approach for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Fang Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanfen Shi
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Zuolong Liu
- Department of Emergency, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Xu
- Department of the Clinical Laboratory, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
33
|
Soheilifar MH, Masoudi-Khoram N, Madadi S, Nobari S, Maadi H, Keshmiri Neghab H, Amini R, Pishnamazi M. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies. J Adv Res 2021; 37:235-253. [PMID: 35499045 PMCID: PMC9039675 DOI: 10.1016/j.jare.2021.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/13/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of breast cancer cells to endothelial cells in a process termed vasculogenic mimicry. Successful targeting of tumor angiogenesis is still a missing link in the treatment of Breast cancer (BC) due to the low effectiveness of anti-angiogenic therapies in this cancer. Response to anti-angiogenic therapeutics are controlled by a miRNAs, so the identification of interaction networks of miRNAs–targets can be applicable in determining anti-angiogeneic therapy and new biomarkers in BC. Angioregulatory miRNAs in breast cancer cells and their microenvironment have therapeutic potential in cancer treatment.
Background Cancer-associated angiogenesis is a fundamental process in tumor growth and metastasis. A variety of signaling regulators and pathways contribute to establish neovascularization, among them as small endogenous non-coding RNAs, microRNAs (miRNAs) play prominent dual regulatory function in breast cancer (BC) angiogenesis. Aim of Review This review aims at describing the current state-of-the-art in BC angiogenesis-mediated by angioregulatory miRNAs, and an overview of miRNAs dysregulation association with the anti-angiogenic response in addition to potential clinical application of miRNAs-based therapeutics. Key Scientific Concepts of Review Angioregulatory miRNA–target gene interaction is not only involved in sprouting vessels of breast tumors but also, trans-differentiation of BC cells to endothelial cells (ECs) in a process termed vasculogenic mimicry. Using canonical and non-canonical angiogenesis pathways, the tumor cell employs the oncogenic characteristics such as miRNAs dysregulation to increase survival, proliferation, oxygen and nutrient supply, and treatment resistance. Angioregulatory miRNAs in BC cells and their microenvironment have therapeutic potential in cancer treatment. Although, miRNAs dysregulation can serve as tumor biomarker nevertheless, due to the association of miRNAs dysregulation with anti-angiogenic resistant phenotype, clinical benefits of anti-angiogenic therapy might be challenging in BC. Hence, unveiling the molecular mechanism underlying angioregulatory miRNAs sparked a booming interest in finding new treatment strategies such as miRNA-based therapies in BC.
Collapse
Affiliation(s)
- Mohammad Hasan Soheilifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| | - Nastaran Masoudi-Khoram
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Soheil Madadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hamid Maadi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Razieh Amini
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahboubeh Pishnamazi
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
- Corresponding authorsat: Yara Institute, Academic Center for Education, Culture and Research (ACECR), Enghelab St, Tehran 1315795613, Iran (Mohammad Hasan Soheilifar). University of Limerick, Limerick V94 T9PX, Ireland (Mahboubeh Pishnamazi).
| |
Collapse
|
34
|
Cucher MA, Ancarola ME, Kamenetzky L. The challenging world of extracellular RNAs of helminth parasites. Mol Immunol 2021; 134:150-160. [PMID: 33773158 DOI: 10.1016/j.molimm.2021.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/26/2021] [Accepted: 03/06/2021] [Indexed: 01/08/2023]
Abstract
In the last years, cell free or extracellular RNAs (ex-RNAs) have emerged as novel intercellular messengers between animal cells, including pathogens. In infectious diseases, ex-RNAs represent novel players in the host-pathogen and pathogen-pathogen interplays and have been described in parasitic helminths from the three major taxonomic groups: nematodes, trematodes and cestodes. Altogether, it is estimated that approximately 30 percent of the world's population is infected with helminths, which cause debilitating diseases and syndromes. Ex-RNAs are protected from degradation by encapsulation in extracellular vesicles (EV), or association to proteins or lipoproteins, and have been detected in the excretion/secretion products of helminth parasites, with EV as the preferred extracellular compartment under study. EV is the generic term used to describe a heterogenous group of subcellular membrane-bound particles, with varying sizes, biogenesis, density and composition. However, recent data suggests that this is not the only means used by helminth parasites to secrete RNAs since ex-RNAs can also be found in EV-depleted samples. Furthermore, the use of pathogen ex-RNAs as biomarkers promise the advent of new diagnostic tools though this field is still in early stages of exploration. In this review, we summarize current knowledge of vesicular and non-vesicular ex-RNAs secretion in helminth parasites, their potential as biomarkers and the evidence of their role in parasite and host reciprocal communication, together with unanswered questions in the field.
Collapse
Affiliation(s)
- Marcela A Cucher
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina.
| | - María Eugenia Ancarola
- Department of Microbiology, School of Medicine, University of Buenos Aires, Buenos Aires, Argentina; Institute of Research on Microbiology and Medical Parasitology (IMPaM, UBA-CONICET), University of Buenos Aires, Buenos Aires, Argentina
| | - Laura Kamenetzky
- Laboratorio de Genómica y Bioinformática de Patógenos, iB3
- Instituto de Biociencias, Biotecnología y Biología traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
35
|
Expression profiling of Echinococcus multilocularis miRNAs throughout metacestode development in vitro. PLoS Negl Trop Dis 2021; 15:e0009297. [PMID: 33750964 PMCID: PMC8016320 DOI: 10.1371/journal.pntd.0009297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 04/01/2021] [Accepted: 03/08/2021] [Indexed: 12/30/2022] Open
Abstract
The neglected zoonotic disease alveolar echinococcosis (AE) is caused by the metacestode stage of the tapeworm parasite Echinococcus multilocularis. MicroRNAs (miRNAs) are small non-coding RNAs with a major role in regulating gene expression in key biological processes. We analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro, determined the spatial expression of miR-71 in metacestodes cultured in vitro and predicted miRNA targets. Small cDNA libraries from different samples of E. multilocularis were sequenced. We confirmed the expression of 37 miRNAs in E. multilocularis being some of them absent in the host, such as miR-71. We found a few miRNAs highly expressed in all life cycle stages and conditions analyzed, whereas most miRNAs showed very low expression. The most expressed miRNAs were miR-71, miR-9, let-7, miR-10, miR-4989 and miR-1. The high expression of these miRNAs was conserved in other tapeworms, suggesting essential roles in development, survival, or host-parasite interaction. We found highly regulated miRNAs during the different transitions or cultured conditions analyzed, which might suggest a role in the regulation of developmental timing, host-parasite interaction, and/or in maintaining the unique developmental features of each developmental stage or condition. We determined that miR-71 is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. MiRNA target prediction of the most highly expressed miRNAs and in silico functional analysis suggested conserved and essential roles for these miRNAs in parasite biology. We found relevant targets potentially involved in development, cell growth and death, lifespan regulation, transcription, signal transduction and cell motility. The evolutionary conservation and expression analyses of E. multilocularis miRNAs throughout metacestode development along with the in silico functional analyses of their predicted targets might help to identify selective therapeutic targets for treatment and control of AE. Alveolar echinococcosis (AE) is a zoonotic disease caused by the metacestode stage of the helminth parasite Echinococcus multilocularis. Current treatment requires surgery and/or prolonged drug therapy. Thus, novel strategies for the treatment of AE are needed. MicroRNAs (miRNAs), a class of small ~22-nucleotide (nt) non-coding RNAs with a major role in regulating gene expression, have been suggested as potential therapeutic targets for treatment and control of helminth parasite infections. In this work, we analyzed the expression profile of E. multilocularis miRNAs throughout metacestode development in vitro. We predicted functional roles for highly expressed miRNAs and found that they could be involved in essential roles for survival and development in the host. We determined that E. multilocularis miR-71, a highly expressed miRNA that is absent in the human host, is expressed in germinative cells and in other cell types of the germinal layer in E. multilocularis metacestodes cultured in vitro. Germinative cells are a relevant cell type to target for anti-echinococcosis drug development. MiRNAs that are absent in the human host, involved in essential functions, highly expressed and/or expressed in germinative cells in E. multilocularis metacestodes may represent selective therapeutic targets for treatment and control of AE.
Collapse
|
36
|
Rouhanizadeh N, Mokhtari M, Hajialiasgar S. Investigation of microRNA-10b values for the discrimination of metastasis due to melanoma. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:108. [PMID: 35126571 PMCID: PMC8765503 DOI: 10.4103/jrms.jrms_573_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/22/2020] [Accepted: 07/15/2021] [Indexed: 11/30/2022]
Abstract
Background: Melanoma is one of the most invasive cutaneous cancers with characteristics such as rapid progression and distant metastasis. The early diagnosis and staging of melanoma can help better manage the patients. The current study is aimed to assess the values of microRNA-10b (miRNA-10b) in the discrimination of metastatic melanomas. Materials and Methods: The current cross-sectional study has been conducted on forty patients diagnosed with melanoma since 2011. Cell culture of melanoma cell lines derived from the cancerous tissue, including WM115, BLM, K1735, WM793, and A375M, was cultured. In order to assess miRNA-10b levels, the real-time polymerase chain reaction was utilized. The absence (n = 20)/presence (n = 20) of metastasis was diagnosed with chest computed tomography or chest X-ray. The values of miRNA-10b for the discrimination of metastasis incidence were assessed. Results: The demographic characteristics, including age and gender of the metastatic and nonmetastatic patients, were similar (P > 0.05). The specimen cultures were positive for miRNA-10b in 14 (35%) of the metastatic cases versus 4 (20%) of the nonmetastatic ones (P = 0.004). The quantitative analysis of miR-2b revealed significantly higher levels in metastatic cases (−1.59 ± 1.13 in metastatic vs. −0.16 ± 0.67 in nonmetastatic cases; P = 0.001). The measured area under the curve for the value of miRNA-10b was 0.923 (P < 0.001; 95% confidence interval: 0.811–1) with sensitivity and specificity of 100% and 94.4%. Conclusion: Based on this study, metastatic melanoma was associated with elevated levels of miRNA-10b. This marker had the sensitivity and specificity of 100% and 94.4% for the discrimination of metastatic melanoma from nonmetastatic ones.
Collapse
|
37
|
Kaur M, Kumar A, Siddaraju NK, Fairoze MN, Chhabra P, Ahlawat S, Vijh RK, Yadav A, Arora R. Differential expression of miRNAs in skeletal muscles of Indian sheep with diverse carcass and muscle traits. Sci Rep 2020; 10:16332. [PMID: 33004825 PMCID: PMC7529745 DOI: 10.1038/s41598-020-73071-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The study presents the miRNA profiles of two Indian sheep populations with divergent carcass and muscle traits. The RNA sequencing of longissimus thoracis muscles from the two populations revealed a total of 400 known miRNAs. Myomirs or miRNAs specific to skeletal muscles identified in our data included oar-miR-1, oar-miR-133b, oar-miR-206 and oar-miR-486. Comparison of the two populations led to identification of 100 differentially expressed miRNAs (p < 0.05). A total of 45 miRNAs exhibited a log2 fold change of ≥ ( ±) 3.0. Gene Ontology analysis revealed cell proliferation, epithelial to mesenchymal transition, apoptosis, immune response and cell differentiation as the most significant functions of the differentially expressed miRNAs. The differential expression of some miRNAs was validated by qRT-PCR analysis. Enriched pathways included metabolism of proteins and lipids, PI3K-Akt, EGFR and cellular response to stress. The microRNA-gene interaction network revealed miR-21, miR-155, miR-143, miR-221 and miR-23a as the nodal miRNAs, with multiple targets. MicroRNA-21 formed the focal point of the network with 42 interactions. The hub miRNAs identified in our study form putative regulatory candidates for future research on meat quality traits in Indian sheep. Our results provide insight into the biological pathways and regulatory molecules implicated in muscling traits of sheep.
Collapse
Affiliation(s)
- Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Ashish Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.,Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | | | | | - Pooja Chhabra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Anita Yadav
- Kurukshetra University, Kurukshetra, Haryana, 136119, India
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
38
|
Guo L, Li Y, Zhao C, Peng J, Song K, Chen L, Zhang P, Ma H, Yuan C, Yan S, Fang Y, Kong B. RECQL4, Negatively Regulated by miR-10a-5p, Facilitates Cell Proliferation and Invasion via MAFB in Ovarian Cancer. Front Oncol 2020; 10:524128. [PMID: 33014878 PMCID: PMC7500455 DOI: 10.3389/fonc.2020.524128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
The high frequency of somatic copy number alterations, as opposed to point mutations, is considered a unique feature of ovarian cancer. Amplification-dependent overexpression of RecQ protein-like 4 (RECQL4), which participates in DNA replication and repair, mediates the development of various cancers, but its pathobiological and clinical roles are poorly understood. Here, using bioinformatics analysis, RECQL4 amplification was found to occur in 27% of ovarian cancer samples in the TCGA cohort. RECQL4 was found to be upregulated and associated with a poor prognosis based on the immunohistochemistry staining of ovarian cancer. Functionally, RECQL4 overexpression increased proliferation and invasion of ovarian cancer cells. RECQL4 silencing had the opposite effects. In addition, RECQL4 knockdown enhanced the sensitivity of ovarian cancer cells to cisplatin and PARP inhibitor (PARPi). Further mechanistic investigations revealed that MAFB was a downstream target of RECQL4. The oncogenic effect of RECQL4 was attenuated after MAFB knockdown. Moreover, RECQL4 overexpression was negatively regulated by the tumor suppressor miR-10a-5p. Collectively, these findings indicate that genomic amplification and low expression of miR-10a-5p contribute to RECQL4 overexpression in ovarian cancer. This is the first study to reveal the oncogenic functions and clinical significance of RECQL4 in ovarian cancer.
Collapse
Affiliation(s)
- Li Guo
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Yingwei Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Zhao
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiali Peng
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Long Chen
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Ping Zhang
- Department of Obstetrics and Gynecology, Qingdao Municipal Hospital, Shandong University, Qingdao, China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
39
|
A cancer stem cell-like phenotype is associated with miR-10b expression in aggressive squamous cell carcinomas. Cell Commun Signal 2020; 18:61. [PMID: 32276641 PMCID: PMC7146875 DOI: 10.1186/s12964-020-00550-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 03/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. Methods MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. Results Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. Conclusion The discovery that miR-10b mediates an aspect of cancer stemness – that of enhanced tumor cell adhesion, known to facilitate metastatic colonization – provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.
Collapse
|
40
|
Quan S, Nan X, Wang K, Jiang L, Yao J, Xiong B. Characterization of Sheep Milk Extracellular Vesicle-miRNA by Sequencing and Comparison with Cow Milk. Animals (Basel) 2020; 10:E331. [PMID: 32093183 PMCID: PMC7070426 DOI: 10.3390/ani10020331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/26/2022] Open
Abstract
Milk can mediate maternal-neonatal signal transmission by the bioactive component extracellular vesicles (EVs), which select specific types of miRNA to encapsulate. The miRNA profiling of sheep milk EVs was characterized by sequencing and compared with that of cow milk. Nanoparticle tracking analysis revealed that the concentration of sheep milk EVs was 1.3 ± 0.09 × 1012 particles/mL and the diameter was peaked at 131.2 ± 0.84 nm. Sheep milk EVs contained various small RNAs, including tRNA, Cis-regulatory element, rRNA, snRNA, other Rfam RNA, and miRNA, which held about 36% of all the small RNAs. In total, 84 types of miRNA were annotated with Ovis aries by miRBase (version 22.0) in sheep milk EVs, with 75 shared types of miRNAs in all samples. The miR-26a, miR-191, let-7f, let-7b and miR-10b were highly expressed both in cow and sheep milk EVs, and 14 sheep milk EV-miRNAs in the top 20, occupying 98% of the total expression, were immune-related. Although pathway analysis showed different potential functions of cow and sheep milk EV-miRNAs, there were still some shared points: lipid metabolism (phospholipase D, glycerophospholipid and glycosylphosphatidylinositol), calcium metabolism, and nerve conduction (axon guidance and synapse). This study provides reference for the bioactive components in the milk of different species.
Collapse
Affiliation(s)
- Suyu Quan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.); (X.N.); (K.W.)
- College of Animal Science and Technology, Northwest A&F University, Yanglin 712100, China
| | - Xuemei Nan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.); (X.N.); (K.W.)
| | - Kun Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.); (X.N.); (K.W.)
| | - Linshu Jiang
- Beijing Key Laboratory for Dairy Cow Nutrition, Beijing University of Agriculture, Beijing 102206, China;
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yanglin 712100, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.Q.); (X.N.); (K.W.)
| |
Collapse
|
41
|
Amniotic microvesicles impact hatching and pregnancy percentages of in vitro bovine embryos and blastocyst microRNA expression versus in vivo controls. Sci Rep 2020; 10:501. [PMID: 31949175 PMCID: PMC6965648 DOI: 10.1038/s41598-019-57060-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Embryo development and implantation are dynamic processes, responsive to external signals, and can potentially be influenced by many environmental factors. The aims of this study were to evaluate the effects of a culture medium supplemented with amniotic-derived microvesicles (MVs) on in vitro embryo hatching after cryopreservation, and pregnancy rate following embryo transfer. In addition, miRNA profiling of blastocysts produced in vitro, with or without (control; CTR) amniotic MV supplementation, was also evaluated using blastocysts produced in vivo. In vitro embryos were cultured with and without amniotic MV supplementation. In vivo blastocysts were obtained from superovulated cows. Samples for RNA isolation were obtained from three pools of 10 embryos each (in vivo, in vitro-CTR and in vitro + MVs). Our results show that the hatching percentage of cryopreserved in vitro + MVs embryos is higher (P < 0.05) than in vitro-CTR embryos and the pregnancy rate with fresh and cryopreserved in vitro + MVs embryos is higher than in vitro-CTR embryos. In addition, the analysis of differently expressed (DE) microRNAs showed that embryos produced in vivo are clearly different from those produced in vitro. Moreover, in vitro-CTR and in vitro + MVs embryos differ significantly for expression of two miRNAs that were found in higher concentrations in in vitro-CTR embryos. Interestingly, these two miRNAs were also reported in degenerated bovine embryos compared to good quality blastocysts. In conclusion, MV addition during in vitro production of embryos seems to counteract the adverse effect of in vitro culture and partially modulate the expression of specific miRNAs involved in successful embryo implantation.
Collapse
|
42
|
miR-10a-5p and miR-29b-3p as Extracellular Vesicle-Associated Prostate Cancer Detection Markers. Cancers (Basel) 2019; 12:cancers12010043. [PMID: 31877768 PMCID: PMC7017198 DOI: 10.3390/cancers12010043] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are shed by many different cell types. Their nucleic acids content offers new opportunities for biomarker research in different solid tumors. The role of EV RNA in prostate cancer (PCa) is still largely unknown. EVs were isolated from different benign and malignant prostate cell lines and blood plasma from patients with PCa (n = 18) and controls with benign prostatic hyperplasia (BPH) (n = 7). Nanoparticle tracking analysis (NTA), Western blot, electron microscopy, and flow cytometry analysis were used for the characterization of EVs. Non-coding RNA expression profiling of PC3 metastatic PCa cells and their EVs was performed by next generation sequencing (NGS). miRNAs differentially expressed in PC3 EVs were validated with qRT-PCR in EVs derived from additional cell lines and patient plasma and from matched tissue samples. 92 miRNAs were enriched and 48 miRNAs were depleted in PC3 EVs compared to PC3 cells, which could be confirmed by qRT-PCR. miR-99b-5p was significantly higher expressed in malignant compared to benign EVs. Furthermore, expression profiling showed miR-10a-5p (p = 0.018) and miR-29b-3p (p = 0.002), but not miR-99b-5p, to be overexpressed in plasma-derived EVs from patients with PCa compared with controls. In the corresponding tissue samples, no significant differences in the miRNA expression could be observed. We thus propose that EV-associated miR-10a-5p and miR-29b-3p could serve as potential new PCa detection markers.
Collapse
|
43
|
Answer to Controversy: miR-10a Replacement Approaches Do Not Offer Protection against Chemotherapy-Induced Gonadotoxicity in Mouse Model. Int J Mol Sci 2019; 20:ijms20194958. [PMID: 31597292 PMCID: PMC6801898 DOI: 10.3390/ijms20194958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022] Open
Abstract
It is well known that chemotherapeutic agents may lead to premature ovarian failure and infertility. Therefore, fertility preservation is highly recommended for female cancer survivors. Despite the currently available techniques, new, non-invasive methods need to be developed to protect the ovarian follicles during oncological treatments. MicroRNAs can be effective tools in this field, as they alter their expression during chemotherapy exposure, and hence they can be useful to minimize the off-target toxicity. Previously, we identified several miRNAs with an important role in newborn mouse ovaries exposed to chemotherapy; among them, the miR-10a was one of the most downregulated miRNAs. Given the controversial role of miR-10a in the ovarian function, we decided to investigate its implication in chemotherapy-induced gonadotoxicity. The downregulated levels of miR-10a were restored by a liposome system conjugated with a mimic miR-10a, and the overexpressed miR-10a prevented the upregulation of the targeted gene, phosphatase and tensin homolog (Pten). The apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) Assay and Bax expression quantification, while histological studies were also performed to evaluate the follicle count and development. Our results showed that the miR-10a replacement could not protect the ovaries from chemotherapy-induced apoptosis, whereas the targeting of Pten may affect the follicle activation via the phosphoinositide 3-kinase (PI3K)/PTEN/protein kinase B (AKT) pathway. Consequently, the application of miR-10a in fertility preservation is not recommended, and the role of miR-10a needs to be further elucidated.
Collapse
|
44
|
Qiao H, Jiang S, Xiong Y, Fu H, Zhang W, Wang Y, Gong Y, Jin S, Wu Y. Integrated analysis of differentially expressed microRNAs and mRNAs to screen miRNAs and genes related to reproduction in Macrobrachium nipponense. 3 Biotech 2019; 9:327. [PMID: 31406649 PMCID: PMC6689314 DOI: 10.1007/s13205-019-1847-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Female Macrobrachium nipponense has the characteristic of short sexual maturity during the breeding season, which can increase breeding risk and lead to prevalent female individual miniaturization. In this study, we characterized micro (mi)RNA-seq data of the eyestalk (E) and cerebral ganglia (B) of female M. nipponense during breeding and non-breeding seasons. A total of 393 and 189 differentially expressed miRNAs (DE miRNAs) were identified in BSE vs. NBSE and BSB vs. NBSB, respectively. The most abundant up- and down-regulated DE miRNAs were miR-124, miR-14, and miR-7. Enrichment analysis showed that DE miRNA target genes were mainly involved in 'metabolic process' and 'binding', and were associated with 'neurohormonal regulation' and 'photoreceptor activity' signaling pathways. Integrated analysis of miRNA-mRNA expression showed that the most abundant DE miRNAs were miR-14 and miR-278 in BSE vs. NBSE and BSB vs. NBSB, respectively. Four pairs of DE miRNAs and their corresponding target annotated genes were selected from the DE miRNA-mRNA interaction network (bmo-miR-316-5p/opsin protein, ame-miR-125/skeletal muscle actin 8, dmo-miR-278/sugar transporter, and tca-miR-3885-5p/5-HT1 receptor). Gene expression analysis of these four pairs in different ovary development stages showed their potential regulatory roles in ovary maturation.
Collapse
Affiliation(s)
- Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Hongtuo Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yabing Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081 People’s Republic of China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081 People’s Republic of China
| |
Collapse
|
45
|
Zeng G, Wang Z, Huang Y, Abedin Z, Liu Y, Randhawa P. Cellular and viral miRNA expression in polyomavirus BK infection. Transpl Infect Dis 2019; 21:e13159. [PMID: 31410940 DOI: 10.1111/tid.13159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/12/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022]
Abstract
Polyomavirus BK (BKV) is an important pathogen in kidney transplant patients. Regulation of BKV encoded microRNAs (miRNAs) is not well understood. Therefore, tubular epithelial cells infected with BKV were examined for changes in small RNA expression. The observed changes were further evaluated by real-time PCR and RNA-seq analysis of renal allograft biopsies. BKV-miR-B1-5p and BKV-miR-B1-3p showed a 1000-fold increase over 12 days but did not prevent cell lysis. Downregulation of host miR-10b and miR-30a could be confirmed on all three platforms evaluated. Whereas, the BKV genome expressed more 3p than 5p miRNA species, the reverse was true for the human genome. Decreased expression of TP53INP2, and increased expression of BCL2A1, IL-6, IL8 and other proinflammatory cytokines were shown in biopsies with BKV nephropathy. No change in expression was seen in miR-10a dependent expression of NKG2D ligands ULBP3, MICA, or MICB. In conclusion, BKV infection results in regulation of cellular genes regulated by and possibly amenable to therapies targeting miR-10 and miR-30.
Collapse
Affiliation(s)
- Gang Zeng
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zijie Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuchen Huang
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Yang Liu
- PrimBio Research Institute LLC, Exton, PA, USA
| | - Parmjeet Randhawa
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
46
|
Physiological response and miRNA-mRNA interaction analysis in the head kidney of rainbow trout exposed to acute heat stress. J Therm Biol 2019; 83:134-141. [DOI: 10.1016/j.jtherbio.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
|
47
|
Simões A, Chen L, Chen Z, Zhao Y, Gao S, Marucha PT, Dai Y, DiPietro LA, Zhou X. Differential microRNA profile underlies the divergent healing responses in skin and oral mucosal wounds. Sci Rep 2019; 9:7160. [PMID: 31073224 PMCID: PMC6509259 DOI: 10.1038/s41598-019-43682-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/27/2019] [Indexed: 12/31/2022] Open
Abstract
Oral mucosal wounds heal faster than skin wounds, yet the role of microRNAs in this differential healing has never been examined. To delineate the role of microRNAs in this site-specific injury response, we first compared the microRNAome of uninjured skin and oral mucosa in mice. A total of 53 tissue-specific microRNAs for skin and oral mucosa epithelium were identified. The most striking difference was the high abundance of miR-10a/b in skin (accounting for 21.10% of the skin microRNAome) as compared to their low expression in oral mucosa (2.87%). We further examined the dynamic changes of microRNAome throughout the time course of skin and oral mucosal wound healing. More differentially expressed microRNAs were identified in skin wounds than oral wounds (200 and 33, respectively). More specifically, miR-10a/b was significantly down-regulated in skin but not oral wounds. In contrast, up-regulation of miR-21 was observed in both skin and oral wounds. The therapeutic potential of miR-10b and miR-21 in accelerating wound closure was demonstrated in in vitro assays and in a murine skin wound model. Thus, we provided the first site-specific microRNA profile of skin and oral mucosal wound healing, and demonstrate the feasibility of a microRNA-based therapy for promoting wound closure.
Collapse
Affiliation(s)
- Alyne Simões
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,Oral Biology Laboratory, Department of Biomaterials and Oral Biology, School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | - Lin Chen
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Zhao
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Shang Gao
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Phillip T Marucha
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA.,College of Dentistry, Oregon Health and Sciences University, Portland, OR, USA
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Luisa A DiPietro
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA.
| | - Xiaofeng Zhou
- Center for Wound Healing & Tissue Regeneration, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Center for Molecular Biology of Oral Diseases, Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA. .,Graduate College, University of Illinois at Chicago, Chicago, IL, USA. .,UIC Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
48
|
A urinary microRNA panel that is an early predictive biomarker of delayed graft function following kidney transplantation. Sci Rep 2019; 9:3584. [PMID: 30837502 PMCID: PMC6401030 DOI: 10.1038/s41598-019-38642-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/18/2018] [Indexed: 01/02/2023] Open
Abstract
Predicting immediate and subsequent graft function is important in clinical decision-making around kidney transplantation, but is difficult using available approaches. Here we have evaluated urinary microRNAs as biomarkers in this context. Profiling of 377 microRNAs in the first urine passed post-transplantation identified 6 microRNAs, confirmed to be upregulated by RT-qPCR in an expanded cohort (miR-9, -10a, -21, -29a, -221, and -429, n = 33, P < 0.05 for each). Receiver operating characteristic analysis showed Area Under the Curve 0.94 for this panel. To establish whether this early signal was sustained, miR-21 was measured daily for 5 days post-transplant, and was consistently elevated in those developing Delayed Graft Function (n = 165 samples from 33 patients, p < 0.05). The biomarker panel was then evaluated in an independent cohort, sampled at varying times in the first week post-transplantation in a separate transplant center. When considered individually, all miRs in the panel showed a trend to increase or a significant increase in those developing delayed Graft Function (miR-9: P = 0.068, mIR-10a: P = 0.397, miR-21: P = 0.003, miR-29a: P = 0.019, miR-221: P = 0.1, and miR-429: P = 0.013, n = 47) with Area Under the Curve 0.75 for the panel. In conclusion, combined measurement of six microRNAs had predictive value for delayed graft function following kidney transplantation.
Collapse
|
49
|
Modulation of miR-10a-mediated TGF-β1/Smads signaling affects atrial fibrillation-induced cardiac fibrosis and cardiac fibroblast proliferation. Biosci Rep 2019; 39:BSR20181931. [PMID: 30683806 PMCID: PMC6367129 DOI: 10.1042/bsr20181931] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 01/10/2019] [Accepted: 01/25/2019] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) rat models and rat cardiac fibroblasts (CFs) with overexpressed or inhibited miR-10a were used to investigate the possible role of miR-10a-mediated transforming growth factor-β (TGF-β1)/Smads signaling in cardiac fibrosis and fibroblast proliferation in rats with AF. Gene ontology and pathway enrichment analyses were used to identify the possible function of miR-10a in cardiac fibrosis. The results showed that overexpressed miR-10a significantly prolonged the duration of AF, further elevated the collagen volume fraction (CVF), and increased the viability of CFs in AF rats; these findings were in contrast with the findings for rats with inhibition of miR-10a (all P<0.05). Moreover, miR-10a overexpression could promote miR-10a, collagen-I, collagen III, α-SMA, and TGF-β1 protein expression and increase the levels of hydroxyproline but reduced Smad7 protein expression in atrial tissues and CFs in AF rats. Not surprisingly, inhibiting miR-10a led to completely contrasting results (all P<0.05). Moreover, TGF-β1 treatment could reverse the inhibitory effect of miR-10a down-regulation on cardiac fibrosis in CFs. Bioinformatics analysis and luciferase reporter assay results demonstrated that miR-10a bound directly to the 3′-UTR of BCL6, which is involved in cell growth and proliferation. Thus, our study indicate that down-regulation of miR-10a may inhibit collagen formation, reduce atrial structure remodeling, and decrease proliferation of CFs, eventually suppressing cardiac fibrosis in AF rats via inhibition of the TGF-β1/Smads signaling pathway.
Collapse
|
50
|
Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González LS, Granados-López AJ, López-Hernández Y, Reyes-Estrada CA, Gutiérrez-Hernández R, Castañeda-Delgado JE, Ramírez-Hernández L, Varela-Silva JA, López JA. 5p and 3p Strands of miR-34 Family Members Have Differential Effects in Cell Proliferation, Migration, and Invasion in Cervical Cancer Cells. Int J Mol Sci 2019; 20:E545. [PMID: 30696040 PMCID: PMC6387060 DOI: 10.3390/ijms20030545] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022] Open
Abstract
The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Ixamail Fraire-Soto
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Andrea Mercado-Casas Torres
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | | | - Angelica Judith Granados-López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Yamilé López-Hernández
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
- Laboratorio de Metabolómica de la Unidad Académica de Ciencias Biológicas, CONACyT, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Claudia Araceli Reyes-Estrada
- Laboratorio de Patología e Inmunohistoquímica de la Unidad Académica de Medicina Humana de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Laboratorio de Etnofarmacología Nutrición de la Unidad Académica de Enfermería de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Julio Enrique Castañeda-Delgado
- Catedrático-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas CP 98000, Mexico.
| | - Leticia Ramírez-Hernández
- Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas Av. Preparatoria S/N, Zacatecas 98066, México.
| | - José Antonio Varela-Silva
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| |
Collapse
|