1
|
Kyrgiafini MA, Giannoulis T, Chatziparasidou A, Christoforidis N, Mamuris Z. Unveiling the Genetic Complexity of Teratozoospermia: Integrated Genomic Analysis Reveals Novel Insights into lncRNAs' Role in Male Infertility. Int J Mol Sci 2023; 24:15002. [PMID: 37834450 PMCID: PMC10573971 DOI: 10.3390/ijms241915002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Male infertility is a global health issue, affecting over 20 million men worldwide. Genetic factors are crucial in various male infertility forms, including teratozoospermia. Nonetheless, the genetic causes of male infertility remain largely unexplored. In this study, we employed whole-genome sequencing and RNA expression analysis to detect differentially expressed (DE) long-noncoding RNAs (lncRNAs) in teratozoospermia, along with mutations that are exclusive to teratozoospermic individuals within these DE lncRNAs regions. Bioinformatic tools were used to assess variants' impact on lncRNA structure, function, and lncRNA-miRNA interactions. Our analysis identified 1166 unique mutations in teratozoospermic men within DE lncRNAs, distinguishing them from normozoospermic men. Among these, 64 variants in 23 lncRNAs showed potential regulatory roles, 7 variants affected 4 lncRNA structures, while 37 variants in 17 lncRNAs caused miRNA target loss or gain. Pathway Enrichment and Gene Ontology analyses of the genes targeted by the affected miRNAs revealed dysregulated pathways in teratozoospermia and a link between male infertility and cancer. This study lists novel variants and lncRNAs associated for the first time with teratozoospermia. These findings pave the way for future studies aiming to enhance diagnosis and therapy in the field of male infertility.
Collapse
Affiliation(s)
- Maria-Anna Kyrgiafini
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| | - Themistoklis Giannoulis
- Laboratory of Biology, Genetics and Bioinformatics, Department of Animal Sciences, University of Thessaly, Gaiopolis, 41336 Larissa, Greece
| | - Alexia Chatziparasidou
- Embryolab IVF Unit, St. 173-175 Ethnikis Antistaseos, Kalamaria, 55134 Thessaloniki, Greece
| | | | - Zissis Mamuris
- Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, University of Thessaly, Viopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
2
|
Dai P, Qiao F, Chen Y, Chan DYL, Yim HCH, Fok KL, Chen H. SARS-CoV-2 and male infertility: from short- to long-term impacts. J Endocrinol Invest 2023; 46:1491-1507. [PMID: 36917421 PMCID: PMC10013302 DOI: 10.1007/s40618-023-02055-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023]
Abstract
PURPOSE The coronavirus 2019 (COVID-19) pandemic-caused by a new type of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-has posed severe impacts on public health worldwide and has resulted in a total of > 6 million deaths. Notably, male patients developed more complications and had mortality rates ~ 77% higher than those of female patients. The extensive expression of the SARS-CoV-2 receptor and related proteins in the male reproductive tract and the association of serum testosterone levels with viral entry and infection have brought attention to COVID-19's effects on male fertility. METHODS The peer-reviewed articles and reviews were obtained by searching for the keywords SARS-CoV-2, COVID-19, endocrine, spermatogenesis, epididymis, prostate, and vaccine in the databases of PubMed, Web of Science and Google Scholar from 2020-2022. RESULTS This review summarizes the effects of COVID-19 on the male reproductive system and investigates the impact of various types of SARS-CoV-2 vaccines on male reproductive health. We also present the underlying mechanisms by which SARS-CoV-2 affects male reproduction and discuss the potentially harmful effects of asymptomatic infections, as well as the long-term impact of COVID-19 on male reproductive health. CONCLUSION COVID-19 disrupted the HPG axis, which had negative impacts on spermatogenesis and the epididymis, albeit further investigations need to be performed. The development of vaccines against various SARS-CoV-2 variations is important to lower infection rates and long-term COVID risks.
Collapse
Affiliation(s)
- P Dai
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - F Qiao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - Y Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China
| | - D Y L Chan
- Assisted Reproductive Technologies Unit, Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - H C H Yim
- Microbiome Research Centre, School of Clinical Medicine, Faculty of Medicine, St George and Sutherland Campus, UNSW Sydney, Sydney, Australia
| | - K L Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, People's Republic of China.
- Kong Joint Laboratory for Reproductive Medicine, Sichuan University-The Chinese University of Hong, West China Second University Hospital, Chengdu, People's Republic of China.
| | - H Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, People's Republic of China.
| |
Collapse
|
3
|
Chen C, Yi X, Liu P, Li J, Yan B, Zhang D, Zhu L, Yu P, Li L, Zhang J, Kuang Y, Zhao S, Zhu W, Peng C, Chen X. CD147 Facilitates the Pathogenesis of Psoriasis through Glycolysis and H3K9me3 Modification in Keratinocytes. RESEARCH (WASHINGTON, D.C.) 2023; 6:0167. [PMID: 37303600 PMCID: PMC10249783 DOI: 10.34133/research.0167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease featuring rapid proliferation of epidermal cells. Although elevated glycolysis flux has been reported in psoriasis, the molecular mechanisms underlying its pathogenesis remain unclear. We investigated the role of the integral membrane protein CD147 in psoriasis pathogenesis, observing its high expression in psoriatic skin lesions of humans and imiquimod (IMQ)-induced mouse models. In mouse models, genomic deletion of epidermal CD147 markedly attenuated IMQ-induced psoriatic inflammation. We found that CD147 interacted with glucose transporter 1 (Glut1). Depletion of CD147 in the epidermis blocked glucose uptake and glycolysis in vitro and in vivo. In CD147-knockout mice and keratinocytes, oxidative phosphorylation was increased in the epidermis, indicating CD147's pivotal role in glycolysis reprogramming during pathogenesis of psoriasis. Using non-targeted and targeted metabolic techniques, we found that epidermal deletion of CD147 significantly increased the production of carnitine and α-ketoglutaric acid (α-KG). Depletion of CD147 also increased transcriptional expression and activity of γ-butyrobetaine hydroxylase (γ-BBD/BBOX1), a crucial molecule for carnitine metabolism, by inhibiting histone trimethylations of H3K9. Our findings demonstrate that CD147 is critical in metabolic reprogramming through the α-KG-H3K9me3-BBOX1 axis in the pathogenesis of psoriasis, indicating that epidermal CD147 is a promising target for psoriasis treatment.
Collapse
Affiliation(s)
- Chao Chen
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiaoqing Yi
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Panpan Liu
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jie Li
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Bei Yan
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Detian Zhang
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Lei Zhu
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Pian Yu
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Lei Li
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Jiaxiong Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Yehong Kuang
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Shuang Zhao
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Wu Zhu
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Cong Peng
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China
- Furong Laboratory, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital,
Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital,
Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Jin J, Li X, Ye M, Qiao F, Chen H, Fok KL. Defb19 regulates the migration of germ cell and is involved in male fertility. Cell Biosci 2022; 12:188. [PMID: 36414976 PMCID: PMC9682749 DOI: 10.1186/s13578-022-00924-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
β-defensins are small antimicrobial peptides that play essential roles in male fertility. Although several members of the β-defensin family are preferentially expressed in the testis, their involvement in spermatogenesis remains elusive. In this study, we have characterized the expression and function of Defb19 in mouse testis. Our results showed that Defb19 is expressed in both Sertoli cells and germ cells. Overexpression of Defb19 in the 15P-1 Sertoli cell line decreases the expression of cell junction molecules and promotes the matrix adhesion and migration of Sertoli cells. Recombinant DEFB19 and conditioned medium of Defb19-overexpressed 15P-1 cells promote the migration of GC2-spd spermatocyte cell line. Knockout of Defb19 in mouse by CRISPR/Cas9 resulted in male subfertility with testicular and epididymal atrophy. A marked increase in apoptosis and a significant decrease in the sperm count were observed in the KO mice. Together, our study has uncovered an important role of Defb19 in male fertility by regulating the migration of both the Sertoli cells and the germ cells. Our study has shed new light on the functions of β-defensins in the testis.
Collapse
|
5
|
Choy KHK, Chan SY, Lam W, Jin J, Zheng T, Law TYS, Yu SS, Wang W, Li L, Xie G, Yim HCH, Chen H, Fok EKL. The repertoire of testicular extracellular vesicle cargoes and their involvement in inter-compartmental communication associated with spermatogenesis. BMC Biol 2022; 20:78. [PMID: 35351114 PMCID: PMC8966158 DOI: 10.1186/s12915-022-01268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Background Spermatogenesis is regulated by a complex network of intercellular communication processes. Extracellular vesicles (EVs) are one of the important mediators in intercellular communication. Previous reports have demonstrated the involvement of EVs from the epididymis and prostate in sperm maturation and function. However, the presence of EVs in the testis and their potential involvement in spermatogenesis has not been explored. Here, we have established a testis dissociation protocol that allows the isolation and characterization of testicular EVs. Results We show that testicular EVs are specifically and efficiently taken up by somatic cells and germ cells, including the spermatozoa in the interstitial space and the seminiferous tubule compartments. We profiled the proteome of testicular EVs and probed the cell types that release them, revealing the potential contributions from the Leydig cells and testicular macrophages. Moreover, we sequenced the small RNA cargoes of testicular EVs and identified sets of small non-coding RNAs that were overlooked in the testis transcriptome. Selected miRNA candidates in testicular EVs were found in sperm RNA payload and demonstrated specific resistance towards ribonuclease A independent of the vesicle membrane. Small molecule inhibition of EV secretion perturbed spermatogenesis via inter-compartmental communication. Conclusions Together, our study provides a valuable resource on the repertoire of cargoes carried by testicular EVs and uncovers a physiological function of testicular EVs in inter-compartmental communication associated to spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01268-5.
Collapse
Affiliation(s)
- Kathleen Hoi Kei Choy
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sze Yan Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - William Lam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jing Jin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tingting Zheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Tin Yu Samuel Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Sidney Siubun Yu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Weiping Wang
- Dr. Li Dak-Sum Research Centre, University of Hong Kong, Hong Kong, SAR, China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, SAR, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, People's Republic of China
| | - Howard Chi Ho Yim
- Microbiome Research Centre, St George and Sutherland Clinical School, The University of New South Wales, Sydney, Australia
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, People's Republic of China.
| | - Ellis Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China. .,Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Chengdu, People's Republic of China.
| |
Collapse
|
6
|
Chen H, Shi X, Li X, Diao R, Ma Q, Jin J, Qiu Z, Li C, Yu MK, Wang C, Li X, Li F, Chan DYL, Zhao AZ, Cai Z, Sun F, Fok KL. CD147 deficiency is associated with impairedsperm motility/acrosome reaction and offersa therapeutic target for asthenozoospermia. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1374-1386. [PMID: 34900396 PMCID: PMC8626663 DOI: 10.1016/j.omtn.2021.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/16/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022]
Abstract
Patients with asthenozoospermia often present multiple defects in sperm functions apart from a decrease in sperm motility. However, the etiological factors underlying these multifaceted defects remain mostly unexplored, which may lead to unnecessary treatment and unsatisfactory assisted reproductive technologies (ART) outcome. Here, we show that the protein levels of CD147 were lowered in sperm obtained from asthenozoospermic infertile patients exhibiting defects in both sperm motility and the acrosome reaction. Whereas CD147 maintained sperm motility before capacitation, female tract-derived soluble CD147 interacted with sperm-bound CD147 to induce an acrosome reaction in capacitated sperm. Soluble CD147 treatment restored the acrosome reaction and improved the fertility of sperm from patients with asthenozoospermia. Mechanistically, CD147 promotes sperm motility and acrosome reaction (AR) by eliciting Ca2+ influx through soluble CD147 binding to sperm-bound CD147. Notably, the level of soluble CD147 in seminal plasma was positively correlated with the fertilization rate and pregnancy outcome in infertile couples undergoing in vitro fertilization. Our study has identified a marker for the diagnosis and a therapeutic target for the defective AR capability in asthenozoospermia and a candidate for the prediction of in vitro fertilization outcomes for male infertile patients that facilitates the development of precision medicine in ART.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Corresponding author: Hao Chen, Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China.
| | - Xiao Shi
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiaofeng Li
- Department of Clinical Medical Laboratory, Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Ruiying Diao
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
| | - Qian Ma
- Department of Clinical Medical Laboratory, Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Jing Jin
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhuolin Qiu
- Center for Reproductive Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Cailing Li
- Department of Clinical Medical Laboratory, Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Mei Kuen Yu
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chaoqun Wang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianxin Li
- Department of Clinical Medical Laboratory, Guangdong Key Laboratory of Male Reproductive Medicine and Genetics, Peking University Shenzhen Hospital, Shenzhen 518000, China
- Shenzhen Qianhai Taikang International Hospital, Shenzhen 518054, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - David Yiu Leung Chan
- Department of Obstetrics & Gynecology, The Chinese University of Hong Kong, Hong Kong, China
| | - Allan Zijian Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiming Cai
- Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen 518035, China
- International Cancer Center, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226001, China
| | - Kin Lam Fok
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Sichuan University—The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Corresponding author: Kin Lam Fok, Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Zhang Z, Yu J, Xie J, Liu D, Fan Y, Ma H, Wang C, Hong Z. Improvement roles of zinc supplementation in low dose lead induced testicular damage and glycolytic inhibition in mice. Toxicology 2021; 462:152933. [PMID: 34508822 DOI: 10.1016/j.tox.2021.152933] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Lead (Pb) is a toxic metal that affects the male reproductive system. This study aimed to investigate the effects of zinc (Zn) intake between recommended dietary allowances (RDAs) and tolerable upper intake levels (ULs) in preventing male testis damage induced by low-dose Pb. Forty-five mice were randomly divided into control, Pb, and Pb + Zn groups. They were given distilled water ad libitum with 0, 200 mg/L Pb2+, or 15 mg/L Zn2+ mixed with 200 mg/L Pb2+ for 90 consecutive days. The Zn levels in the blood and testis of the Pb group were significantly lower than those of the control group. The Pb levels in the blood and testis of the Pb + Zn group were significantly lower than those of the Pb group. Additionally, a significant decrease in sperm density and viability, with a significant increase in sperm abnormality rate and DNA fragmentation index, was observed in the Pb group. Zn supplementation significantly improved the above sperm parameters. Moreover, Zn supplementation decreased low-dose Pb-induced lipid peroxidation and increased glutathione, total superoxide dismutase (SOD), and copper/Zn-SOD levels. Furthermore, Zn treatment improved glycolysis products and lactate transporters in Pb-treated mouse testes. Our findings suggest that Zn intake between RDAs and UL can act as a therapeutic agent in protecting against the reproductive impairments associated with Pb exposure.
Collapse
Affiliation(s)
- Zhaoyu Zhang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jun Yu
- Department of Preventive Medicine, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, 437100, PR China
| | - Jie Xie
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Duanya Liu
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yongsheng Fan
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Haitao Ma
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Chunhong Wang
- Department of Preventive Medicine, School of Health Sciences, Wuhan University, Wuhan, 430071, PR China.
| | - Zhidan Hong
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
8
|
Gum Arabic improves the reproductive capacity through upregulation of testicular glucose transporters (GLUTs) mRNA expression in Alloxan induced diabetic rat. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.bcdf.2020.100218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Exposure to Pb and Cd alters MCT4/CD147 expression and MCT4/CD147-dependent lactate transport in mice Sertoli cells cultured in vitro. Toxicol In Vitro 2019; 56:30-40. [PMID: 30615929 DOI: 10.1016/j.tiv.2019.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 10/28/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Sertoli cells (SCs) provide lactate as an energy substrate to develop germ cells during spermatogenesis. Lead (Pb) and cadmium (Cd) can induce SC toxicity. However, the mechanisms remain unclear. This study aimed to investigate the molecular mechanisms by which Pb and Cd alter lactate transport and production by SCs. Mouse SC line (15P-1 cells) were cultured in the absence and presence of lead acetate (PbAc, 1, 10, 20 and 30 μM) or cadmium chloride (CdCl2, 0.5, 5, 10 and 15 μM) for 24 h. The results showed that PbAc exposure significantly decreased lactate dehydrogenase (LDH) activity and mRNA level, intracellular and extracellular lactate, and MCT4 and CD147 protein levels but increased MCT4 and CD147 mRNA levels. However, PbAc did not alter the glucose uptake, glucose transporters 1 (GLUT1) and 3 (GLUT3) mRNA expression of SCs. Thus, PbAc mainly decreased lactate production by inhibiting LDH activity. In CdCl2-treated SCs, intracellular lactate content increased but extracellular lactate content decreased significantly, P < .05. The glucose uptake, LDH activity, and mRNA expression of GLUT1, GLUT3 and LDH, all significantly increased. But the mRNA and protein levels of MCT4 and CD147 significantly decreased. Moreover, the fluorescence intensity of co-localizations of the MCT4-CD147 complex dose-dependently decreased in the cell membrane. Thus, CdCl2 may reduce lactate export by suppressing MCT4 and CD147 expression. These results suggest that PbAc and CdCl2 disrupt lactate production and transport in mouse SCs by disturbing glycolysis or inhibiting MCT4-CD147 transporter expression and co-localizations.
Collapse
|
10
|
Asgari R, Mansouri K, Bakhtiari M, Vaisi-Raygani A. CD147 as an apoptosis regulator in spermatogenesis: deciphering its association with matrix metalloproteinases' pathway. Mol Biol Rep 2019; 46:1099-1105. [PMID: 30600459 DOI: 10.1007/s11033-018-4568-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/10/2018] [Indexed: 12/27/2022]
Abstract
CD147 plays an important role in germ cells migration and survival/apoptosis during the spermatogenesis process. However, to best of our knowledge, there is no report on the exact role of CD147 gene in the regulation of germ cells apoptosis through matrix metalloproteinases (MMPs). So, the current study aims to evaluate the role of CD147 gene expression in the regulation of germ cells apoptosis in conjunction with MMPs. Real-Time PCR was applied to investigate the expression of CD147, MMP2, MMP7, and MMP9 genes in the azoospermic patients and fertile males. Receiver-operating characteristic curve was used to interpret gene expression data. According to our results, a significant decrease in the expression of CD147 gene and an increase in MMPs genes expression were observed in infertile patients compared to fertile males. These results proved this fact that the CD147 gene has an important role in the regulation of germ cells apoptosis via a MMPs-dependent pathway.
Collapse
Affiliation(s)
- Rezvan Asgari
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Department of Anatomical Sciences & Cell Biology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Asad Vaisi-Raygani
- Department of Clinical Biochemistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Roshankhah S, Mansouri K, Bakhtiari M, Salahshoor MR, Asgari R. Synergistic effects of TIMP2-418G/C and MMP9-1562C/T variants on the male infertility risk. Mol Biol Rep 2018; 46:861-866. [PMID: 30515695 DOI: 10.1007/s11033-018-4541-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/28/2018] [Indexed: 11/26/2022]
Abstract
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) involve in the degradation of the extracellular matrix (ECM) that imbalances their activity and may lead to various diseases. The present study aims to evaluate the association between MMP9-1562C/T and TIMP2-418G/C variants and synergistic effects of both variants on male infertility in an Iranian population. We analyzed these polymorphisms in 101 infertile men and 106 fertile men as a control group using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Based on the obtained results, no considerable association was observed in MMP9-1562C/T polymorphism frequency between infertile men and controls while frequencies of TIMP2-418G/C variant were significantly different in infertile and control groups (P = 0.028). Men with CC, GC and CC + GC genotypes for TIMP2-418G/C polymorphism had an increased risk of infertility compared to men with GG genotype [OR = 1.85, 95% CI (0.917-3.734, P = 0.086), OR = 1.94, 95% CI (1.098-3.437, P = 0.023) and OR = 2.053 95% CI (1.179-3.577, P = 0.011), respectively]. Also, in the presence of both TIMP2-418C and MMP9-1562T alleles the male infertility risk was significantly increased (P = 0.032). The current study suggests that the variation of TIMP2 gene and its interaction with MMP9 gene might be associated with male infertility. However, to confirm these findings, further studies are required in different ethnicities and with a larger sample size.
Collapse
Affiliation(s)
- Shiva Roshankhah
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamran Mansouri
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mitra Bakhtiari
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Fertility and Sterility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Asgari
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Knutti N, Huber O, Friedrich K. CD147 (EMMPRIN) controls malignant properties of breast cancer cells by interdependent signaling of Wnt and JAK/STAT pathways. Mol Cell Biochem 2018; 451:197-209. [DOI: 10.1007/s11010-018-3406-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
13
|
Wang C, Zhang J, Fok KL, Tsang LL, Ye M, Liu J, Li F, Zhao AZ, Chan HC, Chen H. CD147 Induces Epithelial-to-Mesenchymal Transition by Disassembling Cellular Apoptosis Susceptibility Protein/E-Cadherin/β-Catenin Complex in Human Endometriosis. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1597-1607. [PMID: 29630856 DOI: 10.1016/j.ajpath.2018.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/02/2018] [Accepted: 03/19/2018] [Indexed: 12/16/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is postulated to be a prerequisite for the establishment of endometriosis (EMS), a common reproductive disorder in women. Our previous studies have demonstrated the elevated expression of transmembrane glycoprotein CD147 and its prosurvival effect on abnormal cells in endometriosis. Intriguingly, CD147 is known to promote EMT in cancers. However, the involvement of CD147 in EMT during the establishment of endometriosis remains incompletely understood. We found that CD147 promotes EMT in human endometrial adenocarcinoma cell line Ishikawa. We identified a novel CD147-interacting partner, cellular apoptosis susceptibility protein (CAS), which stabilized the interaction between E-cadherin (E-cad) and β-catenin (β-cat) by forming the CAS/E-cad/β-cat complex. Down-regulation of CAS led to the release and nuclear translocation of β-cat from E-cad, resulting in the overexpression of the EMT-promoting gene SNAIL. Interestingly, overexpression of CD147 impaired the interaction between CAS and E-cad and triggered the release of β-cat from the CAS/E-cad/β-cat complex, which in turn led to EMT. Furthermore, CAS was down-regulated in EMS, with elevated levels of CD147 and nuclear β-cat. These findings suggest a previously undefined role of CAS in regulating EMT and reveal the involvement of a CD147-induced EMT signaling pathway in pathogenic progression of EMS.
Collapse
Affiliation(s)
- Chaoqun Wang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jieting Zhang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kin L Fok
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lai L Tsang
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mei Ye
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, People's Republic of China
| | - Jianni Liu
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, People's Republic of China
| | - Fanghong Li
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, People's Republic of China
| | - Allan Z Zhao
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, People's Republic of China
| | - Hsiao C Chan
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Sichuan, People's Republic of China.
| | - Hao Chen
- Epithelial Cell Biology Research Center, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong; Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, People's Republic of China.
| |
Collapse
|
14
|
Santana VP, Miranda-Furtado CL, de Oliveira-Gennaro FG, Dos Reis RM. Genetics and epigenetics of varicocele pathophysiology: an overview. J Assist Reprod Genet 2017; 34:839-847. [PMID: 28523408 DOI: 10.1007/s10815-017-0931-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022] Open
Abstract
Varicocele is found in approximately 20% of adults and adolescents and in 19-41% of men seeking treatment for infertility. It is associated with a decrease in sperm count as well as sperm motility and morphology. The currently accepted description of the pathophysiology of varicocele does not explain all its clinical manifestations; therefore, other factors such as genetic and epigenetic changes, associated with the environment, might be involved in causing infertility and decrease in sperm quality. It has been reported that the varicocele-induced deterioration of testicular function is progressive and interferes with fertility; hence, early and efficient assessment of the genetic manifestations in patients would be important for developing future medical interventions. Chromosomal disorders, mutations, polymorphisms, changes in gene expression, and epigenetic changes have all been reported to be associated with varicocele. Several studies are underway to unravel the genetic basis of this disease, as it is important to understand the origin and the aggravating factors to ensure appropriate guidance and intervention. Here, we review the available literature regarding the genetic and epigenetic changes associated with varicocele, and how these alterations are related to the different clinical manifestations of the disease.
Collapse
Affiliation(s)
- Viviane Paiva Santana
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo (USP), 3900 Bandeirantes Ave, São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Cristiana Libardi Miranda-Furtado
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo (USP), 3900 Bandeirantes Ave, São Paulo, Ribeirão Preto, 14049-900, Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), Ceará, Fortaleza, Brazil
| | - Flavia Gaona de Oliveira-Gennaro
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo (USP), 3900 Bandeirantes Ave, São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Rosana Maria Dos Reis
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo (USP), 3900 Bandeirantes Ave, São Paulo, Ribeirão Preto, 14049-900, Brazil.
| |
Collapse
|
15
|
Peng C, Zhang S, Lei L, Zhang X, Jia X, Luo Z, Huang X, Kuang Y, Zeng W, Su J, Chen X. Epidermal CD147 expression plays a key role in IL-22-induced psoriatic dermatitis. Sci Rep 2017; 7:44172. [PMID: 28272440 PMCID: PMC5341158 DOI: 10.1038/srep44172] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 01/27/2017] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by abnormal keratinocyte proliferation and terminal differentiation. Interleukin-22 (IL-22) and the transcription factor Stat3 play pivotal roles in the pathogenesis of psoriasis. CD147 is a transmembrane glycosylation protein that belongs to the immunoglobulin superfamily. Our previous studies have shown that CD147 is a marker of high keratinocyte proliferation and poor keratinocyte differentiation as well as a psoriasis susceptibility gene. The current study demonstrates that CD147 is highly expressed in psoriatic skin lesions. Specific CD147 over-expression in the epidermis of K5-promoter transgenic mice promotes imiquimod (IMQ)-induced psoriasis-like inflammation characterized by acanthosis, granular layer loss and inflammatory cell infiltration. We also found that IL-22 increases CD147 transcription in vitro and in vivo and that Stat3 binds directly to the CD147 promoter between positions -854 and -440, suggesting that CD147 expression is up-regulated in patients with psoriasis through Stat3 activation. In addition, CD147 knockdown dramatically blocks IL-22-mediated Stat3 activation as well as IL-22-induced cytokine, chemokine and antimicrobial factor expression. Together, these findings show that CD147 is a novel and key mediator of IL-22-induced psoriatic alterations in the epidermis and might be a therapeutic target in patients with psoriasis.
Collapse
Affiliation(s)
- Cong Peng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - ShengXi Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuekun Jia
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhongling Luo
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoyan Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanhong Kuang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiqi Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Su
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
16
|
Barone R, Pitruzzella A, Marino Gammazza A, Rappa F, Salerno M, Barone F, Sangiorgi C, D'Amico D, Locorotondo N, Di Gaudio F, Cipolloni L, Di Felice V, Schiavone S, Rapisarda V, Sani G, Tambo A, Cappello F, Turillazzi E, Pomara C. Nandrolone decanoate interferes with testosterone biosynthesis altering blood-testis barrier components. J Cell Mol Med 2017; 21:1636-1647. [PMID: 28244681 PMCID: PMC5542904 DOI: 10.1111/jcmm.13092] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/15/2016] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to investigate whether nandrolone decanoate (ND) use affects testosterone production and testicular morphology in a model of trained and sedentary mice. A group of mice underwent endurance training while another set led a sedentary lifestyle and were freely mobile within cages. All experimental groups were treated with either ND or peanut oil at different doses for 6 weeks. Testosterone serum levels were measured via liquid chromatography–mass spectrometry. Western blot analysis and quantitative real‐time PCR were utilized to determine gene and protein expression levels of the primary enzymes implicated in testosterone biosynthesis and gene expression levels of the blood–testis barrier (BTB) components. Immunohistochemistry and immunofluorescence were conducted for testicular morphological evaluation. The study demonstrated that moderate to high doses of ND induced a diminished serum testosterone level and altered the expression level of the key steroidogenic enzymes involved in testosterone biosynthesis. At the morphological level, ND induced degradation of the BTB by targeting the tight junction protein‐1 (TJP1). ND stimulation deregulated metalloproteinase‐9, metalloproteinase‐2 (MMP‐2) and the tissue inhibitor of MMP‐2. Moreover, ND administration resulted in a mislocalization of mucin‐1. In conclusion, ND abuse induces a decline in testosterone production that is unable to regulate the internalization and redistribution of TJP1 and may induce the deregulation of other BTB constituents via the inhibition of MMP‐2. ND may well be considered as both a potential inducer of male infertility and a potential risk factor to a low endogenous bioavailable testosterone.
Collapse
Affiliation(s)
- Rosario Barone
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
| | - Alessandro Pitruzzella
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
- Department of NeuroscienceMental Health and Sense Organs (Nesmos)Sapienza University of RomeRomeItaly
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
| | - Francesca Rappa
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
| | - Monica Salerno
- Department of Clinical and Experimental MedicineForensic PathologyUniversity of FoggiaFoggiaItaly
| | - Fulvio Barone
- Department of Clinical and Experimental MedicineForensic PathologyUniversity of FoggiaFoggiaItaly
- Department of RadiologyScientific Institute Hospital “Casa Sollievo della Sofferenza”San Giovanni Rotondo (FG)Italy
| | - Claudia Sangiorgi
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
| | - Daniela D'Amico
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
| | | | - Francesca Di Gaudio
- Locorotondo Labs srlPalermoItaly
- Department of Pathobiology and Medical BiotechnologyUniversity of PalermoPalermoItaly
| | - Luigi Cipolloni
- Department of Forensic PathologySapienza University of RomeRomeItaly
| | - Valentina Di Felice
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
| | - Stefania Schiavone
- Department of Clinical and Experimental MedicineUniversity of FoggiaFoggiaItlay
| | - Venerando Rapisarda
- Occupational MedicineDepartment of Clinical and Experimental MedicineUniversity of CataniaCataniaItaly
| | - Gabriele Sani
- Department of NeuroscienceMental Health and Sense Organs (Nesmos)Sapienza University of RomeRomeItaly
| | - Amos Tambo
- Department of Clinical and Experimental MedicineForensic PathologyUniversity of FoggiaFoggiaItaly
- Department of Clinical and Experimental MedicineUniversity of FoggiaFoggiaItlay
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neurosciences (BioNeC)University of PalermoPalermoItaly
- Euro‐Mediterranean Institute of Science and Technology (IEMEST)PalermoItaly
| | - Emanuela Turillazzi
- Department of Clinical and Experimental MedicineForensic PathologyUniversity of FoggiaFoggiaItaly
| | - Cristoforo Pomara
- Department of Clinical and Experimental MedicineForensic PathologyUniversity of FoggiaFoggiaItaly
- Department of Clinical and Experimental MedicineUniversity of FoggiaFoggiaItlay
- Department of AnatomyUniversity of MaltaMsidaMalta
| |
Collapse
|
17
|
How, with whom and when: an overview of CD147-mediated regulatory networks influencing matrix metalloproteinase activity. Biosci Rep 2015; 36:e00283. [PMID: 26604323 PMCID: PMC4718507 DOI: 10.1042/bsr20150256] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 12/11/2022] Open
Abstract
Matrix metalloproteinases (MMPs) comprise a family of 23 zinc-dependent enzymes involved in various pathologic and physiologic processes. In cancer, MMPs contribute to processes from tumour initiation to establishment of distant metastases. Complex signalling and protein transport networks regulate MMP synthesis, cell surface presentation and release. Earlier attempts to disrupt MMP activity in patients have proven to be intolerable and with underwhelming clinical efficacy; thus targeting ancillary proteins that regulate MMP activity may be a useful therapeutic approach. Extracellular matrix metalloproteinase inducer (EMMPRIN) was originally characterized as a factor present on lung cancer cells, which stimulated collagenase (MMP-1) production in fibroblasts. Subsequent studies demonstrated that EMMPRIN was identical with several other protein factors, including basigin (Bsg), all of which are now commonly termed CD147. CD147 modulates the synthesis and activity of soluble and membrane-bound [membrane-type MMPs (MT-MMPs)] in various contexts via homophilic/heterophilic cell interactions, vesicular shedding or cell-autonomous processes. CD147 also participates in inflammation, nutrient and drug transporter activity, microbial pathology and developmental processes. Despite the hundreds of manuscripts demonstrating CD147-mediated MMP regulation, the molecular underpinnings governing this process have not been fully elucidated. The present review summarizes our present knowledge of the complex regulatory systems influencing CD147 biology and provides a framework to understand how CD147 may influence MMP activity.
Collapse
|
18
|
Heiler S, Mu W, Zöller M, Thuma F. The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Commun Signal 2015; 13:29. [PMID: 26054340 PMCID: PMC4459675 DOI: 10.1186/s12964-015-0105-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Claudin-7 (cld7), a tight junction (TJ) component, is also found basolaterally and in the cytoplasm. Basolaterally located cld7 is enriched in glycolipid-enriched membrane domains (GEM), where it associates with EpCAM (EpC). The conditions driving cld7 out of TJ into GEM, which is associated with a striking change in function, were not defined. Thus, we asked whether cld7 serines or palmitoylation affect cld7 location and protein, particularly EpCAM, associations. RESULTS HEK cells were transfected with EpCAM and wild type cld7 or cld7, where serine phopsphorylation or the palmitoylation sites (AA184, AA186) (cld7(mPalm)) were mutated. Exchange of individual serine phosphorylation sites did not significantly affect the GEM localization and the EpCAM association. Instead, cld7(mPalm) was poorly recruited into GEM. This has consequences on migration and invasiveness as palmitoylated cld7 facilitates integrin and EpCAM recruitment, associates with cytoskeletal linker proteins and cooperates with MMP14, CD147 and TACE, which support motility, matrix degradation and EpCAM cleavage. On the other hand, only cld7(mPalm) associates with TJ proteins. CONCLUSION Cld7 palmitoylation prohibits TJ integration and fosters GEM recruitment. Via associated molecules, palmitoylated cld7 supports motility and invasion.
Collapse
Affiliation(s)
- Sarah Heiler
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Wei Mu
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| | - Florian Thuma
- Department of Tumor Cell Biology, University Hospital of Surgery, Im Neuenheimer Feld 365, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Li W, Fu J, Zhang S, Zhao J, Xie N, Cai G. The proteasome inhibitor bortezomib induces testicular toxicity by upregulation of oxidative stress, AMP-activated protein kinase (AMPK) activation and deregulation of germ cell development in adult murine testis. Toxicol Appl Pharmacol 2015; 285:98-109. [PMID: 25886977 DOI: 10.1016/j.taap.2015.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/18/2015] [Accepted: 04/04/2015] [Indexed: 01/02/2023]
Abstract
Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from the elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli-germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli-germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation.
Collapse
Affiliation(s)
- Wei Li
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jianfang Fu
- Department of Endocrinology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Shun Zhang
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China
| | - Jie Zhao
- Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi'an 710032, PR China
| | - Nianlin Xie
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, PR China.
| | - Guoqing Cai
- Department of Gynaecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
20
|
Xiong L, Edwards CK, Zhou L. The biological function and clinical utilization of CD147 in human diseases: a review of the current scientific literature. Int J Mol Sci 2014; 15:17411-41. [PMID: 25268615 PMCID: PMC4227170 DOI: 10.3390/ijms151017411] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/08/2014] [Accepted: 09/16/2014] [Indexed: 02/05/2023] Open
Abstract
CD147 or EMMPRIN is a member of the immunoglobulin superfamily in humans. It is widely expressed in human tumors and plays a central role in the progression of many cancers by stimulating the secretion of matrix metalloproteinases (MMPs) and cytokines. CD147 regulates cell proliferation, apoptosis, and tumor cell migration, metastasis and differentiation, especially under hypoxic conditions. CD147 is also important to many organ systems. This review will provide a detailed overview of the discovery, characterization, molecular structure, diverse biological functions and regulatory mechanisms of CD147 in human physiological and pathological processes. In particular, recent studies have demonstrated the potential application of CD147 not only as a phenotypic marker of activated regulatory T cells but also as a potential diagnostic marker for early-stage disease. Moreover, CD147 is recognized as an effective therapeutic target for hepatocellular carcinoma (HCC) and other cancers, and exciting clinical progress has been made in HCC treatment using CD147-directed monoclonal antibodies.
Collapse
Affiliation(s)
- Lijuan Xiong
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| | - Carl K Edwards
- National Key Laboratory of Biotherapy and Cancer Research (NKLB), West China Hospital and Medical School, Sichuan University, Chengdu 610041, China.
| | - Lijun Zhou
- Central Laboratory, Navy General Hospital, Beijing 100048, China.
| |
Collapse
|
21
|
Mostafa T, Rashed L, Nabil N, Amin R. Seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele. Urology 2014; 84:590-5. [PMID: 25168538 DOI: 10.1016/j.urology.2014.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To assess seminal BAX and BCL2 gene and protein expressions in infertile men with varicocele (Vx). MATERIALS AND METHODS A total of 111 men were investigated and divided into the following groups: healthy fertile men (n = 20), fertile men with Vx (n = 16), infertile oligoasthenoteratozoospermic men without Vx (n = 29), and infertile oligoasthenoteratozoospermic men with Vx (n = 46). They were subjected to history taking, clinical examination, and semen analysis. In their seminal plasma, BAX and BCL2 gene and protein expressions were estimated. RESULTS The mean level of seminal BAX gene and protein was significantly decreased, and the mean level of seminal BCL2 gene and protein was significantly increased in fertile men compared with fertile men with Vx and in infertile men without Vx compared with infertile men with Vx. The mean level of seminal BAX gene and protein were significantly increased in men associated with bilateral Vx compared with men associated with unilateral Vx and in cases with Vx grade III compared with Vx grade I and II cases. Seminal BAX demonstrated significant negative correlation with sperm concentration, sperm motility, and sperm normal forms. Seminal BCL2 demonstrated significant positive correlation with sperm concentration, sperm motility, and sperm normal forms and significant negative correlation with seminal BAX. CONCLUSION Seminal BAX is significantly increased and seminal BCL2 is significantly decreased in men associated with Vx. Seminal BAX is significantly increased in men associated with bilateral Vx compared with unilateral Vx and in cases with Vx grade III compared with Vx grade I and II cases. Seminal BAX demonstrates significant negative correlation with sperm concentration, sperm motility, and sperm normal forms, whereas seminal BCL2 demonstrates significant reverse positive correlations.
Collapse
Affiliation(s)
- Taymour Mostafa
- Andrology and Sexology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Laila Rashed
- Medical Biochemistry Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nashaat Nabil
- Dermatology and Andrology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| | - Rania Amin
- Dermatology and Andrology Department, Faculty of Medicine, Beni Suef University, Beni Suef, Egypt
| |
Collapse
|
22
|
Elevated expression of CD147 in patients with endometriosis and its role in regulating apoptosis and migration of human endometrial cells. Fertil Steril 2014; 101:1681-7.e1. [DOI: 10.1016/j.fertnstert.2014.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 01/24/2023]
|
23
|
Novel regulators of spermatogenesis. Semin Cell Dev Biol 2014; 29:31-42. [PMID: 24594193 DOI: 10.1016/j.semcdb.2014.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 02/07/2023]
Abstract
Spermatogenesis is a multistep process that supports the production of millions of sperm daily. Understanding of the molecular mechanisms that regulate spermatogenesis has been a major focus for decades. Yet, the regulators involved in different cellular processes of spermatogenesis remain largely unknown. Human diseases that result in defective spermatogenesis have provided hints on the molecular mechanisms regulating this process. In this review, we have summarized recent findings on the function and signaling mechanisms of several genes that are known to be associated with disease or pathological processes, including CFTR, CD147, YWK-II and CT genes, and discuss their potential roles in regulating different processes of spermatogenesis.
Collapse
|
24
|
Chan HC. Letter from the editor: CFTR and male fertility-Impact beyond cystic fibrosis. SPERMATOGENESIS 2013; 3:e26228. [PMID: 24380037 PMCID: PMC3861173 DOI: 10.4161/spmg.26228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 08/20/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Hsiao Chang Chan
- Epithelial Cell Biology Research Center; School of Biomedical Sciences; Faculty of Medicine; The Chinese University of Hong Kong; Hong Kong, PR China
| |
Collapse
|
25
|
Epitope mapping of metuximab on CD147 using phage display and molecular docking. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2013; 2013:983829. [PMID: 23861727 PMCID: PMC3686076 DOI: 10.1155/2013/983829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/07/2013] [Indexed: 01/13/2023]
Abstract
Metuximab is the generic name of Licartin, a new drug for radioimmunotherapy of hepatocellular carcinoma. Although it is known to be a mouse monoclonal antibody against CD147, the complete epitope mediating the binding of metuximab to CD147 remains unknown. We panned the Ph.D.-12 phage display peptide library against metuximab and got six mimotopes. The following bioinformatics analysis based on mimotopes suggested that metuximab recognizes a conformational epitope composed of more than 20 residues. The residues of its epitope may include T28, V30, K36, L38, K57, F74, D77, S78, D79, D80, Q81, G83, S86, N98, Q100, L101, H102, G103, P104, V131, P132, and K191. The homology modeling of metuximab and the docking of CD147 to metuximab were also performed. Based on the top one docking model, the epitope was predicted to contain 28 residues: AGTVFTTV (23–30), I37, D45, E84, V88, EPMGTANIQLH (92–102), VPP (131–133), Q164, and K191. Almost half of the residues predicted on the basis of mimotope analysis also appear in the docking result, indicating that both results are reliable. As the predicted epitopes of metuximab largely overlap with interfaces of CD147-CD147 interactions, a structural mechanism of metuximab is proposed as blocking the formation of CD147 dimer.
Collapse
|