1
|
Hanzawa S, Sugiura M, Nakae S, Masuo M, Morita H, Matsumoto K, Takeda K, Okumura K, Nakamura M, Ohno T, Miyazaki Y. The Prostaglandin D2 Receptor CRTH2 Contributes to Airway Hyperresponsiveness during Airway Inflammation Induced by Sensitization without an Adjuvant in Mice. Int Arch Allergy Immunol 2024; 185:752-760. [PMID: 38599205 DOI: 10.1159/000537840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/13/2024] [Indexed: 04/12/2024] Open
Abstract
INTRODUCTION Prostaglandin D2 (PGD2), which is produced mainly by Th2 cells and mast cells, promotes a type-2 immune response by activating Th2 cells, mast cells, eosinophils, and group 2 innate lymphoid cells (ILC2s) via its receptor, chemoattractant receptor-homologous molecules on Th2 cells (CRTH2). However, the role of CRTH2 in models of airway inflammation induced by sensitization without adjuvants, in which both IgE and mast cells may play major roles, remain unclear. METHODS Wild-type (WT) and CRTH2-knockout (KO) mice were sensitized with ovalbumin (OVA) without an adjuvant and then challenged intranasally with OVA. Airway inflammation was assessed based on airway hyperresponsiveness (AHR), lung histology, number of leukocytes, and levels of type-2 cytokines in the bronchoalveolar lavage fluid (BALF). RESULTS AHR was significantly reduced after OVA challenge in CRTH2 KO mice compared to WT mice. The number of eosinophils, levels of type-2 cytokines (IL-4, IL-5, and IL-13) in BALF, and IgE concentration in serum were decreased in CRTH2 KO mice compared to WT mice. However, lung histological changes were comparable between WT and CRTH2 KO mice. CONCLUSION CRTH2 is responsible for the development of asthma responses in a mouse model of airway inflammation that features prominent involvement of both IgE and mast cells.
Collapse
Affiliation(s)
- Satoshi Hanzawa
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Shuuwa General Hospital, Saitama, Japan
| | - Makiko Sugiura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Ohtsuka Hospital, Tokyo, Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Masahiro Masuo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Respiratory Medicine, Tokyo Metropolitan Bokutoh Hospital, Tokyo, Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuyoshi Takeda
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory of Cell Biology, Biomedical Research Core Facilities, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ko Okumura
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Atopy Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsukuni Ohno
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
2
|
Quoc QL, Cao TBT, Moon JY, Jang JH, Shin YS, Choi Y, Ryu MS, Park HS. Contribution of monocyte and macrophage extracellular traps to neutrophilic airway inflammation in severe asthma. Allergol Int 2024; 73:81-93. [PMID: 37365039 DOI: 10.1016/j.alit.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/29/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Increased blood/sputum neutrophil counts are related to poor clinical outcomes of severe asthma (SA), where we hypothesized that classical monocytes (CMs)/CM-derived macrophages (Mφ) are involved. We aimed to elucidate the mechanisms of how CMs/Mφ induce the activation of neutrophils/innate lymphoid cells (ILCs) in SA. METHODS Serum levels of monocyte chemoattractant protein-1 (MCP-1) and soluble suppression of tumorigenicity 2 (sST2) were measured from 39 patients with SA and 98 those with nonsevere asthma (NSA). CMs/Mφ were isolated from patients with SA (n = 19) and those with NSA (n = 18) and treated with LPS/interferon-gamma. Monocyte/M1Mφ extracellular traps (MoETs/M1ETs) were evaluated by western blotting, immunofluorescence, and PicoGreen assay. The effects of MoETs/M1ETs on neutrophils, airway epithelial cells (AECs), ILC1, and ILC3 were assessed in vitro and in vivo. RESULTS The SA group had significantly higher CM counts with increased migration as well as higher levels of serum MCP-1/sST2 than the NSA group. Moreover, the SA group had significantly greater production of MoETs/M1ETs (from CMs/M1Mφ) than the NSA group. The levels of MoETs/M1ETs were positively correlated with blood neutrophils and serum levels of MCP-1/sST2, but negatively correlated with FEV1%. In vitro/in vivo studies demonstrated that MoETs/M1ETs could activate AECs, neutrophils, ILC1, and ILC3 by increased migration as well as proinflammatory cytokine production. CONCLUSIONS CM/Mφ-derived MoETs/M1ETs could contribute to asthma severity by enhancing neutrophilic airway inflammation in SA, where modulating CMs/Mφ may be a potential therapeutic option.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Jae-Hyuk Jang
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Min Sook Ryu
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
3
|
Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol 2023; 14:1260859. [PMID: 37965344 PMCID: PMC10641450 DOI: 10.3389/fimmu.2023.1260859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/26/2023] [Indexed: 11/16/2023] Open
Abstract
Tuberculosis (TB) remains a significant global health challenge, claiming the lives of up to 1.5 million individuals annually. TB is caused by the human pathogen Mycobacterium tuberculosis (Mtb), which primarily infects innate immune cells in the lungs. These immune cells play a critical role in the host defense against Mtb infection, influencing the inflammatory environment in the lungs, and facilitating the development of adaptive immunity. However, Mtb exploits and manipulates innate immune cells, using them as favorable niche for replication. Unfortunately, our understanding of the early interactions between Mtb and innate effector cells remains limited. This review underscores the interactions between Mtb and various innate immune cells, such as macrophages, dendritic cells, granulocytes, NK cells, innate lymphocytes-iNKT and ILCs. In addition, the contribution of alveolar epithelial cell and endothelial cells that constitutes the mucosal barrier in TB immunity will be discussed. Gaining insights into the early cellular basis of immune reactions to Mtb infection is crucial for our understanding of Mtb resistance and disease tolerance mechanisms. We argue that a better understanding of the early host-pathogen interactions could inform on future vaccination approaches and devise intervention strategies.
Collapse
Affiliation(s)
| | - Bibhuti Bhusan Mishra
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
4
|
Ryu S, Lim M, Kim J, Kim HY. Versatile roles of innate lymphoid cells at the mucosal barrier: from homeostasis to pathological inflammation. Exp Mol Med 2023; 55:1845-1857. [PMID: 37696896 PMCID: PMC10545731 DOI: 10.1038/s12276-023-01022-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 09/13/2023] Open
Abstract
Innate lymphoid cells (ILCs) are innate lymphocytes that do not express antigen-specific receptors and largely reside and self-renew in mucosal tissues. ILCs can be categorized into three groups (ILC1-3) based on the transcription factors that direct their functions and the cytokines they produce. Their signature transcription factors and cytokines closely mirror those of their Th1, Th2, and Th17 cell counterparts. Accumulating studies show that ILCs are involved in not only the pathogenesis of mucosal tissue diseases, especially respiratory diseases, and colitis, but also the resolution of such diseases. Here, we discuss recent advances regarding our understanding of the biology of ILCs in mucosal tissue health and disease. In addition, we describe the current research on the immune checkpoints by which other cells regulate ILC activities: for example, checkpoint molecules are potential new targets for therapies that aim to control ILCs in mucosal diseases. In addition, we review approved and clinically- trialed drugs and drugs in clinical trials that can target ILCs and therefore have therapeutic potential in ILC-mediated diseases. Finally, since ILCs also play important roles in mucosal tissue homeostasis, we explore the hitherto sparse research on cell therapy with regulatory ILCs. This review highlights various therapeutic approaches that could be used to treat ILC-mediated mucosal diseases and areas of research that could benefit from further investigation.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Microbiology, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - MinYeong Lim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Jinwoo Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
- CIRNO, Sungkyunkwan University, Suwon, South Korea
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
- CIRNO, Sungkyunkwan University, Suwon, South Korea.
| |
Collapse
|
5
|
Laufer Britva R, Keren A, Bertolini M, Ullmann Y, Paus R, Gilhar A. Involvement of ILC1-like innate lymphocytes in human autoimmunity, lessons from alopecia areata. eLife 2023; 12:80768. [PMID: 36930216 PMCID: PMC10023162 DOI: 10.7554/elife.80768] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Here, we have explored the involvement of innate lymphoid cells-type 1 (ILC1) in the pathogenesis of alopecia areata (AA), because we found them to be significantly increased around lesional and non-lesional HFs of AA patients. To further explore these unexpected findings, we first co-cultured autologous circulating ILC1-like cells (ILC1lc) with healthy, but stressed, organ-cultured human scalp hair follicles (HFs). ILClc induced all hallmarks of AA ex vivo: they significantly promoted premature, apoptosis-driven HF regression (catagen), HF cytotoxicity/dystrophy, and most important for AA pathogenesis, the collapse of the HFs physiological immune privilege. NKG2D-blocking or IFNγ-neutralizing antibodies antagonized this. In vivo, intradermal injection of autologous activated, NKG2D+/IFNγ-secreting ILC1lc into healthy human scalp skin xenotransplanted onto SCID/beige mice sufficed to rapidly induce characteristic AA lesions. This provides the first evidence that ILC1lc, which are positive for the ILC1 phenotype and negative for the classical NK markers, suffice to induce AA in previously healthy human HFs ex vivo and in vivo, and further questions the conventional wisdom that AA is always an autoantigen-dependent, CD8 +T cell-driven autoimmune disease.
Collapse
Affiliation(s)
- Rimma Laufer Britva
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
- Department of Dermatology, Rambam Health Care CampusHaifaIsrael
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| | | | - Yehuda Ullmann
- Department of Plastic Surgery, Rambam Medical CenterHaifaIsrael
| | - Ralf Paus
- Monasterium LaboratoryMünsterGermany
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of MiamiMiamiUnited States
- CUTANEONHamburgGermany
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion – Israel Institute of TechnologyHaifaIsrael
| |
Collapse
|
6
|
Ham J, Kim J, Sohn KH, Park IW, Choi BW, Chung DH, Cho SH, Kang HR, Jung JW, Kim HY. Cigarette smoke aggravates asthma by inducing memory-like type 3 innate lymphoid cells. Nat Commun 2022; 13:3852. [PMID: 35789151 PMCID: PMC9253141 DOI: 10.1038/s41467-022-31491-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/18/2022] [Indexed: 11/25/2022] Open
Abstract
Although cigarette smoking is known to exacerbate asthma, only a few clinical asthma studies have been conducted involving smokers. Here we show, by comparing paired sputum and blood samples from smoking and non-smoking patients with asthma, that smoking associates with significantly higher frequencies of pro-inflammatory, natural-cytotoxicity-receptor-non-expressing type 3 innate lymphoid cells (ILC3) in the sputum and memory-like, CD45RO-expressing ILC3s in the blood. These ILC3 frequencies positively correlate with circulating neutrophil counts and M1 alveolar macrophage frequencies, which are known to increase in uncontrolled severe asthma, yet do not correlate with circulating eosinophil frequencies that characterize allergic asthma. In vitro exposure of ILCs to cigarette smoke extract induces expression of the memory marker CD45RO in ILC3s. Cigarette smoke extract also impairs the barrier function of airway epithelial cells and increases their production of IL-1β, which is a known activating factor for ILC3s. Thus, our study suggests that cigarette smoking increases local and circulating frequencies of activated ILC3 cells, plays a role in their activation, thereby aggravating non-allergic inflammation and the severity of asthma. Cigarette smoking may exacerbate asthma, but the underlying mechanisms have not been studied extensively in human patients. Here authors show that type 3 innate lymphoid cells with activated phenotypes are found in the sputum and blood of smokers in higher frequencies, which might result in the aggravation of asthma.
Collapse
Affiliation(s)
- Jongho Ham
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Kyoung-Hee Sohn
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - In-Won Park
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Byoung-Whui Choi
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.,Department of Internal Medicine, Chung-Ang University H.C.S. Hyundae l Hospital, Namyangju, South Korea
| | - Doo Hyun Chung
- Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Pathology, Seoul National University College of Medicine, Seoul, South Korea.,Laboratory of Immune Regulation, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Hye Ryun Kang
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Woo Jung
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, South Korea.
| | - Hye Young Kim
- Laboratory of Mucosal Immunology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, Republic of Korea. .,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
7
|
Williams CM, Roy S, Sun W, Furuya AM, Wijesundara DK, Furuya Y. LUNG group 2 innate lymphoid cells as a new adjuvant target to enhance intranasal vaccine efficacy against influenza. Clin Transl Immunology 2022; 11:e1381. [PMID: 35356066 PMCID: PMC8958247 DOI: 10.1002/cti2.1381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/12/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2) are a relatively new class of innate immune cells. Lung ILC2 are early responders that secrete type 2 cytokines in response to danger ‘alarmin’ signals such as interleukin (IL)‐33 and thymic stromal lymphopoietin. Being an early source of type 2 cytokines, ILC2 are a critical regulator of type 2 immune cells of both innate and adaptive immune responses. The immune regulatory functions of ILC2 were mostly investigated in diseases where T helper 2 inflammation predominates. However, in recent years, it has been appreciated that the role of ILC2 extends to other pathological conditions such as cancer and viral infections. In this review, we will focus on the potential role of lung ILC2 in the induction of mucosal immunity against influenza virus infection and discuss the potential utility of ILC2 as a target for mucosal vaccination.
Collapse
Affiliation(s)
- Clare M Williams
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Sreeja Roy
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | - Wei Sun
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| | | | - Danushka K Wijesundara
- The School of Chemistry and Molecular Biosciences The Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD Australia
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease Albany Medical College Albany NY USA
| |
Collapse
|
8
|
Orimo K, Tamari M, Takeda T, Kubo T, Rückert B, Motomura K, Sugiyama H, Yamada A, Saito K, Arae K, Kuriyama M, Hara M, Soyka MB, Ikutani M, Yamaguchi S, Morimoto N, Nakabayashi K, Hata K, Matsuda A, Akdis CA, Sudo K, Saito H, Nakae S, Tamaoki J, Tagaya E, Matsumoto K, Morita H. Direct platelet adhesion potentiates group 2 innate lymphoid cell functions. Allergy 2022; 77:843-855. [PMID: 34402091 DOI: 10.1111/all.15057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Platelets are thought to be involved in the pathophysiology of asthma, presumably through direct adhesion to inflammatory cells, including group 2 innate lymphoid cells (ILC2s). Here, we tried to elucidate the effects of platelet adhesion to ILC2s in vitro and in vivo, as well as the mechanisms involved. METHODS Alternaria-induced ILC2-dependent airway inflammation models using wild-type and c-mpl-/- mice were evaluated. Both purified CD41+ and CD41- ILC2s were cultured with IL-2 and IL-33 to determine in vitro Type 2 (T2) cytokine production and cell proliferation. RNA-seq data of flow-cytometry-sorted CD41+ and CD41- ILC2s were used to isolate ILC2-specific genes. Flow cytometry was performed to determine the expression of CD41 and adhesion-related molecules on ILC2s in both mouse and human tissues. RESULTS T2 inflammation and T2 cytokine production from ILC2s were significantly reduced in the c-mpl-/- mice compared to wild-type mice. Platelet-adherent ILC2s underwent significant proliferation and showed enhanced T2 cytokine production when exposed to IL-2 and IL-33. The functions of ILC2-specific genes were related to cell development and function. Upstream regulator analysis identified 15 molecules, that are thought to be involved in ILC2 activation. CD41 expression levels were higher in ILC2s from human PBMCs and mouse lung than in those from secondary lymphoid tissues, but they did not correlate with the P-selectin glycoprotein ligand-1 or CD24 expression level. CONCLUSION Platelets spontaneously adhere to ILC2s, probably in the peripheral blood and airways, thereby potentiating ILC2s to enhance their responses to IL-33.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Pediatrics Jikei University School of Medicine Tokyo Japan
| | - Tomohiro Takeda
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Health Science Kansai University of Health Sciences Osaka Japan
| | - Terufumi Kubo
- Department of Pathology Sapporo Medical University School of Medicine Sapporo Japan
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Kenichiro Motomura
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hiroki Sugiyama
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Ayako Yamada
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kyoko Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Otorhinolaryngology Head and Neck Surgery University of Fukui Fukui Japan
| | - Ken Arae
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Department of Immunology Faculty of Health Sciences Kyorin University Tokyo Japan
| | - Motohiro Kuriyama
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Mariko Hara
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Michael B. Soyka
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Zurich and University of Zurich Zurich Switzerland
| | - Masashi Ikutani
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima City Japan
- Department of Immune Regulation Research Institute, National Center for Global Health and Medicine Ichikawa Japan
| | - Sota Yamaguchi
- Division of Otolaryngology Department of Surgical Specialties National Center for Child Health and Development Tokyo Japan
| | - Noriko Morimoto
- Division of Otolaryngology Department of Surgical Specialties National Center for Child Health and Development Tokyo Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal–Fetal Biology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenichiro Hata
- Department of Maternal–Fetal Biology National Research Institute for Child Health and Development Tokyo Japan
| | - Akio Matsuda
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zurich Davos Switzerland
| | - Katsuko Sudo
- Animal Research Center Tokyo Medical University Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Department of Immune Regulation Research Institute, National Center for Global Health and Medicine Ichikawa Japan
- Laboratory of Systems Biology Center for Experimental Medicine and Systems Biology The Institute of Medical Science, The University of Tokyo Tokyo Japan
- Precursory Research for Embryonic Science and Technology (PRESTO Japan Science and Technology Agency Saitama Japan
| | - Jun Tamaoki
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine Tokyo Women's Medical University Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
- Allergy Center National Center for Child Health and Development Tokyo Japan
| |
Collapse
|
9
|
Orimo K, Tamari M, Saito H, Matsumoto K, Nakae S, Morita H. Characteristics of tissue-resident ILCs and their potential as therapeutic targets in mucosal and skin inflammatory diseases. Allergy 2021; 76:3332-3348. [PMID: 33866593 DOI: 10.1111/all.14863] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022]
Abstract
Discovery of innate lymphoid cells (ILCs), which are non-T and non-B lymphocytes that have no antigen-specific receptors, changed the classical concept of the mechanism of allergy, which had been explained mainly as antigen-specific acquired immunity based on IgE and Th2 cells. The discovery led to dramatic improvement in our understanding of the mechanism of non-IgE-mediated allergic inflammation. Numerous studies conducted in the past decade have elucidated the characteristics of each ILC subset in various organs and tissues and their ontogeny. We now know that each ILC subset exhibits heterogeneity. Moreover, the functions and activating/suppressing factors of each ILC subset were found to differ among both organs and types of tissue. Therefore, in this review, we summarize our current knowledge of ILCs by focusing on the organ/tissue-specific features of each subset to understand their roles in various organs. We also discuss ILCs' involvement in human inflammatory diseases in various organs and potential therapeutic/preventive strategies that target ILCs.
Collapse
Affiliation(s)
- Keisuke Orimo
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Masato Tamari
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Hirohisa Saito
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life Hiroshima University Hiroshima Japan
- Precursory Research for Embryonic Science and Technology Japan Science and Technology Agency Saitama Japan
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology National Research Institute for Child Health and Development Tokyo Japan
| |
Collapse
|
10
|
Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, Sangkanjanavanich S, Morita H. Allergic Rhinitis: What Do We Know About Allergen-Specific Immunotherapy? FRONTIERS IN ALLERGY 2021; 2:747323. [PMID: 35387059 PMCID: PMC8974870 DOI: 10.3389/falgy.2021.747323] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 01/23/2023] Open
Abstract
Allergic rhinitis (AR) is an IgE-mediated disease that is characterized by Th2 joint inflammation. Allergen-specific immunotherapy (AIT) is indicated for AR when symptoms remain uncontrolled despite medication and allergen avoidance. AIT is considered to have been effective if it alleviated allergic symptoms, decreased medication use, improved the quality of life even after treatment cessation, and prevented the progression of AR to asthma and the onset of new sensitization. AIT can be administered subcutaneously or sublingually, and novel routes are still being developed, such as intra-lymphatically and epicutaneously. AIT aims at inducing allergen tolerance through modification of innate and adaptive immunologic responses. The main mechanism of AIT is control of type 2 inflammatory cells through induction of various functional regulatory cells such as regulatory T cells (Tregs), follicular T cells (Tfr), B cells (Bregs), dendritic cells (DCregs), innate lymphoid cells (IL-10+ ILCs), and natural killer cells (NKregs). However, AIT has a number of disadvantages: the long treatment period required to achieve greater efficacy, high cost, systemic allergic reactions, and the absence of a biomarker for predicting treatment responders. Currently, adjunctive therapies, vaccine adjuvants, and novel vaccine technologies are being studied to overcome the problems associated with AIT. This review presents an updated overview of AIT, with a special focus on AR.
Collapse
Affiliation(s)
- Tadech Boonpiyathad
- Department of Medicine, Phramongkutklao Hospital, Bangkok, Thailand
- *Correspondence: Tadech Boonpiyathad
| | - Mongkol Lao-Araya
- Faculty of Medicine, Department of Pediatrics, Chiang Mai University, Chiang Mai, Thailand
| | - Chirawat Chiewchalermsri
- Department of Medicine, Panyananthaphikkhu Chonprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Sasipa Sangkanjanavanich
- Faculty of Medicine Ramathibodi Hospital, Department of Medicine, Mahidol University, Bangkok, Thailand
| | - Hideaki Morita
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
- Allergy Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
11
|
Jean EE, Good O, Rico JMI, Rossi HL, Herbert DR. Neuroimmune regulatory networks of the airway mucosa in allergic inflammatory disease. J Leukoc Biol 2021; 111:209-221. [PMID: 33857344 PMCID: PMC8674821 DOI: 10.1002/jlb.3ru0121-023r] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/16/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Communication between the nervous and immune systems serves a key role in host‐protective immunity at mucosal barrier sites including the respiratory tract. In these tissues, neuroimmune interactions operate in bidirectional circuits that can sense and respond to mechanical, chemical, and biologic stimuli. Allergen‐ or helminth‐induced products can produce airway inflammation by direct action on nociceptive afferents and adjacent tissues. The activity of nociceptive afferents can regulate innate and adaptive immune responses via neuropeptides and neurotransmitter signaling. This review will summarize recent work investigating the role of neuropeptides CGRP, VIP, neuromedins, substance P, and neurotransmitters dopamine and the B2‐adrenoceptor agonists epinepherine/norepinepherine, each of which influence type 2 immunity by instructing mast cell, innate lymphoid cell type 2, dendritic cell, and T cell responses, both in the airway and the draining lymph node. Afferents in the airway also contain receptors for alarmins and cytokines, allowing their activity to be modulated by immune cell secreted products, particularly those secreted by mast cells. Taken together, we propose that further investigation of how immunoregulatory neuropeptides shape respiratory inflammation in experimental systems may reveal novel therapeutic targets for addressing the increasing prevalence of chronic airway disease in humans.
Collapse
Affiliation(s)
- E Evonne Jean
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Olivia Good
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Juan M Inclan Rico
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Heather L Rossi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - De'Broski R Herbert
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Abstract
Since their relatively recent discovery, innate lymphoid cells (ILCs) have been shown to be tissue-resident lymphocytes that are critical mediators of tissue homeostasis, regeneration, and pathogen response. However, ILC dysregulation contributes to a diverse spectrum of human diseases, spanning virtually every organ system. ILCs rapidly respond to environmental cues by altering their own phenotype and function as well as influencing the behavior of other local tissue-resident cells. With a growing understanding of ILC biology, investigators continue to elucidate mechanisms that expand our ability to phenotype, isolate, target, and expand ILCs ex vivo. With mounting preclinical data and clinical correlates, the role of ILCs in both disease pathogenesis and resolution is evident, justifying ILC manipulation for clinical benefit. This Review will highlight areas of ongoing translational research and critical questions for future study that will enable us to harness the full therapeutic potential of these captivating cells.
Collapse
|
13
|
Pollaris L, Decaesteker T, Van den Broucke S, Jonckheere AC, Cremer J, Verbeken E, Maes T, Devos FC, Vande Velde G, Nemery B, Hoet PHM, Vanoirbeek JAJ. Involvement of Innate Lymphoid Cells and Dendritic Cells in a Mouse Model of Chemical-induced Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:295-311. [PMID: 33474863 PMCID: PMC7840869 DOI: 10.4168/aair.2021.13.2.295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Exposure to low concentrations of toluene diisocyanate (TDI) leads to immune-mediated chemical-induced asthma. The role of the adaptive immune system has already been thoroughly investigated; nevertheless, the involvement of innate immune cells in the pathophysiology of chemical-induced asthma is still unresolved. The aim of the study is to investigate the role of innate lymphoid cells (ILCs) and dendritic cells (DCs) in a mouse model for chemical-induced asthma. METHODS On days 1 and 8, BALB/c mice were dermally treated (20 μL/ear) with 0.5% TDI or the vehicle acetone olive oil (AOO; 2:3). On days 15, 17, 19, 22 and 24, the mice received an oropharyngeal challenge with 0.01% TDI or AOO (1:4). One day after the last challenge, airway hyperreactivity (AHR) to methacholine was assessed, followed by an evaluation of pulmonary inflammation and immune-related parameters, including the cytokine pattern in bronchoalveolar lavage fluid, lymphocyte subpopulations of the lymph nodes and their ex vivo cytokine production profile, blood immunoglobulins and DC and ILC subpopulations in the lungs. RESULTS Both DC and ILC2 were recruited to the lungs after multiple airway exposures to TDI, regardless of the prior dermal sensitization. However, prior dermal sensitization with TDI alone results in AHR and predominant eosinophilic airway inflammation, accompanied by a typical type 2 helper T (Th2) cytokine profile. CONCLUSIONS TDI-induced asthma is mediated by a predominant type 2 immune response, with the involvement of adaptive Th2 cells. However, from our study we suggest that the innate ILC2 cells are important additional players in the development of TDI-induced asthma.
Collapse
Affiliation(s)
- Lore Pollaris
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Laboratory of Respiratory Diseases and Thoracic Surgery, Department of Chronic Diseases and Metabolism, University of Leuven, Leuven, Belgium
| | - Sofie Van den Broucke
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Anne Charlotte Jonckheere
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, University of Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, University of Leuven, Leuven, Belgium
| | - Erik Verbeken
- Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Tania Maes
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien C Devos
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Department of Imaging and Pathology, Biomedical MRI, University of Leuven, Leuven, Belgium
| | - Benoit Nemery
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Peter H M Hoet
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium
| | - Jeroen A J Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, University of Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Pijnenburg MW, Fleming L. Advances in understanding and reducing the burden of severe asthma in children. THE LANCET RESPIRATORY MEDICINE 2020; 8:1032-1044. [PMID: 32910897 DOI: 10.1016/s2213-2600(20)30399-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/10/2020] [Accepted: 08/22/2020] [Indexed: 01/16/2023]
Abstract
Severe asthma in children is rare, accounting for only a small proportion of childhood asthma. After addressing modifiable factors such as adherence to treatment, comorbidities, and adverse exposures, children whose disease is not well controlled on high doses of medication form a heterogeneous group of severe asthma phenotypes. Over the past decade, considerable advances have been made in understanding the pathophysiology of severe therapy-resistant asthma in children. However, asthma attacks and hospital admissions are frequent and mortality is still unacceptably high. Strategies to modify the natural history of asthma, prevent severe exacerbations, and prevent lung function decline are needed. Mechanistic studies have led to the development of several biologics targeting type 2 inflammation. This growing pipeline has the potential to reduce the burden of severe asthma; however, detailed assessment and characterisation of each child with seemingly severe asthma is necessary so that the most effective and appropriate management strategy can be implemented. Risk stratification, remote monitoring, and the integration of multiple data sources could help to tailor management for the individual child with severe asthma.
Collapse
Affiliation(s)
- Mariëlle W Pijnenburg
- Department of Paediatrics, Division of Respiratory Medicine and Allergology, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands.
| | - Louise Fleming
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|